首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of altitude on the composition and diversity of microbial communities have attracted highly attention recently but is still poorly understood. We used 16S rRNA gene clone library analyses to characterize the bacterial communities from the rhizosphere and roots of Stellera chamaejasme in the Tibetan Plateau. Our results revealed that Actinobacteria and Proteobacteria were dominant bacteria in this medicinal plant in the rhizosphere and root communities. The Shannon diversity index showed that the bacterial diversity of rhizosphere follows a small saddle pattern, while the roots possesses of a hump-backed trend. Significant differences in the composition of bacterial communities between rhizosphere and roots were detected based on multiple comparisons analysis. The community of Actinobacteria was found to be significantly negative correlated with soil available P (p?<?0.01), while the phylum of Proteobacteria showed a positive relationship with available P (p?<?0.05). Moreover, redundancy analysis indicated that soil phosphorus, pH, latitude, elevation and potassium positively correlated with bacterial communities associated with rhizosphere soils. Taken together, we provide evidence that bacterial communities associated with S. chamaejasme exhibited some certain elevational pattern, and bacterial communities of rhizosphere soil were regulated by environmental characteristics along elevational gradients in this alpine ecosystem.  相似文献   

2.
Glehnia littoralis is an endangered medicinal plant growing in the coastal ecological environment and plays an important role in coastal ecosystems. The endophytes in the plant have a significant role in promoting plant growth and enhancing plant stress resistance. However, the endophytic bacterial structure associated with halophyte G. littoralis is still not revealed. In this project, the construction and diversity of endophytic bacterial consortium associated with different tissues of G. littoralis were illustrated with high throughput sequencing of the V3-V4 region of the bacterial 16S rRNA. The results resolved that the diversity and richness of endophytic bacteria were significantly higher in root than in leaf and stem. The operational taxonomic units (OTU) analysis demonstrated that the Actinobacteria and Proteobacteria were dominant in all the samples at the phylum level, and Pseudomonas, Bacillus, Rhizobium were the dominant genera. Our results unraveled that the bacterial communities differed among different tissues of G. littoralis. Endophytic bacterial communities in leaf and stem shared more similarity than that in the root. Furthermore, the difference of bacteria community and structure among different tissues were also detected by principal coordinate analysis. Taken altogether, we can conclude that the bacterial communities of different tissues are unique, which could facilitate understanding the diversity of endophytic bacteria in G. littoralis.Key words: Glehnia littoralis, halophyte, endophytic bacteria, diversity, Illumina sequencing  相似文献   

3.
生姜作为常见的调味品和传统中药材,是我国重要的经济作物之一。作为取食部分的生姜块茎与根系直接相连,其产量、品质与根相关细菌群落密切相关。然而,关于生姜根系微环境中细菌群落的特点仍鲜有报道,土壤环境能否衍生出宿主特异性内生菌群落尚不清楚。以生姜根系不同生态位细菌群落为研究对象,采用高通量测序技术,对非根际、根际及根内细菌进行16S rRNA基因测序。结果表明,不同生态位细菌群落多样性存在显著差异,其中非根际及根际细菌群落多样性(Shannon index, Observed species, Faith′s PD)显著高于内生菌群落。同时,各生态位共现网络稳定性和复杂度表现为非根际>根际>根内细菌群落。而在组成上,细菌群落在不同生态位差异显著(R2=0.57,P=0.001)。其中变形菌门(Proteobacteria)是根内的优势门,该门类下假单胞菌属(Pseudomonas)、短波单胞菌属(Brevundimonas)、寡养单胞菌属(Stenotrophomonas)及泛菌属(Pantoea)在根内显著富集。在根际细菌中,拟杆菌门(Bacteroid...  相似文献   

4.
Diverse communities of bacteria inhabit plant leaves and roots and those bacteria play a crucial role for plant health and growth. Arabidopsis thaliana is an important model to study plant pathogen interactions, but little is known about its associated bacterial community under natural conditions. We used 454 pyrosequencing to characterize the bacterial communities associated with the roots and the leaves of wild A. thaliana collected at 4 sites; we further compared communities on the outside of the plants with communities in the endophytic compartments. We found that the most heavily sequenced bacteria in A. thaliana associated community are related to culturable species. Proteobacteria, Actinobacteria, and Bacteroidetes are the most abundant phyla in both leaf and root samples. At the genus level, sequences of Massilia and Flavobacterium are prevalent in both samples. Organ (leaf vs root) and habitat (epiphytes vs endophytes) structure the community. In the roots, richness is higher in the epiphytic communities compared to the endophytic compartment (P = 0.024), while the reverse is true for the leaves (P = 0.032). Interestingly, leaf and root endophytic compartments do not differ in richness, diversity and evenness, while they differ in community composition (P = 0.001). The results show that although the communities associated with leaves and roots share many bacterial species, the associated communities differ in structure.  相似文献   

5.
The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere.  相似文献   

6.
There is currently an increasing demand for the characterization of endophytic bacteria isolated from different parts of plants (rhizosphere, roots, fruit, leaf) in order to improve the organic agriculture practices. The current research was performed to identify both rhizospheric bacteria isolated from the rhizosphere of Ficus carica in three different sites in the north of Tunisia and endophytic bacteria isolated from dried figs. We then characterized them for a diversity of plant growth-promoting (PGP) activities. A collection of 120 isolates from rhizospheric soil and 9 isolates from dried figs was obtained and purified. 16SrDNA gene amplification of rhizospheric bacteria revealed significant diversity and allowed for the assigning of the isolates to 6 phyla: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Representative strains of the collection (90 strains) were tested for numerous PGP activities and resistance to abiotic stresses. The most common PGP trait for all bacteria from the three regions was siderophore production (62%), followed by cellulase (38%), then protease activity (37%), then by lipases activity (17%) and lastly by solubilization of phosphates (9%). Twenty -three strains that showed most PGP traits were selected, 8 strains presented 12 or more, and 15 strains displayed between 7 and 11 of 17 PGP activities. The majority of the isolates manifested a possible adaptation to abiotic stress and unfavorable environments. PCR-DGGE analysis of soil rhizosphere of the three sites allowed also for the acquisition of a Cluster analysis of rhizospheric bacterial communities. Our current study identified and characterized for the first time in Tunisia rhizospheric and endophytic bacteria from dried fruit of Ficus carica.  相似文献   

7.
The diversity and stability of bacterial communities present in the rhizosphere heavily influence soil and plant quality and ecosystem sustainability. The goal of this study is to understand how ‘Candidatus Liberibacter asiaticus'' (known to cause Huanglongbing, HLB) influences the structure and functional potential of microbial communities associated with the citrus rhizosphere. Clone library sequencing and taxon/group-specific quantitative real-time PCR results showed that ‘Ca. L. asiaticus'' infection restructured the native microbial community associated with citrus rhizosphere. Within the bacterial community, phylum Proteobacteria with various genera typically known as successful rhizosphere colonizers were significantly greater in clone libraries from healthy samples, whereas phylum Acidobacteria, Actinobacteria and Firmicutes, typically more dominant in the bulk soil were higher in ‘Ca. L. asiaticus''-infected samples. A comprehensive functional microarray GeoChip 3.0 was used to determine the effects of ‘Ca. L. asiaticus'' infection on the functional diversity of rhizosphere microbial communities. GeoChip analysis showed that HLB disease has significant effects on various functional guilds of bacteria. Many genes involved in key ecological processes such as nitrogen cycling, carbon fixation, phosphorus utilization, metal homeostasis and resistance were significantly greater in healthy than in the ‘Ca. L. asiaticus''-infected citrus rhizosphere. Our results showed that the microbial community of the ‘Ca. L. asiaticus''-infected citrus rhizosphere has shifted away from using more easily degraded sources of carbon to the more recalcitrant forms. Overall, our study provides evidence that the change in plant physiology mediated by ‘Ca. L. asiaticus'' infection could elicit shifts in the composition and functional potential of rhizosphere microbial communities. In the long term, these fluctuations might have important implications for the productivity and sustainability of citrus-producing agro-ecosystems.  相似文献   

8.
The phyllosphere is one of the largest habitats for terrestrial microorganisms. To gain a better insight into the factors underlying the composition of bacterial communities inhabiting leaf surfaces we performed culture-dependent and independent (Denaturing Gradient Gel Electrophoresis) analyses on the bacteria associated with the leaves of three plant species: Amygdalus communis, Citrus paradisi, and Nicotiana glauca. We found that the culturable classes Bacilli and Actinobacteria were the predominant classes on the phyllosphere of all three plant species. In contrast to this consistency on the bacterial class level, we found a significant variation on the bacterial species-level based on the culturable methods. Although some variation was detected among individual plants within one plant species, the inter-specific variability exceeded the intra-specific variability. C. paradisi leaf surface had the highest predicted total species richness (Chao 2 and ICE) and the highest species diversity (βw) among the three plant species. Our findings demonstrate that environmental conditions, mainly the plant species within a site, govern the bacterial community composition on leaf surfaces.  相似文献   

9.
Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.  相似文献   

10.
We present an approach to comparing the diversity and composition of bacterial communities from different habitats and for identifying which members of a community are most affected by an introduced bacterium. We use this method to explore both previously published and new data from field and growth chamber experiments in which we isolated heterotrophic bacteria from samples of root-free soil, roots of nontreated soybean seedlings, and from the roots of soybean seedlings grown from Bacillus cereus UW85nl—treated seeds. We characterize bacterial isolates for 40 physiological attributes, and grouped the isolates hierarchically using two-stage density-linkage cluster analysis. Multivariate analysis of variance and discriminant analysis of the relative frequencies of the clusters in the soil and rhizosphere habitats were then used to determine whether there were differences among the bacterial communities from the various habitats, and which of the clusters were most useful in discriminating among the communities. We used rarefied estimates of richness as a measure of community diversity in the various habitats. Introduction of UW85n 1 affected the composition and/or diversity of rhizosphere communities in three of four experiments. Present address: Department of Environmental Science, Policy and Management, 108 Hilgard Hall, University of California, Berkeley, CA 94720 Correspondence to: G.S. Gilbert.  相似文献   

11.
The process of ecological restoration and reconstruction in Zhifanggou watershed forms a special ecosystem on the Loess Plateau. Little is known about the communities of arbuscular mycorrhizal fungi (AMF) and bacteria in this ecosystem. The aim of this study was to analyze the communities of AMF and bacteria, and their relationship in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides in Zhifanggou watershed. Soil samples were collected from Zhifanggou watershed. The communities of AMF and bacteria were analyzed by using nested PCR of rDNA fragments and denaturing gradient gel electrophoresis (DGGE). Diversity analysis revealed that the bacterial Shannon diversity index was higher than that of AMF, and the AMF and bacterial Shannon diversity index in the rhizosphere of H. rhamnoides was higher than that of C. korshinkii. Principal component analysis (PCA) revealed that host plant had a significant influence on the bacterial community structure, but no strict specificity with AMF. Correlation analysis showed that the AMF communities had a significant positive correlation with the bacterial communities, and that indicated a significant effect of AMF on bacteria.  相似文献   

12.
This study evaluated the diversity of cultivable plant growth-promoting (PGP) bacteria associated with apple trees cultivated under different crop management systems and their antagonistic ability against Colletotrichum gloeosporioides. Samples of roots and rhizospheric soil from apple trees cultivated in organic and conventional orchards in southern Brazil were collected, together with soil samples from an area never used for agriculture (native field). Bacteria were identified at the genus level by PCR-RFLP and partial sequencing of the 16S rRNA, and were evaluated for some PGP abilities. The most abundant bacterial genera identified were Enterobacter (27.7%), Pseudomonas (18.7%), Burkholderia (13.7%), and Rahnella (12.3%). Sixty-nine isolates presented some antagonist activity against C. gloeosporioides. In a greenhouse experiment, five days after exposure to C. gloeosporioides, an average of 30% of the leaf area of plants inoculated with isolate 89 (identified as Burkholderia sp.) were infected, whereas 60 to 73% of the leaf area of untreated plants was affected by fungal attack. Our results allowed us to infer how anthropogenic activity is affecting the bacterial communities in soil associated with apple tree crop systems, and to obtain an isolate that was able to delay the emergence of an important disease for this culture.  相似文献   

13.
The diversity of endophytic bacteria residing in root, stem, and leaf tissues was examined in coniferous and deciduous tree species, Scots pine (Pinus sylvestris L.), silver birch (Betula pendula Roth), and rowan (Sorbus aucuparia L.). Using cultivation-dependent and -independent analyses, the bacterial communities were observed to be significantly different in the belowground (roots and rhizosphere) and aboveground (leaves and stems) samples of the respective host trees. No significant differences, with respect to the different tree species, were observed in the associated communities. Predominant cultivable endophytes isolated included bacteria closely related to Bacillus subtilis, Bacillus licheniformis, Paenibacillus spp., and Acinetobacter calcoaceticus. Comparisons of the most abundant cultivable bacteria in the rhizosphere and root samples suggested that root endophytic bacteria may be in residence through processes of selection or active colonization rather than by passive diffusion from the rhizosphere.  相似文献   

14.
为探讨黑老虎(Kadsura coccinea)根际土壤和组织内生真菌菌群的组成及其生态功能,该研究采用ITS高通量测序技术对成熟黑老虎(根、茎、叶)内生真菌及根际土壤真菌群落结构、多样性和生态功能进行了分析。结果表明:(1)从12个样品中共获得2 241个可操作分类单元(OTU),涉及10门、41纲、95目、212科、367属,内生真菌(根、茎、叶)和根际土壤真菌OTU数分别为386、536、258、1 435个,其中共有的OTU为18个。在门水平上,黑老虎内生真菌及根际土壤真菌优势群落均为子囊菌门和担子菌门,其中子囊菌门在叶和茎中占比分别高达96.99%和95.37%;在属水平上,黑老虎根际土壤真菌中腐生真菌被孢霉属占比较高(为13.5%),叶和茎等生长旺盛的组织中子囊菌门未分类属和痂囊腔菌属占比较高。(2)α多样性分析结果显示,黑老虎根际土壤真菌群落的丰度和多样性明显高于内生真菌,茎中内生真菌丰度显著高于根和叶,而根、茎和叶组织间内生真菌多样性差异不显著;PCoA分析结果显示,叶和茎的真菌群落结构相似性更高。(3)利用FUNGuild数据库进行的功能预测分析结果显示,黑老虎根际土...  相似文献   

15.
This study deals with the characterization of rhizosphere bacterial communities and metabolic products produced during the two stage sequential treatment of post methanated distillery effluent by bacteria and constructed wetland plants. Results showed that bacterial treatment followed by wetland plants (Phragmites cummunis) resulted 94.5% and 96.0% reduction in BOD and COD values, respectively. The PCR-RFLP analysis showed the presence of Stenotrophomonas, Enterobacter, Pantoea, Acinetobacter and Klebsiella sp., as dominant rhizosphere bacterial communities which play an important role in degradation and decolorization of PMDE in wetland treatment system. Further, the LC-MS-MS and other spectrophotometric analysis have shown that most of the pollutants detected in untreated PMDE were diminished from bacteria and wetland plant treated PMDE indicating that bacteria and wetland plant rhizosphere microbes utilized them as carbon, nitrogen and energy source. While, methylbenzene, furfuryl alcohol, and 4-vinyl-2-methoxyphenol were detected as metabolites in bacteria and hexadecanol in wetland plant rhizosphere treated PMDE.  相似文献   

16.
Systemic acquired resistance (SAR) is an inducible systemic plant defense against a broad spectrum of plant pathogens, with the potential to secrete antimicrobial compounds into the soil. However, its impact on rhizosphere bacteria is not known. In this study, we examined fingerprints of bacterial communities in the rhizosphere of the model plant Arabidopsis thaliana to determine the effect of SAR on bacterial community structure and diversity. We compared Arabidopsis mutants that are constitutive and non-inducible for SAR and verified SAR activation by measuring pathogenesis-related protein activity via a β-glucoronidase (GUS) reporter construct driven by the β-1-3 glucanase promoter. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of MspI- and HaeIII-digested 16S rDNA to estimate bacterial rhizosphere community diversity, with Lactobacillus sp. added as internal controls. T-RFLP analysis showed a clear rhizosphere effect on community structure, and diversity analysis of both rhizosphere and bulk soil operational taxonomic units (as defined by terminal restriction fragments) using richness, Shannon–Weiner, and Simpson’s diversity indices and evenness confirmed that the presence of Arabidopsis roots significantly altered bacterial communities. This effect of altered soil microbial community structure by plants was also seen upon multivariate cluster analysis of the terminal restriction fragments. We also found visible differences in the rhizosphere community fingerprints of different Arabidopsis SAR mutants; however, there was no clear decrease of rhizosphere diversity because of constitutive SAR expression. Our study suggests that SAR can alter rhizosphere bacterial communities, opening the door to further understanding and application of inducible plant defense as a driving force in structuring soil bacterial assemblages.  相似文献   

17.
Bacterial and fungal communities associated with plant roots are central to the host health, survival and growth. However, a robust understanding of the root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to its associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall host genotypic distances did not have a significant effect on corresponding communities that could be separated from other measured effects.  相似文献   

18.
19.
A shading experiment was conducted over a growing season to measure the effects of light reduction on Vallisneria americana in Perdido Bay on the Florida-Alabama border and to determine the response of heterotrophic bacteria in the rhizosphere. Plants subjected to 92% light reduction showed the most pronounced effects in chlorophyll a concentration, above- and below-ground biomass, and leaf dimensions. These results further suggested that the V. americana life cycle, as exhibited in temperate waters, was impaired. Heterotrophic bacteria were enumerated and identified (i) from the roots and sediments of fully illuminated plants and from unvegetated sediments at three intervals and (ii) from the roots of plants that have been subjected to 92% light reduction for 3 months. Up to two orders of magnitude greater numbers of bacteria were enumerated from root samples than sediment samples on a dry weight basis. Bacteria enumerated from the roots of plants subjected to light reduction (1.3±1.1×108 CFU g−1) were significantly higher than numbers of bacteria enumerated from the roots of fully illuminated plants (4.8±1.8×107 g−1 in the summer) or sediment samples (1.4±0.03×106 g−1). This suggests the roots of seagrasses stressed by light reduction provided more nutrients for bacterial growth. Higher percentages of Gram-negative bacteria were isolated from roots (up to 85% in the fall) than sediments (0-15%). Examination of isolates for traits characteristic of rhizosphere bacteria (siderophore production, formation of the phytohormone indole-3-acetic acid, and antifungal activity) did not show a clear distinction between root-associated and sediment isolates. Taxonomic identifications of root-associated bacteria based on MIDI analysis of fatty acid methyl esters were consistent with bacteria known to be associated with other plants or found at oxic-anoxic interfaces. In addition, the bacterial identifications showed most species were associated with only roots or only sediments. These results support studies suggesting seagrass rhizospheres harbor distinct bacterial communities.  相似文献   

20.
为了解喀斯特典型物种-小蓬竹根际土壤微生物及不同部位内生真菌多样性,采用沿等高线等距离取样法采集小蓬竹根际土壤及健康植株,通过可培养对根际土微生物及内生菌进行分离,利用分子技术对其进行鉴定,根据鉴定结果构建系统发育树,并计算小蓬竹根际土壤微生物和根茎叶内生真菌多样性。结果如下:(1)共从根际土壤、根、茎、叶分离得到139个真菌菌株,隶属于27属,其中根际土壤分离得到34个真菌菌株隶属于12属,根部分离得到的63个内生真菌菌株隶属于17个属,茎部分离得到的14个内生真菌菌株隶属于8个属,叶部分离得到28个内生真菌菌株隶属于9个属;(2)根际土壤共分离得到41株细菌菌株,隶属于7个属26个种,20株放线菌菌株,隶属于1属15种;从Shannon-Wiener多样性指数、均匀度指数、Simpson指数排序来看,真菌主要表现为根 > 根际土壤 > 茎 > 叶,细菌和放线菌多样性均较低。(3)按层次聚类分析可分别将真菌、细菌、放线菌聚为3支。小蓬竹根际土壤、根、茎和叶具有丰富的微生物多样性,不同部位菌群组成存在差异性(P<0.05),且存在以假单胞菌属、芽孢杆菌属等为优势属的抗盐耐旱菌群,这有助于揭示小蓬竹对喀斯特生境的适应性,以及为微生物-植物群落之间相互关系提供一定基础数据,为后期寻找小蓬竹相关耐性功能菌奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号