首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WILLIAMSON  B. 《Annals of botany》1984,53(1):83-90
A histological study was made of the axillary region of raspberrycanes infected naturally by Didymella applanata (Niessl) Sacc.and Botrytis cinerea Pers.: Fr. The outer suberized phellemlayer of the polyderm and a primary protective layer of suberizedand lignified cells across the adaxial cortex of the petioleprecluded infection of the axillary buds by hyphae growing froma saprophytic base in the leaf. No protective layer formed throughthe abaxial cortex at the petiole base; consequently both fungicolonized the epidermis, primary cortex and outermost non-suberizedphelloid cells of the polyderm beneath the node. Red raspberry, Rubus idaeus, Didymella applanta, Botrytis cinerea, polyderm, periderm, suberin, lignin  相似文献   

2.
The periderm in roots of Pinus banksiana Lamb. and the polyderm in roots of Eucalyptus pilularis Sm. originate from the pericycle. This occurs after the roots have turned brown due to deposition of tannins in the walls of cells external to the endodermis. In both species, cork cells form a continuous sheath around the vascular tissues. The cork cell walls are modified by the presence of suberin, lignin and tannin and it is the latter which imparts a brown colour to the tissue. The first layer of cork cells in both species constitutes an apoplastic barrier which prevents the fluorescent dye, berberine, from entering the vascular tissues, despite the absence of an identifiable Casparian band in the cells. Because the roots are still covered with the cortex and epidermis during early stages of periderm and polyderm formation, it is not possible to tell from the external aspect of the root when it makes a transition from the tannin zone to the cork zone.  相似文献   

3.
The central cylinder of the root of Voynet tenella consists of up to ten central, non-lignified, tracheidal xylem elements surrounded by some parenchymatic tissue and 5–7 groups of phloem. A pericycle could not be discerned. Even though the endodermis carries a faint suberin lamella it cannot be discerned anatomically without special staining. The cells of the 1–3 cortex layers next to the endodermis are elongated longitudinally, the subsequent cortex parenchyma is multi-layered and consists of isodiametric cells. The cells of the 2–3 layered outer dermal tissue are smaller than those of the adjacent cortex, their walls carry a suberin lamella and the outermost of them constantly scale off. The dermal tissue is interpreted as a multilayered exodermis. The fungal colonization in roots of Voyria tenella remarkably differs from any known mycorrhizal pattern. After having penetrated the dermal tissue, the always intracellularly-growing hyphae head straight towards the inner cortex layers, where they spread along the central cylinder. Ramifications from these inner-spreading hyphae then colonize the cortex parenchyma from the inside and they develop dense hyphal coils. Eventually, the coiled hyphae swell and collapse, resulting in amorphous clumps of fungal material. This mycorrhizal pattern is referred to as an intraradical fungus garden. Arguments are given to call the mycorrhiza in Voyria tenella a specialized arbuscular mycorrhiza. Phylogenetic and ecological implications of the observations and the results are discussed.  相似文献   

4.
Vascular bundles and contiguous tissues of leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) were examined with light and transmission electron microscopes to determine their cellular composition and the frequency of plasmodesmata between the various cell combinations. The large vascular bundles typically are surrounded by two bundle sheaths, an outer chlorenchymatous bundle sheath and an inner mestome sheath. In addition to a chlorenchymatous bundle sheath, a partial mestome sheath borders the phloem of the intermediate vascular bundles, and at least some mestome-sheath cells border the phloem of the small vascular bundles. Both the walls of the chlorenchymatous bundlesheath cells and of the mestome-sheath cells possess suberin lamellae. The phloem of all small and intermediate vascular bundles contains both thick- and thin-walled sieve tubes. Only the thin-walled sieve tubes have companion cells, with which they are united symplastically by pore-plasmodesmata connections. Plasmodesmata are abundant at the Kranz mesophyll-cell-bundlesheath-cell interface associated with all sized bundles. Plasmodesmata are also abundant at the bundle-sheathcell-vascular-parenchyma-cell, vascular-parenchyma-cellvascular-parenchyma-cell, and mestome-sheath-cell-vascular-parenchyma-cell interfaces in small and intermediate bundles. The thin-walled sieve tubes and companion cells of the large vascular bundles are symplastically isolated from all other cell types of the leaf. The same condition is essentially present in the sieve-tube-companion-cell complexes of the small and intermediate vascular bundles. Although few plasmodesmata connect either the thin-walled sieve tubes or their companion cells to the mestome sheath of small and intermediate bundles, plasmodesmata are somewhat more numerous between the companion cells and vascular-parenchyma cells. The thick-walled sieve tubes are united with vascular-parenchyma cells by pore-plasmodesmata connections. The vascular-parenchyma cells, in turn, have numerous plasmodesmatal connections with the bundle-sheath cells.This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

5.
Daedalea flavida Lév. causes considerable damage to bamboos. Bamboo tissues become soft, discoloured and fibrous. The pathogen causes considerable decay of internodes (about 22%) and rhizomes (about 38%). The pathogen attacks the cells of vascular bundles, bundle sheath sclerenchyma and phloem cells; it does not attack epidermis, hypodermis, and peripheral sclerenchyma tissues. Fungal hyphae grow longitudinal and transverse in host tissues. The parasite decomposes both cellulose and lignin.  相似文献   

6.
采用石蜡切片法观察5种虾脊兰菌根的显微结构、菌根真菌的侵入途径与分布特征,为更好地保护和开发利用虾脊兰属植物资源提供理论依据.结果表明:(1)5种虾脊兰菌根的显微结构由根被、皮层和中柱组成,根被细胞3~6层,皮层由9~13层薄壁细胞组成,韧皮部与木质部8~12束,呈辐射状相间排列,中柱中央为薄壁细胞组成的髓.(2)菌丝...  相似文献   

7.
Phosphite is used to protect plants from the soil borne pathogen, Phytophthora cinnamomi. Although phosphite stimulates resistance to P. cinnamomi, this is the first histological study of its effect on Eucalyptus marginata, an economically important forest tree in Western Australia. Clonal lines of E. marginata, considered resistant and susceptible to P. cinnamomi, were underbark inoculated with P. cinnamomi. 4 days later, they were treated with 0, 2.5, 5 or 10 g L−1 phosphite. Transverse hand sections were stained for suberin and lignin, and histological responses to infection were examined. Defence responses were stimulated at all phosphite concentrations in both clonal lines, and the genotypic difference in lesion length was eliminated within 8 days of treatment. In the resistant line, suberin production was stimulated while in the susceptible line both lignin and suberin were stimulated. By 2 days after treatment, phosphite stimulated a faster rate of suberin production in the resistant line than the susceptible line, but by 4 days after treatment, there was no difference in the increase between the lines. Damage caused by P. cinnamomi was found to extend furthest in the cortex and outer phloem in transverse sections in both genotypes. In the presence of P. cinnamomi, phosphite stimulated mitosis as part of the defence response, with meristematic activity involved in the compartmentalisation of damaged tissue (formation of periderm) and closure of healthy tissue (callus). Phytotoxicity had a detrimental effect in healthy tissues and this was more apparent in the resistant line, where it did not provide the best protection from lesion extension and plant mortality, suggesting phytotoxicity could disrupt defence responses. Phosphite increases the capacity of susceptible and resistant E. marginata clonal lines to wall-off and contain P. cinnamomi colonisation through lignin and suberin deposition, and increased meristematic activity.  相似文献   

8.
Umwounded raspberry canes were inoculated with Leptosphaeria coniothyrium. After penetration of the epidermis the fungus invaded the cortex readily. The accumulation of mycelium in this tissue lead to a partial digestion of the middle lamellae of the outermost cork layer within the polyderm. The fungus penetrated this single cell barrier through the openings between the separated cells and colonized the phelloid tissue between the first and second cork layer. After vigorous growth in this non-suberized tissue the fungus penetrated the second cork barrier in the same way as the first layer. This mode of penetration was repeated until the fungus had spread beyond the periderm and into the vascular tissues. The invasion process occurred rather slowly and was enhanced by weakening of the canes by defoliation at the time of inoculation.  相似文献   

9.
Polyphenols histochemically detected in fresh uninfected roots of Quercus, Castanopsis and Lithocarpus growing in Hong Kong and shown to be condensed tannins were found mainly as intracellular material in the cells of the root cap, the epidermal layer and the endodermis. The cell walls of the outer cortex and the endodermis also contained suberin. Following invasion by compatible ectomycorrhizal symbionts, condensed tannins disappeared from cells of the root cap and the epidermal layer but hyphae were prevented from colonizing the cortex presumably due to suberin barriers. In vitro experiments indicated that a number of broad-host ectomycorrhizal fungi could utilise various polyphenolic compounds, including tannins found in the root exudates of the host trees, with different degrees of efficiency.  相似文献   

10.
Summary The distribution of microfilament bundles (MFBs) in the primary tissues ofChamaecyparis obtusa roots has been investigated by electron microscopy. Nomarski differential interference-contrast (NDIC) images of MFBs in sections of embedded materials are also presented to complement the ultrastructural observations. The peripheral phloem parenchyma cells, also known as precursory phloem, generally possess greater numbers of MFBs than do any other cell type. MFBs are apparently absent in the cortical, meristematic or root cap tissues. The number of MFBs seen in a transection of a cell varies according to its position in the ontogenetic sequence. While all the MFBs in peripheral phloem parenchyma cells lie within 2.0 m from and on occasion contact the plasmamembrane, some MFBs in other phloem and xylem cells are located in the central areas of the cytoplasm. The possible three-dimensional distribution of MFBs in a streaming peripheral phlowm parenchyma cell is discussed.  相似文献   

11.
Summary Onion (Allium cepa L. cv. Ebeneezer) roots from vermiculite culture were examined with transmission electron microscopy to detect the plasmodesmata in all tissues. In young root regions, plasmodesmata linked all living cells together in all directions. In old zones, the plasmodesmatal connections of the endodermis to its neighbor tissues were not interrupted by later suberin lamella and cellulosic wall deposition. Moreover, plasmodesmata in the fully mature endodermis usually exhibited a large central cavity. In the exodermis, however, upon deposition of suberin lamellae in long cells, all plasmodesmata that initially linked them to their adjacent cells were severed. Afterwards, the long cells lost the capability of forming wound pit callose and their protoplasts began to degenerate. The mature exodermal layer was symplastically bridged to its neighbors only by the short (passage) cells that lacked suberin lamellae. Compared to the long cells, the short cells not only had thicker cytoplasm surrounding their central vacuoles but also a higher density of mitochondria and rough endoplasmic reticulum, consistent with an active involvement in the transport processes of the root. The above results were obtained by an improved, extended transmission electron microscopy procedure devised to analyze plasmodesmata in cells with suberin lamellae. By prefixing root tissues in glutaraldehyde and acrolein, all cells were well preserved. Postfixation was carried out in osmium tetroxide at a low concentration (0.5%). Following dehydration in acetone and transfer to propylene oxide, infiltration with Spurr's resin was accomplished by incubating samples in the accelerator-free mixture for 4 days, then infiltrating samples in the accelerator-amended mixture for additional 4 days.Abbreviations IE immature exodermis - ME mature exodermis - TBO toluidine blue O - TEM transmission electron microscopy  相似文献   

12.
Adventitious roots of Primula acaulis Jacq. are characterized by broad cortex and narrow stele during the primary development. Secondary thickening of roots occurs through limited cambial growth together with secondary dilatation growth of the persisting cortex. Close to the root tip, at a distance of ca. 4 mm from the apex, Casparian bands (state I of endodermal development) within endodermal cells develop synchronously. During late, asynchronous deposition of suberin lamellae (state II of endodermal development), a positional effect is clearly expressed - suberization starts in the cells opposite to the phloem sectors of the vascular cylinder at a distance of 30 – 40 mm from the root tip. The formation of secondary walls in endodermis (state III of endodermal development) correlates with the beginning of secondary growth of the root at a distance of ca. 60 mm. Endodermis is the only cortical layer of primrose, where not only cell enlargement but also renewed cell division participate in the secondary dilatation growth. The original endodermal cells additionally divide anticlinally only once. Newly-formed radial walls acquire a typical endodermal character by forming Casparian bands and deposition of suberin lamellae. A network of endodermal Casparian bands of equal density develops during the root thickening by the tangential expansion of cells and by the formation of new radial walls with characteristic wall modifications. These data are important since little attention has been paid up till now to the density of endodermal network as a generally significant structural and functional trait of the root. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Experiments were conducted to locate the plant tissue where resistance is expressed against silverleaf whitefly, Bemisia argentifolii Bellows and Perring (Homoptera: Aleyrodidae), in alfalfa, Medicago sativa L. (Fabaceae), genotypes previously shown to have high levels of resistance against this pest. Previous work demonstrated that resistance in the resistant alfalfa genotypes was expressed primarily as high first‐instar mortality; consequently this study focused on first‐instar nymphs. Examination of stylets in cleared leaf tissue indicated that first‐instar nymphs located vascular bundles with equal success on resistant and susceptible alfalfa genotypes. Furthermore, direct current electrical penetration graphs (DC‐EPG) indicated that sieve elements were penetrated and phloem ingestion behavior was initiated with equal success on resistant and susceptible genotypes. Thus, the mechanism of resistance does not reside in tissues encountered by the stylets prior to penetrating a phloem sieve element. Honeydew production (as a proxy for ingestion) was greatly reduced on two resistant genotypes compared to the two susceptible genotypes. The frequency distribution of honeydew production was bimodal, indicating that most individuals on the resistant genotypes produced little or no honeydew while some produced as much honeydew as whiteflies on the susceptible genotypes. This indicates that expression of resistance is an all‐or‐nothing phenomenon; an individual nymph either encounters resistance and cannot sustain ingestion or it does not encounter resistance and ingests just as well as on a susceptible plant. Intermediates are rare. DC‐EPGs indicate that phloem ingestion behavior is significantly reduced on two of the resistant genotypes compared to the susceptible genotypes. The primary reason for this appears to be more frequent termination of phloem ingestion behavior on at least one of the resistant genotypes. On one of the resistant genotypes, the productivity of EPG‐measured phloem ingestion behavior (honeydew produced per min of phloem ingestion behavior) was reduced compared to a susceptible control.  相似文献   

14.
We studied the effect of Silicon (Si) on Casparian band (CB) development, chemical composition of the exodermal CB and Si deposition across the root in the Si accumulators rice and maize and the Si non-accumulator onion. Plants were cultivated in nutrient solution with and without Si supply. The CB development was determined in stained root cross-sections. The outer part of the roots containing the exodermis was isolated after enzymatic treatment. The exodermal suberin was transesterified with MeOH/BF3 and the chemical composition was measured using gas chromatography-mass spectroscopy (GC-MS) and flame ionization detector (GC-FID). Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) was used to determine the Si deposition across root cross sections. Si promoted CB formation in the roots of Si-accumulator and Si non-accumulator species. The exodermal suberin was decreased in rice and maize due to decreased amounts of aromatic suberin fractions. Si did not affect the concentration of lignin and lignin-like polymers in the outer part of rice, maize and onion roots. The highest Si depositions were found in the tissues containing CB. These data along with literature were used to suggest a mechanism how Si promotes the CB development by forming complexes with phenols.  相似文献   

15.
A range of glyphosate treatments was applied to flax at three stages of flowering. Spraying at a rate equivalent to 1.4 kg a. e./ha at the start of flowering gave satisfactorily uniform premature desiccation and was selected for investigation of the effects of the herbicide on stem tissues, using light microscopy. During normal maturation, increase in fibre cell wall thickness, lignification of the fibres and differentiation of the secondary xylem continued for 3–5 wk after the beginning of flowering. This differentiation was halted by the application of glyphosate. Three wk after treatment various types of tissue damage were observed. In some sections epidermal and cortical cells showed the most damage, this being consistent with herbicide uptake at the stem surface. In other sections phloem and associated parenchyma cells showed the most damage. Disintegration of phloem and cortical cells occurred in some treated stem segments and caused separation of the fibre bundles from their surrounding tissues. This resembled the release of fibre bundles which results from conventional post-harvest retting. The potential of glyphosate application to flax as a pre-harvest retting technique is discussed.  相似文献   

16.
Stanhopeinae are a group of tropical American orchids characterized by euglossine bee pollination and lateral inflorescences stemming from the bases of pseudobulbs. Leaves are hypostomatal, and all stomatal configurations are tetracytic. Chlorenchyma is homogeneous and characterized by fibre bundles in adaxial/abaxial or adaxial/median/abaxial positions. Collateral vascular bundles occur in a single row and feature phloic and xylic sclerenchymatous caps and thin-walled bundle sheath cells. Fibre bundles and vascular sclerenchyma are accompanied by stegmata containing conical silica bodies. Pseudobulbs have thick-walled turbinate epidermal cells and ground tissue of smaller, living assimilatory cells and larger, dead water-storage cells. Fibre bundles are usually absent but occur in several genera. Collateral vascular bundles show phloic sclerenchyma, but xylic sclerenchyma occurs only in die larger vascular bundles. Phloic and xylic sclerenchyma are associated with stegmata containing conical silica bodies. Roots are velamentous. Velamen cell walls have fine, spiral thickenings. Exodermal cells are thin-walled. The cortex features scattered thick-walled cells and in some cases branched bars of secondary cell wall material. Endodermis is either u-or O-thickened, but pericycle is always O-thickened opposite the phloem. Vascular tissue consists of alternating strands of xylem and phloem surrounded by a matrix of thick-walled cells. Pith cells may be parenchymatous or sclerenchymatous.  相似文献   

17.
18.
Summary The development of mestome sheath cells ofAegilops comosa var.thessalica was studied by electron microscopy. Anatomical and cytological observations show that this grass belongs to the C3 or non-Kranz plants. In the asymmetrically thickened walls of mestome sheath cells a suberized lamella is present. This lamella is deposited asynchronously. In the midrib and the large lateral bundles it appears first in the outer and inner walls and usually later in the radial walls. In the small lateral bundles its appearance is delayed in the inner walls of those cells situated on the xylem side. At maturity the suberized lamella is observed in all cell walls; however, in the small lateral bundles it is partly or totally absent from the walls of some cells situated on the xylem side. Tertiary wall formation is asynchronous as well, for it generally follows the deposition pattern of the suberized lamella.During the development of the mestome sheath cells microtubules show marked changes in their number and orientation, being fewer and longitudinal during suberin deposition. Dictyosomes are very active and may be involved in primary and tertiary wall formation. Endoplasmic reticulum cisternae are abundant and partly smooth, while plasmalemmasomes may function to reduce the plasmalemma extension. However, cytoplasmic structures that are clearly involved in suberin synthesis could not be identified.Suberized lamellae react strongly with silver hexamine. This is probably due to post-fixation with osmium tetroxide.On the basis of structural characteristics the mestome sheath may be regarded as an endodermis (cf., alsoFahn 1974). The significance of this view for water and assimilate exchange between the mesophyll and the bundle is discussed.This report represents a portion of a doctoral dissertation.  相似文献   

19.
During the systemic development of Plasmopara helianthi Novot. var. helianthi Novot. the hyphae in the stem advance especially through the intercellular spaces of loose parenchyma forming haustoria in adjacent cells. The hyphae which reach leaf blades through petioles continue their growth along the main veins intercellularly in non-vascular tissues enclosing the vascular bundles. At the same time, the hyphae spread to intercellular spaces of spongy parenchyma where the growth is limited by the veinlets resulting in angular chlorotic lesions. Under humid conditions the sporangiophores arising from the aggregated hyphae in a substomatal cavity emerge through the stomatal pore on the lower side of the leaf and zoosporangia are borne terminally on sporangiophores. Soon after biflagellated zoospores are liberated into distilled water from the zoosporangia, they retract their flagellae and then lyse.  相似文献   

20.
Patterns of infection withFusarium culmorum (W G Smith) Saccardo were observed in seedling roots of barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), maize (Zea mays L.) and asparagus (Asparagus officinalis L). Apical regions of the main roots were not infected. Since penetration into the root occurred several days after inoculation and the roots were growing during the experiment, these regions had apparently not been in existence long enough to be infected. In older regions of barley, wheat and asparagus, hyphae entered through the tips of lateral roots. In barley and wheat, which had not developed any suberin lamellae in their subepidermal layer, infection occurred randomly over the remainder of the root. In maize, the fungus penetrated the epidermis at many sites but did not breach the exodermis in which all cells possessed both Casparian bands and suberin lamellae. Maize roots, therefore, sustained only minimal infections. In asparagus, the fungus grew through the short (passage) cells but never the long cells of the exodermis. In doing so, it penetrated cells possessing Casparian bands but lacking suberin lamellae. The results support the hypothesis that suberin lamellae provide effective barriers to the growth ofF. culmorum hyphae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号