首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
A hitchhiker's guide to the human Hsp70 family   总被引:11,自引:0,他引:11       下载免费PDF全文
The human Hsp70 family encompasses at least 11 genes which encode a group of highly related proteins. These proteins include both cognate and highly inducible members, at least some of which act as molecular chaperones. The location of cognate Hsp70s within all the major subcellular compartments is an indication of the importance of these proteins. The expression of several inducible Hsp70 genes is also an indication of the importance of these proteins in the stres response. The existence of multiple genes and protein isoforms has created confusion in the identification and naming of particular family members. We have compiled, from the literature, a list of genes and genetic loci and produced a two-dimensional protein map of the known human Hsp70 family members. This will enable researchers in the field to quickly and reliably identify human Hsp70s. We have also devised a more rational nomenclature for these genes and gene products which, subject to general acceptance, could be extended to Hsp70 families from other species.  相似文献   

3.
《Journal of molecular biology》2019,431(15):2729-2746
Members of the Hsp90 and Hsp70 families of molecular chaperones are imp\ortant for the maintenance of protein homeostasis and cellular recovery following environmental stresses, such as heat and oxidative stress. Moreover, the two chaperones can collaborate in protein remodeling and activation. In higher eukaryotes, Hsp90 and Hsp70 form a functionally active complex with Hop (Hsp90–Hsp70 organizing protein) acting as a bridge between the two chaperones. In bacteria, which do not contain a Hop homolog, Hsp90 and Hsp70, DnaK, directly interact during protein remodeling. Although yeast possesses a Hop-like protein, Sti1, Hsp90, and Hsp70 can directly interact in yeast in the absence of Sti1. Previous studies showed that residues in the middle domain of Escherichia coli Hsp90 are important for interaction with the J-protein binding region of DnaK. The results did not distinguish between the possibility that (i) these sites were involved in direct interaction and (ii) the residues in these sites participate in conformational changes which are transduced to other sites on Hsp90 and DnaK that are involved in the direct interaction. Here we show by crosslinking experiments that the direct interaction is between a site in the middle domain of Hsp90 and the J-protein binding site of Hsp70 in both E. coli and yeast. Moreover, J-protein promotes the Hsp70–Hsp90 interaction in the presence of ATP, likely by converting Hsp70 into the ADP-bound conformation. The identification of the protein–protein interaction site is anticipated to lead to a better understanding of the collaboration between the two chaperones in protein remodeling.  相似文献   

4.
Carbon tetrachloride (CCl4) induces liver damage, apparently through the formation of free-radical metabolites. Molecular chaperones such as heat shock protein (Hsp) of 70 kDa have been found to protect cells from various stresses. We previously found that cytosolic chaperone pairs of the Hsp70 family and their DnaJ homolog cochaperones prevent nitric oxide-mediated apoptosis and heat-induced cell death. Expression of cytosolic chaperones, including Hsp70; heat shock cognate (Hsc) 70; and DnaJ homologs dj1 (DjB1/Hsp40/hdj-1), dj2 (DjA1/HSDJ/hdj-2), dj3 (DjA2), and dj4 (DjA4), in the liver of CCl4-treated rats was analyzed. Messenger ribonucleic acids for all these chaperones were markedly induced 3-12 hours after CCl4 treatment with a maximum at 6 hours. Hsp70 and dj1 proteins were markedly induced at 6-24 hours with a maximum at 12 hours, whereas dj2 and dj4 were moderately induced at around 12 hours. Hsc70 was weakly induced after treatment, and dj3 was little induced. To better understand the significance of the induction of chaperones, the effect of preinduction of chaperones on CCl4-induced liver damage was analyzed. When chaperones were preinduced in the liver by heat treatment, increase in serum alanine aminotransferase activity after CCl4 treatment was significantly attenuated. Hsp90, another major cytosolic chaperone, also was induced by heat treatment. On the other hand, Mn- and Cu/Zn-superoxide dismutase were not induced by heat treatment or by CCl4 treatment. These results suggest that cytosolic chaperones of Hsp70 and DnaJ families or Hsp90 (or both) are induced in CCl4-treated rat liver to protect the hepatocytes from the damage being inflicted.  相似文献   

5.
Hsp105alpha and Hsp105beta are stress proteins found in various mammals including human, mouse, and rat, which belong to the Hsp105/Hsp110 protein family. To elucidate their physiological functions, we examined here the chaperone activity of these stress proteins. Hsp105alpha and Hsp105beta prevented the aggregation of firefly luciferase during thermal denaturation, whereas the thermally denatured luciferase was not reactivated by itself or by rabbit reticulocyte lysate (RRL). On the other hand, Hsp105alpha and Hsp105beta suppressed the reactivation of thermally denatured luciferase by RRL and of chemically denatured luciferase by Hsc70/Hsp40 or RRL. Furthermore, although Hsp105alpha and Hsp105beta did not show ATPase activity, the addition of Hsp105alpha or Hsp105beta to Hsc70/Hsp40 enhanced the amount of hydrolysis of ATP greater than that of the Hsp40-stimulated Hsc70 ATPase activity. These findings suggest that Hsp105alpha and Hsp105beta are not only chaperones that prevent thermal aggregation of proteins, but also regulators of the Hsc70 chaperone system in mammalian cells.  相似文献   

6.
Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.  相似文献   

7.
Both the Grp170 and Hsp110 families represent relatively conserved and distinct sets of stress proteins, within a more diverse category that also includes the Hsp70s. All of these families are found in a wide variety of organisms from yeasts to humans. Although Hsp110s or Grp170s are not Hsp70s any more than Hsp70s are Hsp110s or Grp170s, it is still reasonable to refer to this combination of related families as the Hsp70 superfamily based on arguments discussed above and since no obvious prokaryotic Hsp110 or Grp170 has yet been identified. These proteins are related to their counterparts in the Hsp70/Grp78 family of eukaryotic stress proteins but are characterized by significantly larger molecular weights. The members of the Grp170 family are characterized by C-terminal ER retention sequences and are ER localized in yeasts and mammals. As a Grp, Grp170 is recognized to be coregulated with other major Grps by a well-known set of stress conditions, sometimes referred to as the unfolded protein response (Kozutsumi et al 1988; Nakaki et al 1989). The Hsp110 family members are localized in the nucleus and cytoplasm and, with other major Hsps, are also coregulated by a specific set of stress conditions, most notably including hyperthermic exposures. Hsp110 is sometimes called Hsp105, although it would be preferable to have a uniform term. The large Hsp70-like proteins are structurally similar to the Hsp70s but differ from them in important ways. In both the Grp170 and Hspl10 families, there is a long loop structure that is interposed between the peptide-binding ,-domain and the alpha-helical lid. In the Hsp110 family and Grp170, there are differing degrees of expansion in the alpha-helical domain and the addition of a C-terminal loop. This gives the appearance of much larger lid domains for Hsp110 and Grp170 compared with Hsp70. Both Hsp110 and Grp170 families have relatively conserved short sequences in the alpha-helical domain in the lid, which are conserved motifs in numerous proteins (we termed these motifs Magic and TedWylee as discussed earlier). The structural differences detailed in this review result in functional differences between the large (Grp170 and Hspl10) members of the Hsp70 superfamily, the most distinctive being an increased ability of these proteins to bind (hold) denatured polypeptides compared with Hsc70, perhaps related to the enlarged C-terminal helical domain. However, there is also a major difference between these large stress proteins; Hsp110 does not bind ATP in vitro, whereas Grp170 binds ATP avidly. The role of the Grp170 and Hsp110 stress proteins in cellular physiology is not well understood. Overexpression of Hsp110 in cultured mammalian cells increases thermal tolerance. Grp170 binds to secreted proteins in the ER and may be cooperatively involved in folding these proteins appropriately. These roles are similar to those of the Hsp70 family members, and, therefore, the question arises as to the differential roles played by the larger members of the superfamily. We have discussed evidence that the large members of the superfamily cooperate with members of the Hsp70 family, and these chaperones probably interact with a large number of chaperones and cochaperones in their functional activities. The fundamental point is that Hsp110 is found in conjunction with Hsp70 in the cytoplasm (and nucleus) and Grp170 is found in conjunction with78 in tha ER in every eucaryotic cell examined from yeast to humans. This would strongly argue that Hsp110 Grp170 exhibit functions in eucaryotes not effectively performed by Hsp70s or Grp78, respectively. Of interest in this respect is the observation that all Hsp110s loss of function or deletion mutants listed in the Drosophila deletion project database are lethal. The important task for the future is to determine the roles these conserved molecular chaperones play in normal and physiologically stressed cells.  相似文献   

8.
DnaJ proteins are located in various compartments of the eukaryotic cell. As previously shown, peroxisomes and glyoxysomes possess a membrane-anchored form of DnaJ protein located on the cytosolic face. Hints as to how the membrane-bound co-chaperone interacts with cytosolic soluble chaperones were obtained by examining the affinity between the DnaJ protein and various potential partners of the Hsp70 family. Two genes encoding cytosolic Hsp70 isoforms were isolated and characterized from cucumber cotyledons. In addition, cDNAs encoding Hsp70 forms attributed to the cytosol, plastids and the lumen of the endoplasmic reticulum were prepared. His-tagged DnaJ proteins and glutathione S-transferase-Hsp70 fusion proteins were constructed. Using these tools, it was demonstrated that the soluble His-tagged form of DnaJ protein exclusively binds the cytosolic isoform 1 of Hsp70. This interaction was further analyzed by characterizing the interaction between the glyoxysome-bound form of the DnaJ protein and various isoforms of Hsp70. Specific binding to the glyoxysomal surface was only observed in the case of cytosolic isoform 1 of Hsp70. This interaction was strictly dependent on the presence of ADP. Glyoxysomes did not bind other cytosolic or plastidic isoforms or the BiP-related form of Hsp70. Analyzing the enzymatic properties of cytosolic Hsp70s, we showed that the ATPase-modulating activity of DnaJ was highest when isoform 1 was assayed. Collectively, the data indicate that the partner of the DnaJ protein anchored at the glyoxysomal membrane is the cytosolic isoform 1 of Hsp70. In addition to the chaperones located at the surface of glyoxysomes, two isoforms of Hsp70 and one soluble form of DnaJ protein were detected in the glyoxysomal matrix.  相似文献   

9.
The DYRK (Dual-specificity tYrosine-phosphorylation Regulated protein Kinase) family consists of five related protein kinases (DYRK1A, DYRK1B, DYRK2, DYRK3, DYRK4). DYRKs show homology to Drosophila Minibrain, and DYRK1A in human chromosome 21 is responsible for various neuronal disorders including human Down syndrome. Here we report identification of cellular proteins that associate with specific members of DYRKs. Cellular proteins with molecular masses of 90, 70, and 50-kDa associated with DYRK1B and DYRK4. These proteins were identified as molecular chaperones Hsp90, Hsp70, and Cdc37, respectively. Microscopic analysis of GFP-DYRKs showed that DYRK1A and DYRK1B were nuclear, while DYRK2, DYRK3, and DYRK4 were mostly cytoplasmic in COS7 cells. Overexpression of DYRK1B induced nuclear re-localization of these chaperones with DYRK1B. Treatment of cells with specific Hsp90 inhibitors, geldanamycin and 17-AAG, abolished the association of Hsp90 and Cdc37 with DYRK1B and DYRK4, but not of Hsp70. Inhibition of Hsp90 chaperone activity affected intracellular dynamics of DYRK1B and DYRK4. DYRK1B and DYRK4 underwent rapid formation of cytoplasmic punctate dots after the geldanamycin treatment, suggesting that the chaperone function of Hsp90 is required for prevention of protein aggregation of the target kinases. Prolonged inhibition of Hsp90 by geldanamycin, 17-AAG, or ganetespib, decreased cellular levels of DYRK1B and DYRK4. Finally, DYRK1B and DYRK4 were ubiquitinated in cells, and ubiquitinated DYRK1B and DYRK4 further increased by Hsp90 inhibition with geldanamycin. Taken together, these results indicate that Hsp90 and Cdc37 discriminate specific members of the DYRK kinase family and play an important role in quality control of these client kinases in cells.  相似文献   

10.
Hsp105alpha and Hsp105beta are mammalian members of the Hsp105/110 family, a diverged subgroup of the Hsp70 family. Here, we show that Hsp105alpha and Hsp105beta bind non-native protein through the beta-sheet domain and suppress the aggregation of heat-denatured protein in the presence of ADP rather than ATP. In contrast, Hsc70/Hsp40 suppressed the aggregation of heat-denatured protein in the presence of ATP rather than ADP. Furthermore, the overexpression of Hsp105alpha but not Hsp70 in COS-7 cells rescued the inactivation of luciferase caused by ATP depletion. Thus, Hsp105/110 family proteins are suggested to function as a substitute for Hsp70 family proteins to suppress the aggregation of denatured proteins in cells under severe stress, in which the cellular ATP level decreases markedly.  相似文献   

11.
Hsp70 molecular chaperones function in protein folding in a manner dependent on regulation by co-chaperones. Hsp40s increase the low intrinsic ATPase activity of Hsp70, and nucleotide exchange factors (NEFs) remove ADP after ATP hydrolysis, enabling a new Hsp70 interaction cycle with non-native protein substrate. Here, we show that members of the Hsp70-related Hsp110 family cooperate with Hsp70 in protein folding in the eukaryotic cytosol. Mammalian Hsp110 and the yeast homologues Sse1p/2p catalyze efficient nucleotide exchange on Hsp70 and its orthologue in Saccharomyces cerevisiae, Ssa1p, respectively. Moreover, Sse1p has the same effect on Ssb1p, a ribosome-associated isoform of Hsp70 in yeast. Mutational analysis revealed that the N-terminal ATPase domain and the ultimate C-terminus of Sse1p are required for nucleotide exchange activity. The Hsp110 homologues significantly increase the rate and yield of Hsp70-mediated re-folding of thermally denatured firefly luciferase in vitro. Similarly, deletion of SSE1 causes a firefly luciferase folding defect in yeast cells under heat stress in vivo. Our data indicate that Hsp110 proteins are important components of the eukaryotic Hsp70 machinery of protein folding.  相似文献   

12.
Hsp90 chaperone complexes function in assembly, folding, and activation of numerous substrates. The 2 vertebrate homologues encoded by the genes hsp90a and hsp90b are differentially expressed in embryonic and adult tissues and during stress; however, it is not known whether they possess identical functional activities in chaperone complexes. This question was addressed by examining potential differences between the Hsp90 isoforms with respect to both cochaperone and substrate interactions. Epitope-tagged proteins were expressed in mammalian cells or Xenopus oocytes and subjected to immunoprecipitation with an array of cochaperones. Both isoforms were shown to participate equally in multichaperone complexes, and no significant differences in cochaperone distribution were observed. The substrates Raf-1, HSF1, Cdc37, and MEK1 interacted with both Hsp90alpha and Hsp90beta, and the relative patterns of these interactions were not affected by heat shock. The substrate kinases c-Src, CKIIB, A-raf, and Erk interacted with both isoforms; however, significantly more Hsp90alpha was recovered after heat shock. The data demonstrate that Hsp90alpha and Hsp90beta exhibit similar interactions with cochaperones, but significantly different behaviors with respect to substrate interactions under stress conditions. These results reveal both functional similarities and key functional differences in the individual members of this protein family.  相似文献   

13.
Hsp100 family of molecular chaperones shows a unique capability to resolubilize and reactivate aggregated proteins. The Hsp100-mediated protein disaggregation is linked to the activity of other chaperones from the Hsp70 and Hsp40 families. The best-studied members of the Hsp100 family are the bacterial ClpB and Hsp104 from yeast. Hsp100 chaperones are members of a large super-family of energy-driven conformational "machines" known as AAA+ ATPases. This review describes the current mechanistic model of the chaperone-induced protein disaggregation and explains how the structural architecture of Hsp100 supports disaggregation and how the co-chaperones may participate in the Hsp100-mediated reactions.  相似文献   

14.
Raviol H  Bukau B  Mayer MP 《FEBS letters》2006,580(1):168-174
Hsp110 proteins constitute a heterogeneous family of abundant molecular chaperones, related to the Hsp70 proteins and exclusively found in the cytosol of eukaryotic organisms. Hsp110 family members are described as efficient holdases, preventing the aggregation and assisting the refolding of heat-denatured model substrates in the presence of Hsp70 chaperones and their co-chaperones. To gain more insights into the mode of action of this protein family we compared two homologues representing two subtypes of Hsp110 proteins, S. cerevisiae Sse1 and H. sapiens Apg-2, in their structural and functional properties in vitro. In contrast to previous publications both proteins exhibited intrinsic ATPase activities, which only in the case of Sse1 could be stimulated by the Hsp40 co-chaperone Sis1. Similar to Hsp70 proteins ATP binding and hydrolysis induced conformational rearrangements in both Hsp110 proteins as detected by tryptophane fluorescence. However, nucleotide induced changes in the proteolytic digestion pattern were detected only for Sse1. Sse1 and Apg-2 thus show significant differences in their biochemical properties, which may relate to differences in their functional roles in vivo.  相似文献   

15.
Molecular chaperones are highly conserved in all free-living organisms. There are many types of chaperones, and most are conveniently grouped into families. Genome sequencing has revealed that many organisms contain multiple members of both the DnaK (Hsp70) family and their partner J-domain protein (JDP) cochaperone, belonging to the DnaJ (Hsp40) family. Escherichia coli K-12 encodes three Hsp70 genes and six JDP genes. The coexistence of these chaperones in the same cytosol suggests that certain chaperone-cochaperone interactions are permitted, and that chaperone tasks and their regulation have become specialized over the course of evolution. Extensive genetic and biochemical analyses have greatly expanded knowledge of chaperone tasking in this organism. In particular, recent advances in structure determination have led to significant insights of the underlying complexities and functional elegance of the Hsp70 chaperone machine.  相似文献   

16.
Vertebrate cells contain at least 12 different genes for Hsp70 proteins, 3 of which are encoded in the major histocompatibility complex (MHC) class III region. In the human MHC, these are named Hsp70-1, -2, and -Hom. To characterize these proteins, we have determined their substrate binding specificity, their cellular and tissue distribution, and the regulation of their expression. We show for the first time (1) peptide binding specificity of Hsp70-Hom; (2) endogenous expression of Hsp70-Hom in human cell lines; (3) cytoplasmic location of Hsp70-Hom protein under basal conditions and concentration in the nucleus after heat shock; (4) unique RNA expression profiles in human tissues for each of the MHC-encoded Hsp70s, significantly different from that for the constitutive Hsc70; (5) a relative increase in levels of Hsp70-Hom protein, compared with other Hsp70s, in response to interferon gamma; and (6) a specific increase on lipopolysaccharide (LPS) treatment of in vivo messenger RNA levels for the MHC-encoded Hsp70s and the DnaJ homologue, hdj2, relative to other chaperones. The unique tissue distributions and specific up-regulation by LPS of the MHC-encoded Hsp70s suggest some specialization of functions for these members of the Hsp70 family, possibly in the inflammatory response.  相似文献   

17.
Molecular chaperones facilitate the correct folding of other proteins under physiological and stress conditions. Recently it has become evident that various co-chaperone proteins regulate the cellular functions of these chaperones, particularly Hsp70 and Hsp90. Hop is one of the most extensively studied co-chaperones that is able to directly associate with both Hsp70 and Hsp90. The current dogma proposes that Hop functions primarily as an adaptor that directs Hsp90 to Hsp70-client protein complexes in the cytoplasm. However, recent evidence suggests that Hop can also modulate the chaperone activities of these Hsps, and that it is not dedicated to Hsp70 and Hsp90. While the co-chaperone function of Hop within the cytoplasm has been extensively studied, its association with nuclear complexes and prion proteins remains to be elucidated. This article will review the structural features of Hop, and the evidence that its biological function is considerably broader than previously envisaged.  相似文献   

18.
How do chaperones operate in cells? For some major chaperones it is clear what they do, though mostly not how they do it. Hsp60, 70 and 100 families carry out folding, unfolding or disaggregation of proteins. Regarding mechanisms of action, we have the clearest picture of the ATP-driven mechanism of the bacterial Hsp60s, and structures of full-length Hsp70 and 90 family members are beginning to give insights into their allosteric mechanisms. Recent advances are giving an improved understanding of the nature of chaperone interactions with their non-native substrate proteins. There have also been significant advances in understanding the engagement of chaperones in preventing the formation of toxic aggregates in degenerative disease and the relationship of protein quality control to complex biological processes such as ageing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号