首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 Increased ethylene evolution accompanies seed germination of many species including Pisum sativum L., but only a little is known about the regulation of the ethylene biosynthetic pathway in different seed tissues. Biosynthesis of the direct ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the expression of ACC oxidase (ACO), and ethylene production were investigated in the cotyledons and embryonic axis of germinating pea seeds. An early onset and sequential induction of ACC biosynthesis, accumulation of Ps-ACO1 mRNA and of ACO activity, and ethylene production were localized almost exclusively in the embryonic axis. Maximal levels of ACC, Ps-ACO1 mRNA, ACO enzyme activity and ethylene evolution were found when radicle emergence was just complete. Treatment of germinating seeds with ethylene alone or in combination with the inhibitor of ethylene action 2,5-norbornadiene showed that endogenous ethylene regulates its own biosynthesis through a positive feedback loop that enhances ACO expression. Accumulation of Ps-ACO1 mRNA and of ACO enzyme activity in the embryonic axis during the late phase of germination required ethylene, whereas Ps-ACS1 mRNA levels and overall ACC contents were not induced by ethylene treatment. Ethylene did not induce ACO in the embryonic axis during the early phase of germination. Ethylene-independent signalling pathways regulate the spatial and temporal pattern of ethylene biosynthesis, whereas the ethylene signalling pathway regulates high-level ACO expression in the embryonic axis, and thereby enhances ethylene evolution during seed germination. Received: 28 September 1999 / Accepted: 27 December 1999  相似文献   

2.
The germination of lettuce (Lactuca sativa L.) seeds was greatly reduced when the seeds were heated at 97°C for 30 h prior to imbibition. This dormancy was effectively released when ethylene (1–100 ppm) or benzyladenine (BA) (0.005–0.05 mM) was applied during the imbibition period. Ethylene was not required during the early part of imbibition, but was essential during the period immediately prior to radicle protrusion. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) (0.1–10 mM) stimulated germination, but was not as effective as ethylene or cytokinin treatment. During the germination of nondormant lettuce seeds, ethylene production increased rapidly and reached a peak at 24 h, which coincided with the emergence of the radicle, and then declined; the level of ACC increased as ethylene production rate increased, but remained at a high level after radicle protrusion. In heat-pretreated dormant lettuce seeds, the increases in percent germination, ethylene production, and ACC levels were all delayed and lower than those of nondormant seeds, and these increases were accelerated by treatment with ethylene or cytokinin.  相似文献   

3.
4.
Seed priming (controlled imbibition) is a widely used technique for improving crop establishment, because it allows a reduction of the time to radicle emergence following seed imbibition and synchronization of individual seeds within seed lots with respect to germination timing. The major problem encountered in seed priming is the control of seed imbibition to a level permitting pre-germinative processes to proceed but that blocks radicle emergence. If not, the consequence of drying back the seeds to initial moisture content for storage purposes could be a total loss of the treated batch. This is because, as long as radicle growth has not begun, seeds may be re-dried without any permanent deleterious effects upon subsequent germination or growth. Recently, we reported the discovery of a molecular marker of sugar beet seed priming, corresponding to the basic B-subunit of the seed storage protein 11S globulin. An ELISA based upon this molecular marker has been used to analyse how different sugar beet seed lots respond to a priming treatment. The results demonstrate that this ELISA allows us to readily distinguish between the primed seeds and the corresponding untreated seeds.  相似文献   

5.
6.
7.
The hormonal action of abscisic acid (ABA) in plants is controlled by the precise balance between its biosynthesis and catabolism. In plants, ABA 8'-hydroxylation is thought to play a predominant role in ABA catabolism. ABA 8'-hydroxylase was shown to be a cytochrome P450 (P450); however, its corresponding gene had not been identified. Through phylogenetic and DNA microarray analyses during seed imbibition, the candidate genes for this enzyme were narrowed down from 272 Arabidopsis P450 genes. These candidate genes were functionally expressed in yeast to reveal that members of the CYP707A family, CYP707A1-CYP707A4, encode ABA 8'-hydroxylases. Expression analyses revealed that CYP707A2 is responsible for the rapid decrease in ABA level during seed imbibition. During drought stress conditions, all CYP707A genes were upregulated, and upon rehydration a significant increase in mRNA level was observed. Consistent with the expression analyses, cyp707a2 mutants exhibited hyperdormancy in seeds and accumulated six-fold greater ABA content than wild type. These results demonstrate that CYP707A family genes play a major regulatory role in controlling the level of ABA in plants.  相似文献   

8.
Two litchi cultivars, a well-coloured ‘Nuomici’ and a poorly coloured ‘Feizixiao’, were used to investigate changes in endogenous abscisic acid (ABA) concentration and ethylene production during fruit maturation and to test the effects of exogenous growth regulators on litchi fruit maturation. Abscisic acid concentration in both the aril and pericarp increased with fruit maturation. Transfusion of ABA into the fruit 3 weeks before harvest accelerated, whereas transfusion of 6-benzyl aminopurine (6-BA) retarded sugar accumulation and pigmentation. The effect of 6-BA was assumed to link with the resultant decrease in ABA. In contrast, 1-aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC oxidase (ACO) activities in the aril remained relatively constant during sugar accumulation. Transfusion of aminooxyacetic acid (AOA) significantly decreased ACC concentration but had no effect on sugar accumulation in the aril. These results suggested that endogenous ABA, but not ethylene, was critical for the sugar accumulation. However, the roles of ABA and ethylene in pericarp pigmentation were rather complicated. Application of exogenous ABA promoted anthocyanin synthesis significantly, but had very little effect on chlorophyll degradation. Ethylene production in litchi fruit decreased with development, but a transient increase of endogenous ethylene production was detected just around the colour break in ‘Nuomici’. Enhanced ACO activity in the pericarp was detected during pigmentation. Ethrel at 400 mg l−1 showed no effect on pericarp coloration, but accelerated chlorophyll degradation and anthocyanin synthesis at a much higher concentration (800 mg l−1). Fruit dipped in ABA solution alone yielded no effect on chlorophyll degradation, but the combined use of ABA and Ethrel at 400 mg l−1 enhanced both chlorophyll degradation and anthocyanin synthesis. These results indicated the possible synergistic action of ethylene and ABA during litchi fruit colouration. ABA is suggested to play a more crucial role in anthocyanin synthesis, while ethylene is more important in chlorophyll degradation. ABA can increase the sensitivity of pericarp tissue to ethylene.  相似文献   

9.
Conversion of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene was studied in sunflower (Helianthus annuus L., cv. Mirasol) seeds in relation to germinability. Ethylene production from ACC decreased during seed maturation, and non-dormant mature seeds were practically unable to synthesize ethylene until germination and growth occurred, indicating that ethylene forming enzyme (EFE) activity developed during tissue imbibition and growth. ACC conversion to ethylene was reduced by the presence of pericarp, and in young seedlings it was less in cotyledons than in growing axes.ACC conversion to ethylene by cotyledons from young seedlings was optimal at c. 30°C, and was strongly inhibited at 45°C. Pretreatment of imbibed seeds at high temperature (45°C) induced a thermodormancy and a progressive decrease in EFE activity.Abscisic acid and methyl-jasmonate, two growth regulators which inhibit seed germination and seedling growth, and cycloheximide were also shown to inhibit ACC conversion to ethylene by cotyledons of 3-day-old seedlings and by inbibed seeds.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - CH cycloheximide - EFE ethylene forming enzyme - IAA indole-3-acetic acid - Me-Ja methyl-jasmonate  相似文献   

10.
The effect of polyethylene glycol (PEG-6000), abscisic acid (ABA), 2-chloroethylphosphonic acid (ethephon) and 1-aminocyclopropane-1-carboxylic acid (ACC) on the germination of Amaranthus caudatus L. seeds was examined. Both PEG-6000 and ABA inhibited the rate and percentage of seed germination. ABA potentiated the effect of PEG. Ethephon was highly effective in reversing the inhibitory effect of PEG and ABA or combinations of both. ACC relieved inhibition by ABA and the combined effect of ABA and PEG. Aminoethoxyvinylglycine (AVG) increased the inhibition of seed germination caused by ABA. The inhibition of seed germination by ABA seems to be related more or less to ethylene biosynthesis or is associated with a change of tissue sensitivity to ethylene. The possibility of ethylene control of water uptake by seeds is also considered.  相似文献   

11.
BACKGROUND AND AIMS: The relationship between ethylene production and both seed dormancy and germination was investigated using red rice (weedy rice) as a model species. METHODS: Both fully dormant and after-ripened (non-dormant) naked caryopses were incubated with or without inhibitors of ethylene synthesis [aminoethoxyvinylglycine (AVG)] and perception [silver thiosulfate (STS)], or in the presence of the natural ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). The kinetics of ethylene emissions were measured with a sensitive laser-photoacoustic system. KEY RESULTS: Dormant red rice caryopses did not produce ethylene. In non-dormant caryopses, ethylene evolution never preceded the first visible stage of germination (pericarp splitting), and ethylene inhibitors completely blocked ethylene production, but not pericarp splitting. Accordingly, endogenous ACC appeared to be lacking before pericarp splitting. However, early seedling growth (radicle or coleoptile attaining the length of 1 mm) followed ethylene evolution and was delayed by the inhibitors. Wounding the dormant caryopses induced them to germinate and produce ethylene, but their germination was slow and pericarp splitting could be speeded up by ethylene. CONCLUSIONS: The findings suggest that, in red rice, endogenous ethylene stimulates the growth of the nascent seedling, but does not affect seed dormancy or germination inception. Correspondingly, this phytohormone does not play a role in the dormancy breakage induced by wounding, but accelerates germination after such breakage has occurred.  相似文献   

12.
We have investigated the relationship between seed dormancy and abscisic acid (ABA) metabolism in the monocot barley and the dicot Arabidopsis. Whether dormant (D) or non-dormant (ND), dry seed of Arabidopsis and embryos of dry barley grains all had similarly high levels of ABA. ABA levels decreased rapidly upon imbibition, although they fell further in ND than in D. Gene expression profiles were determined in Arabidopsis for key ABA biosynthetic [the 9-cis epoxycarotenoid dioxygenasegene family] and ABA catabolic [the ABA 8'-hydroxylase gene family (CYP707A)] genes. Of these, only the AtCYP707A2 gene was differentially expressed between D and ND seeds, being expressed to a much higher level in ND seeds. Similarly, a barley CYP707 homologue, (HvABA8'OH-1) was expressed to a much higher level in embryos from ND grains than from D grains. Consistent with this, in situ hybridization studies showed HvABA8'OH-1 mRNA expression was stronger in embryos from ND grains. Surprisingly, the signal was confined in the coleorhiza, suggesting that this tissue plays a key role in dormancy release. Constitutive expression of a CYP707A gene in transgenic Arabidopsis resulted in decreased ABA content in mature dry seeds and a much shorter after-ripening period to overcome dormancy. Conversely, mutating the CYP707A2 gene resulted in seeds that required longer after-ripening to break dormancy. Our results point to a pivotal role for the ABA 8'-hydroxylase gene in controlling dormancy and that the action of this enzyme may be confined to a particular organ as in the coleorhiza of cereals.  相似文献   

13.
The involvement of ethylene in zygotic embryogenesis is a little known aspect of the growth and development in higher plants. In the present work, we study the alterations of the last step of the ethylene biosynthesis pathway during the formation period of turnip tops ( Brassica rapa cv. Rapa) seeds and its repercussions in the germination process and post-germinative growth. For this, we chose 11 different phases of silique development, the first being the recently fertilized pistil and the last being the silique just prior to its dehiscence (ca. 2 months post-anthesis). In the 11 phases, ethylene production was detected in both whole silique (with or without seeds) and in the seeds enclosed by the silique wall. The levels of ACC, ACO and ethylene production proved high in seeds belonging to: (1) the pod in the very early phases, when the seeds were growing but without photosynthetic competence; (2) the silique at maximum growth, in which the seeds will initiate desiccation and loss of photosynthetic activity. During the phases prior to dehiscence, there was a marked inhibition in the last step of the ethylene biosynthesis pathway. In viable dry seeds, no ACO activity was detected and the ACC levels were 4-fold lower than at the onset of the silique senescence. Germination brings about a net synthesis of ACC with respect of the stores dry seed. This fact, together with other results presented in this work, point towards, as in other seeds, a dependence of ethylene synthesis for radicle emergence. The possible role played by the silique wall in the control of ethylene biosynthesis during zygotic embryogenesis, as well as the participation of ethylene as a hormonal signal in the triggering of seed desiccation in Brassica rapa cv. Rapa, are discussed in depth.  相似文献   

14.
Proteomics of Arabidopsis seeds revealed the differential accumulation during germination of two housekeeping enzymes. The first corresponded to methionine synthase that catalyses the last step in the plant methionine biosynthetic pathway. This protein was present at low level in dry mature seeds, and its level was increased strongly at 1-day imbibition, prior to radicle emergence. Its level was not increased further at 2-day imbibition, coincident with radicle emergence. However, its level in 1-day imbibed seeds strongly decreased upon subsequent drying of the imbibed seeds back to the original water content of the dry mature seeds. The second enzyme corresponded to S -adenosylmethionine synthetase that catalyses the synthesis of S -adenosylmethionine from methionine and ATP. In this case, this enzyme was detected in the form of two isozymes with different p I and M r. Both proteins were absent in dry mature seeds and in 1-day imbibed seeds, but specifically accumulated at the moment of radicle protrusion. Arabidopsis seed germination was strongly delayed in the presence of dl -propargylglycine, a specific inhibitor of methionine synthesis. Furthermore, this compound totally inhibited seedling growth. These phenotypic effects were largely alleviated upon methionine supplementation in the germination medium. The results indicated that methionine synthase and S -adenosylmethionine synthetase are fundamental components controlling metabolism in the transition from a quiescent to a highly active state during seed germination. Moreover, the observed temporal patterns of accumulation of these proteins are consistent with an essential role of endogenous ethylene in Arabidopsis only after radicle protrusion.  相似文献   

15.
16.
Over the past twenty years many studies have been undertaken to elucidate the regulation of seed germination. Abscisic acid (ABA) and the gibberellins (GAs) are the hormones proposed to control this process, the first by inhibiting and the second by inducing germination. It has been proposed that a high water potential increases the growth potential of the embryo, presumably permitting the production or activation by GA of the cell wall hydrolases and thus decreasing the yield threshold of the endosperm close to the radicle tip. A low water potential, e.g., imbibition in an osmoticum. imposes a stress on cell metabolism, by reducing the turgor of the radicle cells, and there is a decrease in growth potential. Exogenous ABA also causes a decline in growth potential of the radicle: however, the actions of low water potential in preventing germination are not mediated through an increase in ABA in the seeds. In the present paper an attempt is made to asses the role of ABA and polyethylene glycol (PEG) in the germination of chick-pea (Cicer arietinum L.) seeds. The endogenous ABA of chick-pea seeds was purified by reversed-phase HPLC and quantified by GC-ECD. The variations in the ABA levels in the embryonic axes and the cotyledons were studied during 120 h. of imbibition. The highest ABA level in the embryome axes was found at 18 h. coinciding with an increase in fresh weight and a high germination percentage. ABA was not detected in the cotyledons during incubation which probably indicates that the hormone is more involved in the active growth of the embryonic axes itself than in the mobilization process of the reserves. When seeds were treated with different PEG-cycles. PEG delayed germination, reduced the fresh weight of embryonic axes, and retarded the onset of ABA synthesis. It is concluded that endogenous ABA is related to the onset of germination and the growth of the embryonic axis. In addition, there is no correlation among the different PEG-cycles and the level of ABA and germination. Germination was related more to the water conditions inside the embryo's cells than to ABA levels.  相似文献   

17.
18.
Contents of total free [PA(S)] and conjugated polyamines [PA(SH), PA(PH)] were higher in turnip (Brassica rapa L. cv. Rapa) seeds during imbibition (0–36 h) and radicle protrusion (36–48 h) than during the further growth (10 d). Ethylene production was activated with the protrusion, reaching a maximum at the second day of germination and dropping afterwards. The application of ethrel accelerated radicle emergence but the direct intervention of ethylene in the breaking of the seed coat was not clear from the use of ethylene-biosynthesis inhibitors (CoCl2 and AVG). Finally, in this work the gene BrACO2 was characterized. Although its expression was not detected in seeds through zygotic embryogenesis, it increased concomitantly with the germination process.  相似文献   

19.
Perennial ryegrass (Lolium perenne L.) seeds (caryopses) germinateat or near the soil surface, where water potential can fluctuatewidely. This study examined germination of ‘Del Ray’perennial ryegrass seeds when imbibition was interrupted bydehydration prior to radicle emergence. Seeds were hydratedfor 0 to 40 h (26C), dehydrated at atmospheric water potentialsof –4, –40, –100 and/or –150 MPa for4–168 h, then rehydrated. Germination (radicle elongation 1 mm), seedling growth, solute leakage, and endogenous abscisicacid (ABA) levels were measured. Treatment differences in finalgermination percentage, seedling growth, and solute leakagewere generally not significant. However, the onset of radicleemergence was delayed and the rate of germination slowed whendehydration at –150 MPa was initiated after 36 or 40 hhydration. Slowed germination rates were not observed when dehydrationwas initiated before 36 h, when dehydration occurred at –4MPa, or when dehydration at –150 MPa was preceded by dehydrationat –4 MPa for 24 h. Exogenous abscisic acid (ABA) concentrationsabove 10–6 M inhibited germination. However, endogenouswhole seed ABA levels declined during imbibition due to leaching,and did not increase during dehydration treatments that delayedgermination. These results illustrate that rate of late-occurringdehydration treatments is critical in determining subsequentgermination response. We propose that seed response to late-occurringdehydration may be of ecological significance in timing radicleemergence to coincide with adequate soil moisture for seedlingestablishment. Key words: Abscisic acid, seed germination, timing  相似文献   

20.
The effect of matriconditioning, the physiological presowing seed technique, using Micro-Cel E on Allium cepa L. cv. Czerniakowska seed quality was studied. Several ratios of seeds, carrier, water and time of priming were tested. The most effective treatment for improving onion seed germination at most tested temperatures was priming to a ratio of 2 g seed:1 g Micro-Cel:3 g water for 5 days in light at 15 °C. Matriconditioning greatly improved the germination and emergence percentage, seedling fresh and dry weight and reduced electrolyte leakage compared to that of untreated seeds; this beneficial effect was especially evident at suboptimal temperatures. Matriconditioning improved the germinability of aged seeds, the effect being more pronounced in the more aged seeds. No significant differences in ethylene production by primed and non-primed seeds were observed in the absence of its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), but its presence during imbibition caused an increase in ethylene production; an enhanced activity of in vivo ACC oxidase in Allium cepa matriconditioned seeds in comparison to untreated seeds, indicates that the endogenous level of ACC is a limiting factor of ethylene production. Likewise, the activity of ACC oxidase isolated from matriconditioned seeds was higher than that from untreated seeds. Higher endo--mannanase and total dehydrogenase activities were observed in primed air-dried seeds in comparing to non-primed seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号