首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The desaturation of [1-(14)C] 18:3n-3 to docosahexaenoic acid (DHA; 22:6n-3) is enhanced in an essential fatty acid deficient cell line (EPC-EFAD) in comparison with the parent cell line (EPC) from carp. In the present study, the effects of DHA on lipid and fatty acid compositions, and the metabolism of [1-(14)C]18:3n-3 were investigated in EPC-EFAD cells in comparison with EPC cells. DHA supplementation had only relatively minor effects on lipid content and lipid class compositions in both EPC and EPC-EFAD cells, but significantly increased the amount of DHA, 22:5n-3, eicosapentaenoic acid (EPA; 20:5n-3), total n-3 polyunsaturated fatty acids (PUFA), total PUFA and saturated fatty acids in total lipid and total polar lipid in both cell lines. Retroconversion of supplemental DHA to EPA was significantly greater in EPC cells. Monounsaturated fatty acids, n-9 and n-6PUFA were all decreased in total lipid and total polar lipid in both cell lines by DHA supplementation. The incorporation of [1-(14)C]18:3n-3 was greater into EPC-EFAD compared to EPC cells but DHA had no effect on the incorporation of [1-(14)C]18:3n-3 in either cell line. In contrast, the conversion of [1-(14)C]18:3n-3 to tetraenes, pentaenes and total desaturation products was similar in the two cell lines and was significantly reduced by DHA supplementation in both cell lines. However, the production of DHA from [1-(14)C]18:3n-3 was significantly greater in EPC-EFAD cells compared to EPC cells and, whereas DHA supplementation had no effect on the production of DHA from [1-(14)C]18:3n-3 in EPC cells, DHA supplementation significantly reduced the production of DHA from [1-(14)C] 18:3n-3 in EPC-EFAD cells. Greater production of DHA in EPC-EFAD cells could be a direct result of significantly lower levels of end-product DHA in these cells' lipids compared to EPC cells. Consistent with this, the suppression of DHA production upon DHA supplementation was associated with increased cellular and membrane DHA concentrations in EPC-EFAD cells. However, an increase in cellular DHA content to similar levels failed to suppress DHA production in DHA-supplemented EPC cells. A possible explanation is that greatly increased levels of EPA, derived from retroconversion of the added DHA, acts to offset the suppression of the pathway by DHA by stimulating conversion of EPA to DHA in DHA-supplemented EPC cells.  相似文献   

2.
The selective mobilization of fatty acids from white fat cells depends on their molecular structure, in particular the degree of unsaturation. The present study was designed to examine if the release of fatty acids by hormone-sensitive lipase (HSL) in vitro i) is influenced by the amount of unsaturation, ii) depends on the temperature, and iii) could explain the selective pattern of fatty acid mobilization and notably the preferential mobilization of certain highly unsaturated fatty acids. Recombinant rat and human HSL were incubated with a lipid emulsion. The hydrolysis of 35 individual fatty acids, ranging in chain length from 12 to 24 carbon atoms and in unsaturation from 0 to 6 double bonds was measured. Fatty acid composition of in vitro released NEFA was compared with that of fat cell triacylglycerols (TAG), the ratio % NEFA/% TAG being defined as the relative hydrolysis. The relative hydrolysis of individual fatty acids differed widely, ranging from 0.44 (24:1n-9) to 1.49 (18:1n-7) with rat HSL, and from 0.38 (24:1n-9) to 1.67 (18:1n-7) with human HSL. No major difference was observed between rat and human HSL. The relative release was dependent on the number of double bonds according to chain length. The amount of fatty acid released by recombinant rat HSL was decreased but remained robust at 4 degrees C compared with 37 degrees C, and the relative hydrolysis of some individual fatty acids was affected. The relative hydrolysis of fatty acids moderately, weakly, and highly mobilized by adipose tissue in vivo was similar and close to unity in vitro. We conclude that i) the release of fatty acids by HSL is only slightly affected by their degree of unsaturation, ii) the ability of HSL to efficiently and selectively release fatty acids at low temperature could reflect a cold adaptability for poikilotherms or hibernators when endogenous lipids are needed, and iii) the selectivity of fatty acid hydrolysis by HSL does not fully account for the selective pattern of fatty acid mobilization, but could contribute to explain the preferential mobilization of some highly unsaturated fatty acids compared with others.  相似文献   

3.
Specific fatty acid alterations have been described in the blood and tissues of cystic fibrosis (CF) patients. The principal alterations include decreased levels of linoleic acid (LA) and docosahexaenoic acid (DHA). We investigated the potential mechanisms of these alterations by studying the cellular uptake of LA and DHA, their distribution among lipid classes, and the metabolism of LA in a human bronchial epithelial cell model of CF. CF (antisense) cells demonstrated decreased levels of LA and DHA compared with wild type (WT, sense) cells expressing normal CFTR. Cellular uptake of LA and DHA was higher in CF cells compared with WT cells at 1 h and 4 h. Subsequent incorporation of LA and DHA into most lipid classes and individual phospholipids was also increased in CF cells. The metabolic conversion of LA to n-6 metabolites, including 18:3n-6 and arachidonic acid, was upregulated in CF cells, indicating increased flux through the n-6 pathway. Supplementing CF cells with DHA inhibited the production of LA metabolites and corrected the n-6 fatty acid defect. In conclusion, the evidence suggests that low LA level in cultured CF cells is due to its increased metabolism, and this increased LA metabolism is corrected by DHA supplementation.  相似文献   

4.
Recent studies on chicken semen have suggested that the lipid and fatty acid composition of spermatozoa may be important determinants of fertility. Phospholipid fatty acid composition, vitamin E content and in vitro susceptibility to lipid peroxidation of duck spermatozoa were investigated using GC-MS and HPLC based methods. The total phospholipid fraction of duck spermatozoa was characterized by high proportions of the n-6 polyunsaturated fatty acids arachidonic (20:4n-6), docosatetraenoic (22:4n-6) and docosapentaenoic (22:5n-6) acids but a substantial proportion of the n-3 fatty acid docosahexaenoic (22:6n-3) acid was also present. Palmitic (16:0) and stearic (18:0) fatty acids were the major saturates in sperm phospholipids. Among the phospholipid classes, phosphatidylserine (PS) had the highest degree of unsaturation due to very high proportions of 22:6n-3, 22:5n-6, 22:4n-6 and 20:4n-6, comprising together more than 75% of total fatty acids in this fraction. Phosphatidylethanolamine (PE) also contained high proportions of these four C(20-22) polyunsaturates, which together formed 60% of total fatty acids in this phospholipid. Spermatozoa and seminal plasma of duck semen were characterized by unexpectedly low content of vitamin E, being more than 4-fold lower than in chicken semen. In duck semen the major proportion of the vitamin E (>70%) was located in the spermatozoa. The very high proportion of 22:6n-3 in PS and PE fractions of duck sperm lipids and the comparatively low levels of vitamin E could predispose semen to lipid peroxidation. Nevertheless the in vitro susceptibilities to Fe2+-stimulated lipid peroxidation of duck and chicken spermatozoa were very similar. The results of the study suggest that increased superoxide dismutase and glutathione peroxidase activity and increased antioxidant activity of seminal plasma may compensate for the low levels of vitamin E to help protect the membranes of duck spermatozoa, which exhibit a high degree of unsaturation from oxidative stress.  相似文献   

5.
In the present study, the effect of increasing concentrations of palmitic (PA, C16:0), stearic (SA, C18:0), oleic (OA, C18:1, n-9), linoleic (LA, C18:2n-6), docosahexaenoic (DHA, C22:6 n-3) and eicosapentaenoic (EPA, C20:5 n-3) acids on lymphocyte proliferation was investigated. The maximal non-toxic concentrations of these fatty acids for human lymphocytes in vitro were determined. It was also evaluated whether these fatty acids at non-toxic concentrations affect IL-2 induced lymphocyte proliferation and cell cycle progression. OA and LA at 25 microM increased lymphocyte proliferation and at higher concentrations (75 microM and 100 microM) inhibited it. Both fatty acids promoted cell death at 200 microM concentration. PA and SA decreased lymphocyte proliferation at 50 microM and promoted cell death at concentrations of 100 microM and above. EPA and DHA decreased lymphocyte proliferation at 25 and 50 microM being toxic at 50 and 100 microM, respectively. PA, SA, DHA and EPA decreased the stimulatory effect of IL-2 on lymphocyte proliferation, increasing the percentage of cells in G1 phase and decreasing the proportion of cells in S and G2/M phases. OA and LA caused an even greater pronounced effect. The treatment with all fatty acids increased neutral lipid accumulation in the cells but the effect was more pronounced with PA and DHA. In conclusion, PA, SA, DHA and EPA decreased lymphocyte proliferation, whereas OA and LA stimulated it at non-toxic concentrations.  相似文献   

6.
We studied the effects of polyunsaturated fatty, acids such as arachidonic acid [20:4 (n-6)], eicosapentanoic acid [EPA, 20:5 (n-3)], and docosahexanoic acid [DHA, 22:6 (n-3)] on the changes of lipid profiles and prostacyclin production by cultured bovine aortic endothelial cells. The amounts of 6-keto-prostaglandin F1alpha(6-keto-PGF1alpha) and delta17-6-keto-PGF1alpha, non-enzymatic metabolites of prostacyclin (PGI2 and PGI3) in culture medium were measured by gas chromatography/selected ion monitoring. Endothelial cells were supplemented for five passages with arachidonic acid, EPA, or DHA, and the fatty acids of cell lipids and prostacyclin production in cultured medium were quantified. From the fatty acid analysis, the amounts of docosapentaenoic acid [22:5 (n-3)] were significantly increased in EPA-grown cells. In DHA-grown cells, the amounts of EPA were slightly increased compared to control cells. These cells produced similar amounts of PGI2 as the controls, but larger amounts of PGI3 under basal conditions. These findings suggest that EPA, docosapentaenoic acid, and DHA are interconverted to each other, and anti-aggregatory effects of EPA or DHA may be partially due to the stimulation of prostacyclin formation in endothelial cells.  相似文献   

7.
The use of Delta 6 desaturase (D6D) twice in the conversion of alpha-linolenic acid (ALA; 18:3n-3) to docosahexaenoic acid (DHA; 22:6n-3) suggests that this enzyme may play a key regulatory role in the synthesis and accumulation of DHA from ALA. We examined this using an in vitro model of fatty acid metabolism to measure the accumulation of the long-chain metabolites of ALA in HepG2 cell phospholipids. The accumulation of ALA, eicosapentaenoic acid (20:5n-3), docosapentaenoic acid (22:5n-3), and 24:5n-3 in cell phospholipids was linearly related to the concentration of supplemented ALA over the range tested (1.8-72 microM). The accumulation of the post-D6D products of 22:5n-3, 24:6n-3 and DHA, in cell phospholipids was saturated at concentrations of >18 microM ALA. Supplementation of HepG2 cells with preformed DHA revealed that, although the accumulation of DHA in cell phospholipids approached saturation, the level of DHA in cell phospholipids was significantly greater compared with the accumulation of DHA from ALA, indicating that the accumulation of DHA from ALA was not limited by incorporation. The parallel pattern of accumulation of 24:6n-3 and DHA in response to increasing concentrations of ALA suggests that the competition between 24:5n-3 and ALA for D6D may contribute to the limited accumulation of DHA in cell membranes.  相似文献   

8.
Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40-50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid C18:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 +/- 6.73 and 100.09 +/- 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.  相似文献   

9.
We recently generated nutritional data suggesting that chemoprotective dietary n-3 polyunsaturated fatty acids (n-3 PUFA) are capable of displacing acylated proteins from lipid raft microdomains in vivo [D.W. Ma, J. Seo, L.A. Davidson, E.S. Callaway, Y.Y. Fan, J.R. Lupton, R.S. Chapkin, n-3 PUFA alter caveolae lipid composition and resident protein localization in mouse colon, FASEB J. 18 (2004) 1040-1042; Y.Y. Fan, L.H. Ly, R. Barhoumi, D.N. McMurray, R.S. Chapkin, Dietary docosahexaenoic acid suppresses T cell protein kinase Cθ lipid raft recruitment and IL-2 recruitment, J. Immunol. 173 (2004) 6151-6160]. A primary source of very long chain n-3 PUFA in the diet is derived from fish enriched with docosahexaenoic acid (DHA, 22:6n-3). In this study, we sought to determine the effect of DHA on cell surface microdomain organization in situ. Using immuno-gold electron microscopy of plasma membrane sheets coupled with spatial point analysis of validated microdomain markers, morphologically featureless microdomains were visualized in HeLa cells at high resolution. Clustering of probes within cholesterol-dependent (GFP-tH) versus cholesterol-independent (GFP-tK) nanoclusters was differentially sensitive to n-3 PUFA treatment of cells. Univariate K-function analysis of GFP-tH (5 nm gold) revealed a significant increase in clustering (p < 0.05) by pre-treatment with DHA and linoleic acid (LA, 18:2Δ9,12) compared to control fatty acids; whereas LA significantly (p < 0.05) reduced GFP-tK clustering. These novel data suggest that the plasma membrane organization of inner leaflets is fundamentally altered by PUFA-enrichment. We speculate that our findings may help define a new paradigm to better understand the complexity of n-3 PUFA modulation of signaling networks.  相似文献   

10.
This study was designed to assess the effect of ambient temperature on lipid content, lipid classes and fatty acid compositions of heart, liver, muscle and brain in oviparous lizards, Phrynocephalus przewalskii, caught in the desert area of China. Significant differences could be observed in the contents of the total lipid and fatty acid compositions among different temperatures (4, 25 and 38 degrees C). The study showed that liver and muscle were principal sites of lipid storage. Triacylglycerol (TAG) mainly deposited in the liver, while phospholipids (PL) was identified as the predominant lipid class in the muscle and brain. Palmitic and stearic acid generally occupied the higher proportion in saturated fatty acids (SFA), while monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) consisted mainly of 16:1n-7, 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 regardless of tissue and temperature. These predominant fatty acids proportion fluctuations caused by temperature affected directly the ratio of unsaturated to saturated fatty acids. There was a tendency to increase the degree of unsaturation in the fatty acids of TAG and PL as environmental temperature dropped from 38 to 4 degrees C, although the different extent in different tissues. These results suggested that lipid characteristics of P. przewalskii tissues examined were influenced by ambient temperature.  相似文献   

11.
分离自象山港的15种海洋微藻脂肪酸比较研究   总被引:1,自引:0,他引:1  
在160μmol.m-2.s-1光强、(20±2)℃条件下对分离自象山港的15种海洋微藻进行培养,在稳定期离心收集,冷冻干燥后用Bligh-Dyer法提取总脂,皂化衍生化后用气相色谱-质谱联用分析系统对其含有的脂肪酸进行定量和定性的分析。结果表明,这15种微藻总脂含量均较高,其中有9种微藻的总脂含量超过干重的10%,中心硅藻纲中共有的含量相对较高的主要脂肪酸为C14∶0、C16∶0、C16∶1(n-7)脂肪酸和EPA,针胞藻纲的赤潮异湾藻则含有高比例的C16∶0、C18∶4(n-3)和EPA,纵裂甲藻纲和甲藻纲中共有的含量相对较高的主要脂肪酸为C16∶0、C18∶4(n-3)、C18∶5(n-3)和DHA,而隶属于定鞭藻门颗石藻纲的颗石藻含量相对较高的主要脂肪酸分别为C16∶0、C18∶4(n-3)和DHA。这些藻是否可以作为生物饵料还需实际养殖投喂效果决定。  相似文献   

12.
The lipid content and composition of Nereis (Hediste) diversicolor O. F. Müller (Annelida, Polychaeta, Nereidae) a mud-dwelling, intertidal errant polychaete in the Tagus estuary (Portugal), were examined on the monthly basis by lipid extraction, TLC and capillary GC. In this estuary, N. diversicolor is by far the dominant species among polychaeta and the main food item in the natural diet of several flatfishes. The biochemical elucidation of its lipid structure and distribution throughout the year, described in this study, provides information not only about the physiological role of lipids in the animal under consideration but also about dietary fatty acid requirements of some flatfishes in the wild and under laboratory conditions.The total lipid content varied between a maximum of 19.3% lyophilized dry weight in February (4.4% fresh weight) and a minimum of 6.6% in August (1.9% fresh weight). The major lipid classes were triacylglycerol, phospholipid, free sterol, free fatty acid, sterol ester/wax ester and alkyldiacylglycerol.The fatty acid composition was rather unsaturated with a 1:2 mean ratio of n-3: n-6. The major fatty acids were C160:0, C18:1n-9, C18:2n-6, and C20:5n-3; there were smaller amounts of C180:0, C18:1n-11, C18:1n-7, C18:3n-3, C20:1, C20:2n-6, C20:4n-6, C22:2, C22:5n-3, and many other fatty acids were detected at trace levels. The unsaturation ranged from 36.9 mg/g dry weight in summer to 107.4 mg/g in winter. An accumulation of fatty acids from plant origin was evident, in particular linoleic acid (C18:2n-6), which was quantitatively one of the major fatty acids throughout the year.  相似文献   

13.
We have studied the generation of volatile hydrocarbons by fatty acid-modified L1210 leukemia cells in tissue culture as a measure of lipid peroxidation. There was considerable generation of ethane, and this was dependent on cell number and Fe2+ concentration; it was eliminated by antioxidants and augmented by ascorbic acid. The assay was sensitive and reproducible; ethane was detected when as little as 0.03% of the cellular n-3 (omega-3) fatty acids were peroxidized. To gain further understanding we used a lipid modification model that allows study of cells enriched with fatty acids of different degrees of unsaturation. The quantity of ethane generated was greatest by cells modified with fatty acids of the n-3 family, and there was a high direct correlation of percentage of n-3 fatty acids contained in cellular lipids with peroxidation as measured by ethane generation. Ethane generation was more sensitive in detecting peroxidation than loss of polyunsaturated fatty acids. We conclude that lipid-supplemented leukemic cells produce ethane, and that the rate of generation is a sensitive, quantitative, and highly useful measure of lipid peroxidation when small amounts of iron are present.  相似文献   

14.
Avula CP  Fernandes G 《Life sciences》1999,65(22):2373-2383
The present study was undertaken to investigate the effect of n-9, n-6, and n-3 dietary fatty acid ethyl esters on basal (uninduced) and Fe2+/ascorbate (induced) lipid peroxidation (LPO) in salivary gland (SG) of mice. Feeding n-3 ethyl ester polyunsaturated fatty acids (PUFA) increased the uninduced and induced LPO in SG homogenates. In contrast, feeding olive oil ethyl esters (n-9) significantly lowered the induced and uninduced LPO in SG tissue. Salivary gland susceptibility to LPO increased in the order of: olive oil < corn oil < safflower oil < n-3 ethyl esters. Olive oil esters in the diet increased primarily the 18:1 levels in SG tissue. Whereas feeding n-3 PUFA notably increased the superoxide dismutase (SOD) and catalase activities in SG homogenates, no significant changes were seen between n-9 and n-6 PUFA-fed mice. Lower levels of Vitamin E (Vit E) in the tissues of n-3 PUFA-fed mice indicate that the higher the dietary lipid unsaturation, the higher the requirement for Vit E in the diet. Our results indicate that, similar to other organs, salivary gland susceptibility to uninduced or induced oxidation depends on the source of dietary PUFA. In conclusion, feeding olive oil increases the resistance of SGs to induced and uninduced LPO.  相似文献   

15.
Diets supplemented with n-3 polyunsaturated fatty acids can promote lipid peroxidation and the propagation of oxygen radicals. These effects can be prevented by taurine, a functional ingredient with antioxidant properties. Here, we examined whether there is a correlation between transepithelial taurine transport, on the one hand, and membrane fatty acid composition and peroxidation in intestinal Caco-2 cells, on the other. Differentiated Caco-2 cells were maintained for 10 days, from the day of confluence, in control conditions or in a medium enriched with docosahexaenoic acid (DHA, 100 μmol/l), taurine (10 mmol/l) or DHA plus taurine. Incubation of the monolayers in a medium enriched with DHA increased the incorporation of this fatty acid into the brush-border membrane, at the expense of total n-6 fatty acids (C20:2n-6, C20:3n-6 and C22:4n-6). This was paralleled by increased membrane lipid peroxidation, which was partially limited by the addition of taurine. Transepithelial taurine transport was estimated from taurine uptake and efflux kinetic parameters at apical and basolateral domains. Cell incubation with DHA increased basolateral taurine uptake through an increase in V max, whereas incubation with taurine downregulated basolateral uptake as occurred for apical taurine transporter. Moreover, addition of DHA reduced the apical downregulation effect exerted on taurine transport by taurine incubation. Our results suggest that the oxidative status of epithelial cells regulates taurine transport, thus satisfying antioxidant cellular requirements.  相似文献   

16.
N-6 fatty acid metabolism was compared in NIH-3T3 cells and DT cells, which differ only in the presence of the v-Ki-ras oncogene. Non-dividing cells were incubated with [1-14C]-labelled fatty acids (18:2n-6, 18:3n-6, 20:3n-6 and 20:4n-6) at different time intervals (2–24 h) and concentration (0–120 M). In both cells lines, the uptake of different fatty acids from the medium was similar and reached a maximum at 6–8 h. All fatty acids reached the same maximum level in DT cells, whereas, the relative uptake of added fatty acids by NIH-3T3 cells was different: 20:4n-6>20:2n-6>18:2n-6=18:3n-6. Throughout the incubation (2–24 h), desaturation and elongation of n-6 fatty acids was more active in DT cells than in NIH-3T3 cells. However, in both cell lines, incubated with different n-6 fatty acid precursors, the levels of radiolabelled 20:4n-6 were relatively constant. In DT cells, phosphatidylcholine was found to be the major fraction labelled with n-6 fatty acids precursors and those of endogenous synthesis, whereas, in NIH-3T3 cells the neutral lipid fraction, particularly triglycerides, was also strongly labelled. In concentration dependent studies, phospholipid labelling by fatty acids was saturable. At lower concentrations, especially in DT cells, phospholipids were labelled predominantly. As the concentration increased there was an overflow into the triglyceride fraction. Since the differences in fatty acid metabolism between the two cell lines cannot be related to the growth rate, it is suggested that they were a consequence of the expression of the v-Ki-ras oncogene.Abbreviations BSA bovine serum albumin - CE cholesterol ester - DG diglyceride - DMEM Dulbecco's modification of Eagle's medium - EL ether lipids (glyceryl ether diesters) - FAME fatty acid methyl ester - FCS fetal calf serum - FFA free fatty acids - HEPES N-2-(hydroxyethyl)piperazine-N-2-ethanesulphonic acid - MG monoglyceride - NL neutral lipid - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PL phospholipid - s.a specific activity - TG triglyceride - TLC thin layer chromatography  相似文献   

17.
Abstract: The present study was undertaken to determine whether polyunsaturated fatty acid metabolism is affected by high glucose levels in cerebral and retinal microvascular endothelial cells. The metabolism of [3-14C]22:5n-3 and [1-14C]18:2n-6 was studied in cells previously cultured for 5 days in normal (5 m M ) or high (30 m M ) glucose medium. After incubation of retinal endothelial cells with [3-14C]22:5n-3 in the high glucose condition, the formation of labeled 24:6n-3 and 22:6n-3 was increased, and that of labeled 24:5n-3 was decreased, compared with the normal glucose condition. The changes were found for fatty acids esterified in cellular lipids and those released into the medium. After incubation with [1-14C]18:2n-6, levels of all elongation/desaturation products were increased at the expense of the precursor in retinal endothelial cells cultured in high glucose medium. The changes were primarily found for esterified fatty acids, with the release of n-6 fatty acids being minor in both glucose concentrations. By contrast, high glucose levels did not affect the metabolism of [3-14C]22:5n-3 and [1-14C]18:2n-6 in cerebral endothelial cells. The changes in metabolic activity of retinal endothelial cells were not reflected in the fatty acid composition. The present data suggest that high glucose can increase the desaturation process in retinal but not cerebral endothelial cells. This may produce some lipid abnormalities in retinal microvasculature and contribute to altered vascular function observed in diabetic retinopathy.  相似文献   

18.
Previous reports have shown that vitamin B(6)deficiency leads to peroxidative stress in rat organs. In this paper, we evaluated the effects on lipid peroxidation of short-term (six weeks) dietary administration of marginal contents of vitamin B(6). A further risk factor of susceptibility to peroxidation was the presence of fish oil with higher contents of n-3 polyunsaturated fatty acid (LCPUFA). The contemporaneous vitamin B(6)deficiency and presence of fish oil caused a C18:2 increase, a C20:4 decrease, and replacement of some n-6 LCPUFA with n-3 LCPUFA, without changes in the unsaturation index. In liver, TBARS production did not show any differences between dietary conditions, whereas the activities of glutathione-dependent enzymes were stimulated. In heart, fish oil increased lipid peroxidation, especially in the vitamin B(6)-deficient group.  相似文献   

19.
The effects of dietary lipids and seasonal variation on the lipids of wild and cultured catfish (Japanese catfish, Silurus asotus; Thai catfish, Clarias macrocephalus and hybrid Clarias macrocephalus x Clarias galipinus) were determined by analysis of the lipid content and fatty acid composition of their dorsal meat. The predominant fatty acids of dorsal meat were 16:0, 18:1n-9, 18:2n-6, 20:4n-6 (arachidonic acid, AA), and 22:6n-3 (docosahexaenoic acid, DHA). The DHA content in the diet of Japanese catfish was higher than that in the diet of Thai catfish, and this was reflected in the dorsal meat of the Japanese catfish, which had a remarkably high percentage of DHA compared with the meat of the Thai catfish. Cultured Japanese catfish had a higher percentage of 18:2n-6 than Thai fish and a lower percentage of AA in winter than in summer season. There were also seasonal variations in the percentage of n-6 fatty acids in Japanese catfish. In summer, the fatty acid composition of the cultured Japanese catfish was similar to that of the wild catfish. These fatty acid changes in the lipid classes, triacylglycerol, phosphatidylcholine and phosphatidylethanolamine were similar to those observed for total lipids. These results indicate that the percentage of DHA in the dorsal meat of catfish is influenced by dietary fatty acid, and it may be that it can be increased in cultivated fish by administering a diet containing a large amount of DHA.  相似文献   

20.
Rates of conversion of alpha-linolenic acid (alpha-LNA, 18:3n-3) to docosahexaenoic acid (DHA, 22:6n-3) by the mammalian brain and the brain's ability to upregulate these rates during dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) are unknown. To answer these questions, we measured conversion coefficients and rates in post-weaning rats fed an n-3 PUFA deficient (0.2% alpha-LNA of total fatty acids, no DHA) or adequate (4.6% alpha-LNA, no DHA) diet for 15 weeks. Unanesthetized rats in each group were infused intravenously with [1-(14)C]alpha-LNA, and their arterial plasma and microwaved brains collected at 5 minutes were analyzed. The deficient compared with adequate diet reduced brain DHA by 37% and increased brain arachidonic (20:4n-6) and docosapentaenoic (22:5n-6) acids. Only 1% of plasma [1-(14)C]alpha-LNA entering brain was converted to DHA with the adequate diet, and conversion coefficients of alpha-LNA to DHA were unchanged by the deficient diet. In summary, the brain's ability to synthesize DHA from alpha-LNA is very low and is not altered by n-3 PUFA deprivation. Because the liver's reported ability is much higher, and can be upregulated by the deficient diet, DHA converted by the liver from circulating alphaLNA is the source of the brain's DHA when DHA is not in the diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号