首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Summary A brief review on the structure nd functions of the copper-pyrroloquinoline quinone amine oxidases is presented. Data concerning the metal and organic cofactors are reported, giving special emphasis to their structural relationship with the protein molecule and mechanistic properties. Information on the functional role of these enzymes with respect to polyamine metabolism are also given.  相似文献   

3.
Copper chaperones: function, structure and copper-binding properties   总被引:5,自引:0,他引:5  
 Copper is an absolute requirement for living systems and the intracellular trafficking of this metal to copper-dependent proteins is fundamental to normal cellular metabolism. The copper chaperones perform the dual functions of trafficking and the prevention of cytoplasmic exposure to copper ions in transit. Only a small number of copper chaperones have been identified at this time but their conservation across plant, bacterial and animal species suggests that the majority of living systems utilise these proteins for copper routing. The available data suggest that each copper-dependent protein in the cell is served by a specific copper chaperone. Although copper chaperones cannot be substituted for one another in a given cell type, copper chaperones that deliver to the same protein in different cell types appear to be functionally equivalent. The majority of the copper chaperones identified thus far have an "open-faced β-sandwich" global fold with a conserved MXCXXC metal-binding motif. Specificity for a given copper-dependent protein appears to be mediated by the residues surrounding the copper-binding motif. Copper binds to such proteins as Cu(I) in a trigonal complex with three sulfur ligands. Only the copper chaperone specific for cytochrome-c-oxidase, Cox17, deviates from this design. Received: 12 October 1998 / Accepted: 7 December 1998  相似文献   

4.
5.
Gadda G 《Biochemistry》2012,51(13):2662-2669
The oxidation of flavin hydroquinones by O(2) in solution is slow, with second-order rate constants of ~250 M(-1) s(-1). This is due to the obligatory, single-electron transfer that initiates the reaction being thermodynamically unfavored and poorly catalyzed. Notwithstanding considerations of O(2) accessibility to the reaction site, its desolvation and geometry and other factors that can also contribute to further rate acceleration, flavoprotein oxidases must activate O(2) for reaction with flavin hydroquinones to be able to achieve the 100-1000-fold rate enhancements typically observed. Protein positive charges have been identified in glucose oxidase, monomeric sarcosine oxidase, N-methyltryptophan oxidase and fructosamine oxidase that electrostatically stabilize the transition state for the initial single electron transfer that generates the O(2)(-?)/flavin semiquinone radical pair. In choline oxidase despite the presence of three histidines in the active site, the trimethylammonium group of the reaction product provides such an electrostatic stabilization. A nonpolar site proximal to the flavin C(4a) atom in choline oxidase has also been identified, which contributes to the geometry and desolvation of the O(2) reaction site. The relevance of O(2) activation by product charges to other flavoprotein oxidases, such as for example those catalyzing amine oxidations, is discussed in this review. A nonpolar site close to the flavin C(4a) atom and a positive charge is identified through structural analysis in several flavoprotein oxidases. Mutagenesis has disclosed nonpolar sites in O(2)-reducing enzymes that utilize copper/TPQ or iron. It is predicted that classes of O(2)-reducing enzymes utilizing other cofactors also contain a similar catalytic motif.  相似文献   

6.
Oxygen, oxidases, and the essential trace metals   总被引:1,自引:0,他引:1  
The dominant function of dioxygen as the terminal electron acceptor in aerobic systems is well established; the roles of iron and copper in the terminal oxidases are less well understood. The minor, but crucial, part that dioxygen plays in other biological processes has recently attracted much attention. The chemistry of the reduction products of dioxygen is described and the possible relation of these products to the toxic properties of dioxygen is discussed. It is suggested that the uncontrolled reaction of dioxygen with reduced species, to give the superoxide ion, hydrogen peroxide, the hydroxyl radical and perhaps other entities derived from these, is potentially hazardous to the organism. Defences exist against these species, not least in the dismutases dependent on copper-zinc, manganese and iron, in catalase and in the selenium-dependent peroxidase. The effectiveness of these defences is examined and their reduction products of dioxygen during phagocytosis is discussed.  相似文献   

7.
8.
Correlations between scale structure and pigmentation in butterfly wings   总被引:1,自引:0,他引:1  
SUMMARY We examined the correlation between color and structure of wing scales in the nymphalid butterflies Bicyclus anynana and Heliconius melpomene . All scales in B. anynana are rather similar in comparison to the clear structural differences of differently pigmented scales in H. melpomene . Where scale structural differences in H. melpomene are qualitative, they seem to be quantitative in B. anynana . There is a "gradient" in the density of some structural elements, the cross ribs, in the scales of B. anynana : black, gold, and brown scales show progressively lower cross rib density within an individual. There is, however, high individual variation in the absolute cross rib densities (i.e., scales with a particular color and cross rib density in one individual may have a different color but similar density in another individual). By ectopically inducing color pattern during early pupal development, we examined whether a scale's color and its microstructure could be uncoupled. The effect of these manipulations appears to be different in B. anynana and H. melpomene . In Bicyclus , "black" scales induced by wing damage at an ectopic location normally containing brown scales acquire both an intermediate structure and color between that of brown and normal black scales. In Heliconius , however, intermediate colors or scale structure were never observed, and scales with an altered color (due to damage) always have the same structure as normal scales with that color. The results are discussed on the basis of gene expression patterns, variability in rates of scale development and pigment, and scale sclerotization pathways.  相似文献   

9.
Acetylcarnitine: on the relationship between structure and function   总被引:1,自引:0,他引:1  
Acetylcarnitine chloride, a molecule with cholinergic properties, has been studied by X-ray crystallographic techniques. Results show that a portion of the acetylcarnitine molecule is in the same configuration as the functionally similar acetylcholine molecule and other cholinergic molecules.  相似文献   

10.
The dietary antagonism between copper and molybdate salts prompted a study of the inhibition of copper enzymes by thiomolybdate (TM). TM strongly inhibited the oxidase activity of five copper oxidase with I50% values in the 1-5 microM range. The mechanism of the TM effect on the copper oxidase, ceruloplasmin (Cp) (E.C. 1.16.3.1), was studied in detail. In Vmax vs. E plots, TM gave parallel data suggesting irreversibility but a large number of TM molecules per Cp were required. The inhibition of Cp by TM could not be reversed by dialysis. Isolation of TM-inhibited Cp on Sephadex G-10 did not yield any active Cp molecules. Cu(II) did not restore any inhibited oxidase activity. Gel electrophoresis supported the covalent binding of Cp by TM without any extensive change in protein structure. EPR results confirmed that Cu(II) is reduced to Cu(I) after reaction with TM. However, the Mo(VI) in MoS4(2-) did not change in oxidation number. Analysis of the TM-Cp compound accounted for all six Cu atoms as found in native Cp. The data suggest the covalent binding of sulfide to Cp copper. TM also inhibited the activity of ascorbate oxidase, cytochrome oxidase, superoxide dismutase, and tyrosinase. However, no inhibition of carbonic anhydrase, a zinc enzyme, was observed at 1 mM TM.  相似文献   

11.
An overwhelming array of structural variants has evolved from a comparatively small number of protein structural domains; which has in turn facilitated an expanse of functional derivatives. Herein, I review the primary mechanisms which have contributed to the vastness of our existing, and expanding, protein repertoires. Protein function prediction strategies, both sequence and structure based, are also discussed and their associated strengths and weaknesses assessed.  相似文献   

12.
The redox potentials of the multicopper redox enzyme bilirubin oxidase (BOD) from two organisms were determined by mediated and direct spectroelectrochemistry. The potential of the T1 site of BOD from the fungus Myrothecium verrucaria was close to 670 mV, whereas that from Trachyderma tsunodae was >650 mV vs. NHE. For the first time, direct electron transfer was observed between gold electrodes and BODs. The redox potentials of the T2 sites of both BODs were near 390 mV vs. NHE, consistent with previous finding for laccase and suggesting that the redox potentials of the T2 copper sites of most blue multicopper oxidases are similar, about 400 mV.  相似文献   

13.
Abstract. 1. Evidence used to support the theory that mixed function oxidases (MFOs) are important in the survival of polyphagous herbivores is briefly reviewed. This evidence includes data on patterns of variation in MFO activity among species and among developmental stages within species. It also includes data on induction of MFO activity by plant compounds and metabolism of plant cornpounds by MFOs.
2. It is argued that the evidence presently available does not offer strong support of the theory because key pieces of information are lacking. Evidence which tends to refute the theory is reviewed and discussed.
3. Experiments are proposed which could more rigorously test the theory.  相似文献   

14.
Oxygen is favoured as terminal electron acceptor in aerobic and facultative microorganisms because of its appropriate physical state, satisfactory solubility and its desirable combinations of kinetic and thermodynamic properties. Oxygen is generally reduced by four electrons to yield oxygen, but there are important biological consequences of, and roles for, the partial reduction to superoxide and peroxide. Complex and multiple regulatory networks ensure (i) the utilization of oxygen in preference to other oxidants, (ii) the synthesis of oxygen-consuming enzymes with appropriate properties (particularly affinity for the ligand), and (iii) appropriate cellular protection in the event of oxidative stress. This contribution reviews the terminal respiratory oxidases of selected Gram-negative bacteria and microbial haemoglobin-like proteins.Recent studies of the cytochromebd-type oxidases ofEscherichia coli andAzotobacter vinelandii suggest that, despite probable similarity at the amino acid level, the reactivities of these oxidases with oxygen are strikingly different. The respiratory protection afforded to nitrogenase in the obligately aerobic diazotrophA. vinelandii by the cytochromebd complex appears to be accompanied by, and may be the result of, a low affinity for oxygen and a high Vmax. The poorly characterized cytochromeo-containing oxidase in this bacterium is not required for respiratory protection. InE. coli, the cytochromebd-type oxidase has a remarkably high affinity for oxygen, consistent with the view that this is an oxygen-scavenging oxidase utilized under microaerobic conditions. The demonstration of substrate (i.e. oxygen) inhibition in this complex suggests a mechanism whereby wasteful electron flux through a non-proton-pumping oxidase is avoided at higher dissolved oxygen tensions. The demonstration of two ligandbinding sites (haemsd andb 595) in oxidases of this type suggests plausible mechanisms for this phenomenon. InE. coli, assembly of the cytochromebd-type oxidase (and of periplasmic cytochromesb andc) requires the presence of an ABC transporter, which may serve to export haem or some assembly factor' to the periplasm.There is at least one additional oxygen-consuming protein inE. coli — the flavohaemoglobin encoded by thehmp gene. Globin-like proteins are also widely distributed in other bacteria, fungi and protozoa, but most have unknown functions. The function of HMP and the related chimaeric flavohaemoglobins in other bacteria and yeast is unknown; one of several possibilities for HMP is that its relatively low affinity for oxygen during turnover with NADH as substrate could enable it to function as a sensor of falling (or rising) cytoplasmic oxygen concentrations.(until October 1994: Section of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA)  相似文献   

15.
16.
Andreas Christenson  Nicolas Mano  Adam Heller 《BBA》2006,1757(12):1634-1641
The redox potentials of the multicopper redox enzyme bilirubin oxidase (BOD) from two organisms were determined by mediated and direct spectroelectrochemistry. The potential of the T1 site of BOD from the fungus Myrothecium verrucaria was close to 670 mV, whereas that from Trachyderma tsunodae was > 650 mV vs. NHE. For the first time, direct electron transfer was observed between gold electrodes and BODs. The redox potentials of the T2 sites of both BODs were near 390 mV vs. NHE, consistent with previous finding for laccase and suggesting that the redox potentials of the T2 copper sites of most blue multicopper oxidases are similar, about 400 mV.  相似文献   

17.
The oxidases of gibberellin biosynthesis: Their function and mechanism   总被引:1,自引:0,他引:1  
Gibberellins (GAs) are biosynthesised from the diterpene ent -kaurene by a series of oxidative reactions catalysed by two classes of enzymes. The early steps, involving transformations of highly hydrophobic substrates, are carried out by membrane-associated monooxygenases, probably involving cytochrome P450, whereas the later reactions are catalysed by soluble 2-oxoglutarate-dependent dioxygenases. Some reactions involving substrates, such as GA12 and GA12-aldehyde, that have intermediate polarity are catalysed by enzymes in both classes. The monooxygenases and dioxygenases catalyse the same types of reactions: hydroxylation, desaturation, alcohol and aldehyde oxidation. For both enzyme classes, the oxidant is thought to be an oxyferryl species, depicted as Felv=O, that is derived from molecular oxygen by different mechanisms, the reducing power being supplied by NADPH in the case of cytochrome P450 monooxygenases and by the decarboxylation of 2-oxoglutarate to succinate for the dioxygenases. The recent availability of cDNA clones for several of the dioxygenases and the ability to prepare active enzymes by heterologous expression of cDNAs in Escherichia coli have provided new opportunities for examining the function of these enzymes. They have relatively low substrate specificity and, in many cases, are multifunctional. Consequently, fewer enzymes than expected are required to produce the large number of GA structures encountered in higher plants. In the present review, the major oxygenases of GA biosynthesis are described and their reactions are discussed in an attempt to rationalise this multifunctionality.  相似文献   

18.
The low temperature (77 K) irradiation of oxidized ceruloplasmin and Rhus vernicifera laccase at the 330 nm absorption which arises from type 3 copper leads to the reduction of type 1 copper as demonstrated by bleaching of the 610 nm chromophore and the decrease of the EPR signal associated with this species. Type 2 copper remains unaffected. Concomitant with the type 1 copper reduction, a new EPR signal which is possibly that of a biradical appears. Upon thawing, type 1 copper is reversibly oxidized and the radical signal disappears. Irradiation of oxidized protein at the absorption band of type 1 copper produces no spectral change. An EPR study at room temperature confirms the wave-length specificity and reversibility of the photoreduction of type 1 copper and radical formation. Radical appearance and disappearance at room temperature are extremely slow (tau1/2 approximately 30 min). Optical studies at room temperature show that upon anaerobic irradiation of laccase in the 330 nm absorption band, both type 3 and type 1 chromophores are slowly reduced. Upon return to the dark and in the presence of O2, both type 3 and type 1 centers are reoxidized. Oxidizing equivalents either from O2 or K3Fe(CN)6 are required for the reoxidation reaction. These studies demonstrate that there is a direct energy transfer between type 3 and type 1 copper sites in blue copper oxidases.  相似文献   

19.
20.
The reactions of pea diamine oxidase (PSAO) and 2-phenylethylamine oxidase from Arthrobacter globiformis (AGAO) with pyridine-derived oximes were studied. Pyridine carbaldoximes and alkyl pyridyl ketoximes act as strong non-competitive inhibitors of the enzymes. The inhibition constants K(i) of these compounds vary between 10(-4) and 10(-5) M, for AGAO and some of the studied oximes were found even micromolar K(i) values. The presence of pyridine moiety in the studied compounds has remarkable influence on the inhibition potency. Elementary oximes lacking the heterocyclic ring, i.e., aliphatic (acetone oxime), alicyclic (cyclohexanone oxime) and aromatic (benzaldoxime), are considerably weaker non-competitive inhibitors (K(i) similar to 10(-3) or 10(-2) M). The position of the pyridine ring substitution by -C(R)=NOH group does not play a significant role for the inhibition potency of the studied oxime compounds. If the pyridine nitrogen is quaternised (in hydroxyiminomethyl-1-methylpyridinium iodides), the compound looses its inhibitory properties. Extended length of alkyl substituents on the ketoxime group of alkyl pyridyl ketoximes increases the K(i) value. The enzyme-bound copper represents one of possible target sites for pyridine-derived oxime inhibitors. The addition of an alkyl pyridyl ketoxime or a pyridine carbaldoxime to a native PSAO sample perturbs the absorption spectrum of the enzyme (by an absorption increase in the region 300-400 nm) that is not observed in the spectrum of reacted PSAO apoenzyme. However, an additional formation of hydrogen bonds with amino acid side-chains at the active site should be considered, namely for 3- and 4-substituted pyridine derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号