首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The internucleotide linkage of uridylyl-(3'-->5')-uridine (r[UpU]) does not undergo detectable hydrolytic cleavage or migration in ca. 24 hr in 0.01 mol dm-3 hydrochloric acid (pH 2.0) at 25 degrees C. However, unlike r[UpU] and previously examined relatively high molecular weight oligoribonucleotides, oligouridylic acids are very sensitive to aqueous acid under the latter conditions (pH 2.0, 25 degrees C). Thus when the 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp) group is used to protect the 2'-hydroxy functions in the synthesis of r[(Up)9U] and r[(Up)19U], the final unblocking process must be carried out above pH 3 if hydrolytic cleavage and migration are to be avoided. It is demonstrated that the rate of acid-catalyzed hydrolysis of the internucleotide linkages of oligoribonucleotides is sequence dependent. As Fpmp groups may be virtually completely removed from average partially-protected oligoribonucleotides within ca. 24 hr at pH 3 and 25 degrees C, it is concluded that Fpmp is a suitable 2'-protecting group even in the synthesis of particularly acid-sensitive sequences.  相似文献   

2.
The Rad51 protein of Saccharomyces cerevisiae, like its bacterial counterpart RecA, promotes strand exchange between circular single-stranded DNA (ssDNA) and linear double-stranded DNA (dsDNA) in vitro. However, the two proteins differ in the requirement for initiating joint molecules and in the polarity of branch migration. Whereas RecA initiates joint molecules from any type of ends on the dsDNA and branch migration proceeds exclusively in the 5'- to 3'-direction with respect to the single strand DNA substrate, initiation mediated by Rad51 requires a complementary 3' or 5' overhanging end of the linear dsDNA and branch migration proceeds in either direction. Here we report that the rates of Rad51-mediated branch migration in either the 5'- to 3'- or 3'- to 5'-directions are affected to the same extent by temperature and MgCl(2). Furthermore, branch migration in both directions is equally impeded by insertions of non-homologous sequences in the dsDNA, inserts of 6 base pairs or more being completely inhibitory. We have also found that the preference of strand exchange in the 5'- to 3'-direction does not change if RPA is replaced by Escherichia coli SSB or T4 gene 32 proteins, suggesting that the preference for the direction of strand exchange is intrinsic to Rad51. Based on these results, we conclude that Rad51-promoted branch migration in either direction occurs fundamentally by the same mechanism, quite probably by stabilizing successively formed heteroduplex base pair.  相似文献   

3.
Neocarzionstatin (NCS)-induced strand breakage of DNA generates nonfunctional binding sites for the E. coli DNA polymerase I. Treatment of the NCS-nicked DNA with alkaline phosphatase at 65 degrees C prior to the polymerase reaction results in 60-100-fold stimulation of dTMP incorporation whereas in a control not treated with the drug there is only a 2-fold increase. Sites of strand scission on the NCS-treated DNA bear phosphate at the 3' termini. This conclusion is supported by the kinetics of release of inorganic phosphate from NCS-cut DNA by exonuclease III. Since our earlier work has shown that virtually all the 5' ends of the nicks caused by NCS bear phosphomonoester groupings, the 3'- and 5'- phosphoryl termini could be quantitated using alkaline phosphatase and exonuclease III. Over a wide range of drug levels the amount of inorganic phosphate released by alkaline phosphatase is approximately twice as much as that removed by exonuclease III, indicating the presence of equal amounts of 3'- and 5'- phosphoryl termini. This, taken together with other previously demonstrated effects of NCS on DNA, such as the introduction of nicks not sealable by polynucleotide ligase, the release of thymine, and the formation of a malonaldehyde type compound, suggests that NCS-induced strand breakage involves base release accompanied by opening of the sugar ring with destruction of one or more nucleosides and results in a gap bounded by 3'- and 5'- phosphoryl termini.  相似文献   

4.
A variety of approaches that utilize in vitro 32P-labeling of RNA and of oligonucleotides in the sequence analysis of RNAs are described. These include 1) methods for 5'- and 3'- end labeling of RNAs; 2) end labeling and sequencing of oligonucleotides present in complete T1 RNase or pancreatic RNase digests of RNA; 3) use of random endonucleases, such as nuclease P1, for terminal sequence analysis of end labeled RNAs; and 4) use of base specific enzymes or chemical reagents in the sequence analysis of end-labeled RNAs. Also described is an approach to RNA sequencing, applied so far to tRNAs, which is based on partial and random alkaline cleavage of an RNA to generate a series of overlapping oligonucleotide fragments, all containing the original 3'-end of the RNA. Analysis of the 5'- end group of each of these oligonucleotides (following 5'-end labeling with 32P) provides the sequence of most of the tRNA. The above methods have been used to derive the sequences of several tRNAs, the ribosomal 5S and 5 x 8S RNAs, a viroid RNA, and large segments of both prokaryotic and eukaryotic ribosomal and messenger RNAs.  相似文献   

5.
A number of different protecting groups were compared with respect to their usefulness for protection of 2'-hydroxyl functions during synthesis of oligoribonucleotides using the H-phosphonate approach. The comparison was between the t-butyldimethylsilyl (t-BDMSi), the o-chlorobenzoyl (o-CIBz), the tetrahydropyranyl (THP), the 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp), the 1-(2-chloro-4-methylphenyl)-4-methoxypiperidin-4-yl (Ctmp), and the 1-(2-chloroethoxy)ethyl (Cee) protecting groups. All these groups were tested in synthesis of dodecamers, (Up)11U and (Up)11A, using 5'-O-(4-monomethoxytrityl) or (4,4'-dimethoxytrityl) uridine H-phosphonate building blocks carrying the respective 2'-protection. The performance of the t-BDMSi and o-CIBz derivatives were also compared in synthesis of (Up)19U. The most successful syntheses were clearly those where the t-butyldimethylsilyl group was used. The o-chlorobenzoyl group also gave satisfactory results but seems somewhat limited with respect to synthesis of longer oligomers. The results with all tested acetal derivatives (Fpmp, Ctmp, Cee, THP) were much less successful due to some accompanying cleavage of internucleotidic H-phosphonate functions during removal of 5'-O-protection (DMT).  相似文献   

6.
Selective strand scission by intercalating drugs at DNA bulges   总被引:4,自引:0,他引:4  
A bulge is an extra, unpaired nucleotide on one strand of a DNA double helix. This paper describes bulge-specific strand scission by the DNA intercalating/cleaving drugs neocarzinostatin chromophore (NCS-C), bleomycin (BLM), and methidiumpropyl-EDTA (MPE). For this study we have constructed a series of 5'-32P end labeled oligonucleotide duplexes that are identical except for the location of a bulge. In each successive duplex of the series, a bulge has been shifted stepwise up (from 5' to 3') one strand of the duplex. Similarly, in each successive duplex of the series, sites of bulge-specific scission and protection were observed to shift in a stepwise manner. The results show that throughout the series of bulged duplexes NCS-C causes specific scission at a site near a bulge, BLM causes specific scission at a site near a bulge, and MPE-Fe(II) causes specific scission centered around the bulge. In some sequences, NCS-C and BLM each cause bulge-specific scission at second sites. Further, bulged DNA shows sites of protection from NCS-C and BLM scission. The results are consistent with a model of bulged DNA with (1) a high-stability intercalation site at the bulge, (2) in some sequences, a second high-stability intercalation site adjacent to the first site, and (3) two sites of relatively unstable intercalation that flank the two stable intercalation sites. On the basis of our results, we propose a new model of the BLM/DNA complex with the site of intercalation on the 3' side (not in the center) of the dinucleotide that determines BLM binding specificity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Abstract

The synthetic cycle protocol for the solid phase synthesis of RNA using 5′-O-(DMTr)-2′-O-(Fpmp)-ribonucleoside phosphoramidites is optimised. A simple and reliable two step deprotection procedure is developed to isolate biologically active RNA. It is demonstrated that fully deprotected RNA is completely stable under the deprotection conditions and that it does not undergo internucleotide cleavage and/or migration. Ribozymes and substrate RNAs synthesized using this chemistry were found to be catalytically active.  相似文献   

8.
Nascent polyoma DNA molecules were isolated after pulse-labeling of infected murine 3T6 cells with [3H]thymidine. The extent of digestion of these DNA molecules by spleen exonuclease was increased by exposure to alkali or RNase, suggesting that ribonucleotides were present at or near the 5' terminal of the newly synthesized pieces of DNA. Intermediates shorter than 300 nucleotides were hybridized to the separated strands of restriction enzyme fragments of the polyoma genome: 2.5 to 3-fold more radioactivity was found in the strand whose synthesis is necessarily discontinuous (the lagging strand) than in the strand whose synthesis is potentially continuous (the leading strand) than in the strand whose synthesis is potentially continuous (the leading strand). Separation of the strands of [5'-32P]DNA molecules showed that the excess [3H]thymidine in lagging-strand molecules was not simply the result of an increased number of molecules. Therefore, assuming equivalent efficiencies of labeling, lagging-strand pieces must be slightly longer than those with leading-strand polarity. The presence of ribonucleotides on the 5' termini of molecules with both leading- and lagging-strand polarity was demonstrated by (i) release of 32P-ribonucleoside diphosphates upon alkaline hydrolysis of [5'-32P]DNA separated according to replication polarity and (ii) the change in the degree of self-annealing of nascent molecules upon preferential degradation of DNA molecules possessing initiator RNA moieties by spleen exonuclease. We conclude that replication of polyoma DNA in vivo occurs discontinuously on both sides of the growing fork, using RNA as the major priming mechanism.  相似文献   

9.
Analysis of products formed during bleomycin-mediated DNA degradation   总被引:7,自引:0,他引:7  
By the use of DNA, copolymers of defined nucleotide composition, and a synthetic dodecanucleotide having putative bleomycin cleavage sites in proximity to the 5'- and 3'-termini, the products formed concomitant with DNA strand scission have been isolated and subjected to structural identification and quantitation via direct comparison with authentic synthetic samples. The products of DNA strand scission by Fe(II)-bleomycin include oligonucleotides having each of the four possible nucleoside 3'-(phosphoro-2'-O-glycolates) at their 3'-termini, as well as the four possible base propenals. At least for 3-(adenin-9'-yl)propenal and 3-(thymin-1'-yl)propenal, the products formed were exclusively of the trans configuration.  相似文献   

10.
We found 8-azidoadenosine 5'-diphosphate to be a phosphoryl acceptor in the enzymatic conversion of 1,3-diphosphoglyceric acid to 3-phosphoglycerate. This has allowed us to synthesize in a single-step procedure carrier-free 8-azidoadenosine 5'-[gamma-32P]triphosphate, requiring no further purification of the end product. The synthesized 8-azidoadenosine 5'-[gamma-32P]triphosphate has been characterized and shown to meet all the criteria for a specific photoreactive ATP analogue.  相似文献   

11.
P1-Adenosine 5'-P2-o-nitrobenzyl pyrophosphate (nbzlppA) has been synthesized as a substrate for T4 RNA ligase catalyzed 3'-phosphorylation. Incubation of oligoribonucleotides and nbzlppA with RNA ligase yielded oligoribonucleotides having a 3'-o-(o-nitrobenzyl) phosphate. Photochemical removal of the o-nitrobenzyl group provided the free 3'-phosphate. Using [P2-32P] nbzlppA, 3'-termini of oligoribonucleotides could be labelled with 32P. This reaction was applied to modify the 3'-end of donor molecules in joining reaction with RNA ligase. A trinucleotide U-A-G was converted to U-A-Gpnbzl and phosphorylated with polynucleotide kinase. pU-A-Gpnbzl was then joined to an acceptor trinucleotide A-U-G to yield A-U-G-U-A-Gp.  相似文献   

12.
Three peptide amides, HPRK(Py)(4)HPRK-NH(2) (PyH-12), HPRK(Py)(3)HPRK-NH(2) (PyH-11) and HPRK(Py)(2)HPRK-NH(2) (PyH-10), incorporating two HPRK motifs and various 4-amino-1-methylpyrrole-2-carboxylic acid residues (Py) were synthesized by solid-phase peptide methodology. The binding of these three peptides to a 5'-32P-labeled 158-mer DNA duplex (Watson fragment) and to a 5'-32P-labeled 135-mer DNA duplex (complementary Crick fragment) was investigated by quantitative DNase I footprinting. On the 158-mer Watson strand, the most distinctive DNase I blockages seen with all three peptides occur around positions 105-112 and 76-79, corresponding to the sequences 5'-GAGAAAAT-3' and 5'-CGGT-3', respectively. However, on the complementary Crick strand, only PyH-12 strongly discriminates the 5'-TTT-3' site around positions 108-110 whereas both PyH-11 and PyH-10 have moderate binding around positions 102-112 comprising the sequence 5'-ATTTTCTCCTT-3'. Possible bidentate and single interactions of the side-chain functions and alpha-amino protons of the peptides with DNA bases are discussed.  相似文献   

13.
The 3' terminus of the strand (minus strand) complementary to poliovirion RNA (plus strand) has been examined to see whether this sequence extends to the 5'-nucleotide terminus of the plus strand, or whether minus-strand synthesis terminates prematurely, perhaps due to the presence of a nonreplicated nucleotide primer for initiation of plus-strand synthesis. The 3' terminus was labeled with 32P using [5'-32P]pCp and RNA ligase, and complete RNase digests were performed with RNases A, T1, and U2. 32P-oligonucleotides were analyzed for size by polyacrylamide-urea gel electrophoresis. The major oligonucleotide products formed were consistent with the minus strand containing 3' ends complementary and flush with the 5' end of the plus strand. However, a variable proportion of the isolated minus strands from different preparations were heterogeneous in length and appeared to differ from each other by the presence of one, two, or three 3'-terminal A residues.  相似文献   

14.
To elucidate the mechanism of DNA strand scission by bleomycin, a d(C-G-C-G-C-G) duplex was treated with the bleomycin-iron ion complex in the presence of H2O2 and degradation products (1, 2, cytosine and deoxyguanosine 5'-phosphate) were identified. 1 and 2 contain a carboxymethyl group attached to the 3'-terminal phosphoryl group of d(C-Gp) and d(C-G-C-Gp), respectively. These compounds were identified by UV, 1H and 31P NMR spectroscopy and paper electrophoresis. 1 was synthesized from the protected dinucleotide and glycolic acid and the proton NMR spectrum was identical to that of 1 obtained as a degradation product. Thus the oligonucleotide fragments produced by the action of bleomycin on DNA were directly identified and cleavage of the C3'-C4' bond of the sugar residues was proved.  相似文献   

15.
In an in vitro incubation, 8-azidoguanosine 5'-[gamma-32P]triphosphate ( [gamma-32P]-8-azido-GTP) labeled bleached rhodopsin independent of ultraviolet light. Characterization of this labeling indicated that rhodopsin was phosphorylated with [gamma-32P]-8-azido-GTP as a phosphate donor. At low concentrations, ATP increased this labeling activity 5-fold. In the same incubation, [gamma-32P]-8-azido-GTP also labeled G alpha (Mr 40 000). This labeling was ultraviolet light dependent. G beta (Mr 35 000) was also labeled dependent for the most part upon ultraviolet light, but a smaller component of labeling appeared to result from phosphorylation. Differential labeling of G alpha and G beta was found to vary intricately with experimental conditions, especially prebleaching of rhodopsin, tonicity of the medium, and the presence or absence of 2-mercaptoethanol. Affinity labeling of G alpha and G beta by [gamma-32P]-8-azido-GTP in competition with ATP or GTP was kinetically complex, consistent with possible multiple binding sites for GTP on both subunits. Independent evidence for two or more binding sites on G alpha has been offered by other laboratories, and recently, at least one binding site on G beta and its analogues among the N proteins of adenylate cyclases has been identified.  相似文献   

16.
Affinity labeling of 40S subunits from human placenta with 4-(N-2-chloroethyl-N-methylamino)benzylmethyl-[32P]phosphoamide s of oligoribonucleotides pAUG and pAUGU3 was studied. Covalent attachment of these derivatives to 40S subunits within the complexes with 40S subunits, formed in the presence of Met-tRNAf.eIF-2.GTP, was detected. Both rRNA and ribosomal proteins were modified. Fragments of 18S rRNA, containing sites of the reagent attachment were identified: 1058-1164 for pAUG derivative and 976-1057--for pAUG and pAUGU3 ones. The data obtained allowed to conclude that the presence of the neighbouring codon at the A-site, regardless of the presence of the tRNA in it, affects significantly the arrangement of the trinucleotide template in the codon-anticodon interaction region. The large subunit does not cause significant alterations in the structural organization of the codon-anticodon interaction region.  相似文献   

17.
18.
J C Wu  J Stubbe  J W Kozarich 《Biochemistry》1985,24(26):7569-7573
Incubation of poly(dA-[3'-3H]dU), poly(dA-[5'-3H]dU), or poly(dA-[5'-3H]dT) under a variety of conditions with activated bleomycin resulted in the production of free nucleic acid base, base propenal, and a small amount of 3H2O. Adjustment of the terminated reaction mixture to pH 10 and incubation at 95 degrees C resulted in a time-dependent increase in 3H2O to an amount equal to the amount of free base. If the terminated reaction mixture was incubated with NaBH4 prior to the heat and alkaline treatment, the release of 3H2O was significantly inhibited. These results are consistent with the generation by activated bleomycin of a 4'-ketone yielding free base, with the exchange of the 3'- and 5'-hydrogens by enolization and with the alkaline-induced strand scission occurring from this intermediate.  相似文献   

19.
Solid-phase synthesis of oligoribonucleotides   总被引:2,自引:0,他引:2  
Selective deprotection of the 5'-O-dimethoxytrityl group of oligoribonucleotides required for 5'-deprotection reaction during synthesis of an oligoribonucleotide was achieved by the treatment with 1% dichloroacetic acid in dichloromethane at room temperature, without removal of the 2'-O-tetrahydropyranyl group. Phosphorylation of protected ribonucleosides and coupling reaction to the 5' end of oligoribonucleotides attached to polystyrene solid support were carried out by the use of bifunctional reagent 2-chlorophenyl-O-O-bis(1-benzotriazolyl) phosphate. In this way, trinucleotides; TpTpT, dUpdUpT, and UpUpT, were synthesized.  相似文献   

20.
The solution phase synthesis of the tetraribonucleoside triphosphate r(ApCpGpU) 18 and the corresponding cyclic tetraribonucleotide 19 is described. The synthetic methodology is based on 5'- O -(DMTr)-2'- O -(Fpmp)-ribonucleoside-3'- H -phosphonate building blocks 10. Coupling, which is rapid and quantitative, is effected with di-(2-chlorophenyl) phosphorochloridate 5 at -40 degreesC; it is followed by in situ treatment with 2-(4-methyl-phenyl)sulphanyl-1 H -isoindole-1,3(2 H )-dione 6b. The resulting sulphur transfer reaction also proceeds rapidly and quantitatively at -40 degreesC. The same coupling and sulphur transfer steps are used in the cyclization reaction, but a 5'- H -phosphonate intermediate 24 is involved. The final three-step unblocking process involves treatment with (i) E -2-nitrobenzaldoxime 7 and N 1, N 1, N 3, N 3-tetramethylguanidine (TMG) 8 in aceto-nitrile, (ii) concentrated aqueous ammonia at 50 degreesC and (iii) 0.5 mol/dm3sodium acetate buffer (pH 4.0) at 40 degreesC. The fully unblocked products 18 and 19 were characterized by NMR spectroscopy and by enzymatic digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号