首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Endothelium-derived microparticles (EMPs) are small vesicles released from endothelial cells in response to cell injury, apoptosis, or activation. Elevated concentrations of EMPs have been associated with many inflammatory and vascular diseases. EMPs also mediate long range signaling and alter downstream cell function. Unfortunately, the molecular and cellular basis of microparticle production and downstream cell function is poorly understood. We hypothesize that EMPs generated by different agonists will produce distinct populations of EMPs with unique protein compositions. To test this hypothesis, different EMP populations were generated from human umbilical vein endothelial cells by stimulation with plasminogen activator inhibitor type 1 (PAI-1) or tumor necrosis factor-alpha (TNF-alpha) and subjected to proteomic analysis by LC/MS. We identified 432 common proteins in all EMP populations studied. Also identified were 231 proteins unique to control EMPs, 104 proteins unique to PAI-1 EMPs and 70 proteins unique to TNF-alpha EMPs. Interestingly, variations in protein abundance were found among many of the common EMP proteins, suggesting that differences exist between EMPs on a relative scale. Finally, gene ontology (GO) and KEGG pathway analysis revealed many functional similarities and few differences between the EMP populations studied. In summary, our results clearly indicate that EMPs generated by PAI-1 and TNF-alpha produce EMPs with overlapping but distinct protein compositions. These observations provide fundamental insight into the mechanisms regulating the production of these particles and their physiological role in numerous diseases.  相似文献   

2.
OBJECTIVE: Elevated plasma levels of endothelial microparticles (EMPs) are associated with the presence of clinical atherosclerosis. Considering the anti-inflammatory properties of HMG-CoA reductase inhibitors on the endothelium, we studied the effect of fluvastatin on the release of EMPs in cultured human coronary artery endothelial cells (HCAEC). METHODS AND RESULTS: EMPs were generated in TNF-alpha-activated HCAECs. The absolute number of EMPs was enumerated using a novel two-color flow cytometric immunostaining technique with TruCount beads as an internal reference. EMPs are defined as EC membrane vesicles (1-2 microm in size) with a characteristic immunophenotype. The addition of fluvastatin to TNF-alpha-activated HCAECs significantly suppressed EMP release. Fluvastatin suppressed TNF-alpha-induced Rho activation.The Rho-kinase inhibitor, Y-27632, reproduced the effect of statin. CONCLUSION: EMP release from TNF-alpha-activated HCAECs is suppressed by fluvastatin. In addition, the Rho/Rho-kinase may play an important role in modulating EMP release.  相似文献   

3.
4.
Abstract

Rats' exposure to electromagnetic pulses (EMPs) has been conducted using an EMP simulator for various biological endpoints. In contrast, information about the EMP energy distribution and its variability in rats is lacking. EMPs are signals with spectrum concentrating in several hundred MHz, leading to EM absorption patterns different from those obtained at high frequencies. In this study, two anatomical models of rats (a male and a female) were reconstructed from magnetic resonance imaging. The models had the same posture as in the exposure experiments. Realistic EMPs were acquired directly from the EMP simulator and applied to the simulations. The interaction of the EMP with the rat was analyzed through the finite-difference time-domain method. Two approaches were utilized to calculate the energy absorption at the tissue and whole-body levels. Dosimetric variability due to incident directions, polarizations, exposure signals simplification, and rat separation was evaluated in this study. The variability result differed substantially from that of the non-constrained rats' exposure experiments. The result sensitivity to frequency and amplitude was discussed as well. The work can be used as a basis to determine the uncertainty and to formulate a standard experimental protocol for this type of experiment.  相似文献   

5.
Endothelial cell dysfunction (ECD) is emerging as the common denominator for diverse and highly prevalent cardiovascular diseases. Recently, an increased number of procoagulant circulating endothelial microparticles (EMPs) has been identified in patients with acute myocardial ischemia, preeclampsia, and diabetes, which suggests that these particles represent a surrogate marker of ECD. Our previous studies showed procoagulant potential of endothelial microparticles and mobilization of microparticles by PAI-1. The aim of this study was to test the effects of isolated EMPs on the vascular endothelium. EMPs impaired ACh-induced vasorelaxation and nitric oxide production by aortic rings obtained from Sprague-Dawley rats in a concentration-dependent manner. This effect was accompanied by increased superoxide production by aortic rings and cultured endothelial cells that were coincubated with EMPs and was inhibited by a SOD mimetic and blunted by an endothelial nitric oxide synthase inhibitor. Superoxide was also produced by isolated EMP. In addition, p22(phox) subunit of NADPH-oxidase was detected in EMP. Our data strongly suggest that circulating EMPs directly affect the endothelium and thus not only act as a marker for ECD but also aggravate preexisting ECD.  相似文献   

6.
BACKGROUND: Endometrial polyps (EMPs) are commonly encountered in routine surgical pathology practice, but opinions differ on whether they are intrinsically a marker for concurrent or subsequent malignancy. The objectives of the present study are 1) to investigate the age-group in which EMP are most commonly encountered 2) to document the age-group in which EMP are most commonly associated with malignancies 3) To investigate whether the age of diagnosis of the various carcinoma subtypes in EMPs is congruent with published data on similar malignancies arising in non-polypoid endometrium and 4) To investigate whether the histologic subtype distribution of malignancies associated with EMPs are similar or different from the distribution of malignancies arising from non-polypoid endometrium based on published data. PATIENTS AND METHODS: All cases of EMPs were retrieved from the files of Yale-New Haven Hospital for the period 1986-1995. The patients were divided into 5 age groups: Each group was further subclassified based on an association (or lack thereof) of EMPs with endometrial carcinoma. Chi-square test was used to compare the proportion of malignancy associated EMPs between the age groups. RESULTS: We identified 513 EMPs, of which 209 (41%) were from biopsy specimens and 304 (59%) from hysterectomy specimens. Sixty six (13%) of all EMPs were malignant. The 66 malignant EMPs included 58 endometrioid, 6 serous, 1 carcinosarcoma, and 1 clear cell carcinoma. In age group >35, only 1(2.5%) of 40 EMPs was associated with endometrial malignancy. In contrast, 37(32%) of 115 EMPs were associated with malignancy in the age group > 65. The frequency of malignant EMPs increased with age and reached statistical significance in the age group >65 (p < 0.001). The most common histologic type of malignancy was endometrioid adenocarcinoma. CONCLUSIONS: EMPs show statistically significant age dependent association with malignant tumor involvement. Careful search for malignancy, particularly in women with multiple risk factors is advised in daily practice. Additional studies are needed to address the histological features and immunohistochemical profiles in the context of association between endometrioid and high-grade endometrial carcinoma and endometrial polyps.  相似文献   

7.
Objective: This study aimed to investigate the potential of enamel matrix proteins (EMPs) on promoting osteogenic differentiation of porcine bone marrow stromal cells (pBMSCs), as well as new bone formation capabilities, in a tissue‐engineered bone complex scaffold of EMPs, pBMSCs and porous calcium phosphate cement (CPC). Materials and methods: Effects of EMPs on pBMSCs in vitro was first determined by alkaline phosphatase (ALP) activity, von Kossa staining assay and mRNA expression of ALP, bone sialoprotein (BSP) and osteocalcin (OCN) genes. Next, an ectopic new bone formation test was performed in a nude mouse model with four groups: CPC scaffold alone; CPC scaffold + EMPs; CPC scaffold + pBMSCs; and CPC scaffold + EMPs + pBMSCs, for 2 or 4 weeks. Results: ALP activity, von Kossa assay and mRNA expressions of ALP, BSP and OCN genes were all significantly higher with 150 μg/ml EMP treatment in vitro. In nude mice, new bone formation was detected only in the CPC scaffold + EMPs + pBMSCs group at 2 weeks. At 4 weeks, in the tissue‐engineered construct there was significantly higher bone formation ability than other groups. Conclusions: EMPs promoted osteogenic differentiation of pBMSCs, and the tissue‐engineered complex of EMPs, pBMSCs and CPC scaffold may be a valuable alternative to be used in periodontal bone tissue engineering and regeneration.  相似文献   

8.
Characterization of new multimeric erythropoietin receptor agonists   总被引:1,自引:0,他引:1  
Vadas O  Hartley O  Rose K 《Biopolymers》2008,90(4):496-502
In addition to its natural ligand, the receptor for erythropoietin can be activated by small peptides known as erythropoietin mimetic peptides (EMPs). Although EMPs are less potent than the natural ligand, EMP dimers, consisting of two EMPs joined via a linker, have been shown to exhibit significantly improved activity compared to the corresponding monomers, with potency approaching that of the native hormone. In this study, we used a panel of novel EMP dimers to explore the effects of linker length and EMP attachment site on potency. The EC50 values obtained in an EPO-dependent proliferation assay indicated that, as has been shown with similar molecules, EMP dimerization can lead to increases in potency of more than 2 orders of magnitude. We found that both C-terminal and N-terminal attachment of the linker to EMP was tolerated, and that, with the exception of the shortest linker, all of the linker lengths tested provided a similar increase in potency. In follow-up work devised to explore the potential benefit of contacting additional cell surface EPO receptors, we designed a tetrameric template consisting of lysine-based dimers joined via commercial PEG linkers of various molecular weights. Evaluation of the resulting molecules indicated a clear effect of PEG linker size on activity, while the "dimer of dimer" with the shortest linker exhibited 10-fold lower potency than the corresponding dimer, the longest tetramer increased potency by fivefold. We discuss the implications of these results for the further development of EMP multimers.  相似文献   

9.
OBJECTIVE: To further explore the role of enamel matrix proteins (EMPs) in periodontal regeneration, we have used porcine bone marrow-derived stromal cells (BMSCs) to observe whether the EMPs could have an effect on their differentiation into cementoblasts. MATERIALS AND METHODS: In this study, EMPs were extracted from porcine tooth germs by the use of acetic acid. BMSCs obtained from porcine iliac marrow aspiration were inoculated onto the surface of autologous root slices treated with or without EMPs. Following 7-day co-culture, all the BMSC-seeded root slices, with their respective non-cell-inoculated control specimens, were pocketed with expanded polytetrafluoroethylene membrane and were transplanted subcutaneously into 11 nude mice. The animals were sacrificed after 3 and 8 weeks, and the new specimens were processed for haematoxylin and eosin staining. Results: Histological analysis demonstrated new cellular cementum-like tissue formed along EMP-treated root slices. CONCLUSION: Our work has indicated for the first time, differentiation of BMSCs into cementoblasts using an EMP-based protocol.  相似文献   

10.
Objective: Endothelial microparticles (EMPs) are considered as markers of endothelial dysfunction. In this study, we aimed to examine whether there is endothelial dysfunction in children with familial Mediterranean fever (FMF), hypothesizing that endothelial dysfunction would be present especially with acute-phase response in the active period of the disease.

Methods: This cross-sectional study included 65 FMF patients (41 attack free, 24 attack period) and 35 healthy controls. Circulating EMPs, serum amyloid A (SAA), and other inflammation markers were measured in all groups. Circulating EMPs were measured using flow cytometry. Study groups were compared for circulating EMP and inflammatory markers. The relationship between EMPs and the activation of the disease was evaluated.

Results: The levels of CD144+ and CD146+ EMPs in the FMF attack period group were significantly higher than those of the control group (p?p?+ and CD146+ EMP were significantly correlated with CRP.

Conclusions: Our results suggest that endothelial damage is present especially in the active period of the disease in children with FMF. The endothelial dysfunction becomes an overt parallel with inflammation.  相似文献   

11.
We recently identified a new COPI-interacting KXD/E motif in the C-terminal cytosolic tail (CT) of Arabidopsis endomembrane protein 12 (AtEMP12) as being a crucial Golgi retention mechanism for AtEMP12. This KXD/E motif is conserved in CTs of all EMPs found in plants, yeast, and humans and is also present in hundreds of other membrane proteins. Here, by cloning selective EMP isoforms from plants, yeast, and mammals, we study the localizations of EMPs in different expression systems, since there are contradictory reports on the localizations of EMPs. We show that the N-terminal and C-terminal GFP-tagged EMP fusions are localized to Golgi and post-Golgi compartments, respectively, in plant, yeast, and mammalian cells. In vitro pull-down assay further proves the interaction of the KXD/E motif with COPI coatomer in yeast. COPI loss of function in yeast and plants causes mislocalization of EMPs or KXD/E motif–containing proteins to vacuole. Ultrastructural studies further show that RNA interference (RNAi) knockdown of coatomer expression in transgenic Arabidopsis plants causes severe morphological changes in the Golgi. Taken together, our results demonstrate that N-terminal GFP fusions reflect the real localization of EMPs, and KXD/E is a conserved motif in COPI interaction and Golgi retention in eukaryotes.  相似文献   

12.

Aims

Endothelial microparticles (EMP) are complex vesicular structures shed from activated or apoptotic endothelial cells. As endurance exercise affects the endothelium, the objective of the study was to examine levels of EMP and angiogenic growth factors following different endurance exercise protocols.

Methods

12 subjects performed 3 different endurance exercise protocols: 1. High volume training (HVT; 130 min at 55% peak power output (PPO); 2. 4×4 min at 95% PPO; 3. 4×30 sec all-out. EMPs were quantified using flow cytometry after staining platelet-poor-plasma. Events positive for Annexin-V and CD31, and negative for CD42b, were classified as EMPs. Vascular endothelial growth factor (VEGF), migratory inhibiting factor (MIF) and hepatocyte growth factor (HGF) were determined by ELISA technique. For all these measurements venous blood samples were taken pre, 0′, 30′, 60′ and 180′ after each intervention. Furthermore, in vitro experiments were performed to explore the effect of collected sera on target endothelial functions and MP uptake capacities.

Results

VEGF and HGF significantly increased after HIT interventions. All three interventions caused a significant decrease in EMP levels post exercise compared to pre values. The sera taken after exercise increased the uptake of EMP in target endothelial cells compared to sera taken under resting conditions, which was shown to be phosphatidylserin-dependent. Increased EMP uptake was associated with an improved protection of target cells against apoptosis. Sera taken prior and after exercise promoted target endothelial cell migration, which was abrogated after inhibition of VEGF.

Conclusion

Physical exercise leads to decreased EMP levels and promotes a phosphatidylserin-dependent uptake of EMP into target endothelial cells, which is associated with a protection of target cells against apoptosis.  相似文献   

13.
Gao C  Yu CK  Qu S  San MW  Li KY  Lo SW  Jiang L 《The Plant cell》2012,24(5):2086-2104
Endomembrane proteins (EMPs), belonging to the evolutionarily conserved transmembrane nine superfamily in yeast and mammalian cells, are characterized by the presence of a large lumenal N terminus, nine transmembrane domains, and a short cytoplasmic tail. The Arabidopsis thaliana genome contains 12 EMP members (EMP1 to EMP12), but little is known about their protein subcellular localization and function. Here, we studied the subcellular localization and targeting mechanism of EMP12 in Arabidopsis and demonstrated that (1) both endogenous EMP12 (detected by EMP12 antibodies) and green fluorescent protein (GFP)-EMP12 fusion localized to the Golgi apparatus in transgenic Arabidopsis plants; (2) GFP fusion at the C terminus of EMP12 caused mislocalization of EMP12-GFP to reach post-Golgi compartments and vacuoles for degradation in Arabidopsis cells; (3) the EMP12 cytoplasmic tail contained dual sorting signals (i.e., an endoplasmic reticulum export motif and a Golgi retention signal that interacted with COPII and COPI subunits, respectively); and (4) the Golgi retention motif of EMP12 retained several post-Golgi membrane proteins within the Golgi apparatus in gain-of-function analysis. These sorting signals are highly conserved in all plant EMP isoforms and, thus, likely represent a general mechanism for EMP targeting in plant cells.  相似文献   

14.
Circulatory hypoxia‐related diseases (CHRDs), including acute coronary syndromes, stroke and organ transplantation, attract increased attention due to high morbidity and mortality. Mounting evidence shows that hypoxia‐induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of CHRD‐related vascular endothelial injury. Interestingly, hypoxia, even hypoxia‐induced oxidative stress, coagulation and inflammation can all induce release of endothelial microparticles (EMPs). EMPs, shed from activated or apoptotic endothelial cells (ECs), reflect the degree of EC damage, and elevated EMP levels are found in several CHRDs. Furthermore, EMPs, which play an important role in cell‐to‐cell communication and function, have confirmed pro‐coagulant, proinflammatory, angiogenic and other functions, affecting pathological processes. These findings suggest that EMPs and CHRDs have a very close relationship, and EMPs may help to identify CHRD phenotypes and stratify the severity of disease, to improve risk stratification for developing CHRDs, to better define prophylactic strategies and to ameliorate prognostic characterization of patients with CHRDs. This review summarizes the known and potential roles of EMPs in the diagnosis, staging, treatment and clinical prognosis of CHRDs.  相似文献   

15.
Microparticles(MPs) are the major carriers of circulating microRNAs. Our previous study has shown that microRNA (miR)-19b in endothelial cell-derived microparticles (EMPs) is significantly increased in patients with unstable angina. However, little is known about the relationship between miR-19b in EMPs and the progression of atherosclerosis. The aim of the present study was to define the role and potential mechanism of miR-19b incorporated in EMPs in the development of atherosclerosis.Western-diet-fed apoE?/? mice were injected with phosphate buffered solution(PBS), EMP carrying microRNA control(EMPcontrol) or miR-19b mimic (EMPmiR19b) intravenously. Systemic treatment with EMPmiR19b significantly accelerated carotid artery atherosclerosis progression by increasing lipid, macrophages and smooth muscle cells and decreasing collagen content in atherosclerotic plaque. Fluorescence-labelled EMPmiR19b injection proved that miR-19b could be transported into perivascular adipose tissue(PVAT) by EMPs. EMPmiR19b treatment also promoted inflammatory cytokines secretion and macrophages infiltration in PVAT. In further experiment, apoE?/? mice were divided into 3 groups: EMPcontrolPVAT(+), EMPmiR19bPVAT(+) and EMPmiR19bPVAT(-), based on removing or keeping pericarotid adipose tissue and injected with EMPcontrol or EMPmiR19b. Loss of PVAT attenuated EMPmiR19b-mediated effects on increasing carotid atherosclerosis formation and inflammatory cytokines level in plaque. EMPmiR19b inhibited suppressor of cytokine signaling 3 (SOCS3) expression in PVAT. Our findings demonstrate that miR-19b in EMPs exaggerates atherosclerosis progression by augmenting PVAT-specific inflammation proceeded by downregulating SOCS3 expression.  相似文献   

16.
Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE−/− mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced.  相似文献   

17.
Few studies report on the in vivo requirement for hematopoietic niche factors in the mammalian embryo. Here, we comprehensively analyze the requirement for Kit ligand (Kitl) in the yolk sac and aorta–gonad–mesonephros (AGM) niche. In‐depth analysis of loss‐of‐function and transgenic reporter mouse models show that Kitl‐deficient embryos harbor decreased numbers of yolk sac erythro‐myeloid progenitor (EMP) cells, resulting from a proliferation defect following their initial emergence. This EMP defect causes a dramatic decrease in fetal liver erythroid cells prior to the onset of hematopoietic stem cell (HSC)‐derived erythropoiesis, and a reduction in tissue‐resident macrophages. Pre‐HSCs in the AGM require Kitl for survival and maturation, but not proliferation. Although Kitl is expressed widely in all embryonic hematopoietic niches, conditional deletion in endothelial cells recapitulates germline loss‐of‐function phenotypes in AGM and yolk sac, with phenotypic HSCs but not EMPs remaining dependent on endothelial Kitl upon migration to the fetal liver. In conclusion, our data establish Kitl as a critical regulator in the in vivoAGM and yolk sac endothelial niche.  相似文献   

18.
AIMS: The aim of this work was to develop a rapid diagnostic test for Pasteurella multocida. METHODS AND RESULTS: A polymerase chain reaction (PCR) assay using primers derived from the 23S rRNA gene sequence of Past. multocida was developed. The PCR assay correctly identified all 144 isolates of Past. multocida tested, including type strains of the three subspecies as well as the reference strains for the Heddleston and Carter typing schemes. Of 20 closely related bacteria from the family Pasteurellaceae tested, only the type strains of Past. canis biovar 2 and Past. avium biovar 2 were positive. These two bacteria, formerly known as Bisgaard Taxon 13, are the closest phylogenetic relatives of Past. multocida based on 16S ribosomal rRNA. All phylogenetically unrelated avian and porcine organisms tested were negative. CONCLUSION: This PCR enables rapid identification of Past. multocida colonies from avian or porcine origin. SIGNIFICANCE AND IMPACT OF THE STUDY: Veterinary diagnostic laboratories can use this PCR to rapidly and accurately diagnose fowl cholera and porcine pasteurellosis.  相似文献   

19.
Objectives:  The aim of this study was to investigate biological effects and gene expression profiles of enamel matrix proteins (EMPs), on human bone marrow stromal cells (HBMSCs), for preliminary understanding of mechanisms involved in promoting periodontal regeneration by EMPs.
Materials and methods:  EMPs were extracted using the acetic acid method, and HBMSCs from human bone marrow aspirates were cultured. Attachment levels, level of cells morphologically attenuated, cell proliferation, alkaline phosphatase (ALP) activity and staining of HBMSCs were measured in the absence and in the presence of EMPs. Microarray analysis was performed to detect gene profiles of HBMSCs by treatment with 200 μg/ml EMPs, for 5 days. Four differential genes were selected for validation of the microarray data using real-time PCR.
Results:  EMPs promoted proliferation and ALP activity of HBMSCs in a time- and dose-dependent manner, and at a concentration of 200 μg/ml significantly enhanced proliferation and ALP expression. However, there were no significant changes between EMP-treated groups and the control group in cell attachment and cell process attenuation levels. Twenty-seven genes were differentially expressed by HBMSCs in the presence of EMPs. Expressions of 18 genes were upregulated and expressions of nine genes were found to be downregulated. There was good consistency between data obtained from the validation group and microarray results.
Conclusions:  EMPs promoted cell proliferation and differentiation and gene expression profiles of HBMSCs were affected. This may help elucidation of mechanisms involved in promoting regeneration of periodontal tissues by EMPs.  相似文献   

20.
Therapeutic angiogenesis remains unsuccessful in coronary artery disease. It is known that plasma endothelium-derived microparticles (EMPs) are increased in coronary artery disease and that hypercholesterolemia can inhibit angiogenesis. We evaluated the relationship between EMPs and hypercholesterolemia in the impairment of angiogenesis. EMPs isolated from human umbilical vein endothelial cells were injected into low-density lipoprotein receptor-null (LDLr(-/-)) mice fed a Western diet for 2 wk and C57BL6 mice for 6 h or were directly added to the tissue culture media. Hearts isolated from mice were sectioned and cultured, and endothelial tube formation was measured. The expression and phosphorylation of endothelial NO synthase (eNOS) and the generation of NO in the hearts were determined. Angiogenesis was inhibited by pathophysiological concentrations of EMPs but not physiological concentrations of EMPs in hearts from C57BL6 mice. However, angiogenesis was inhibited by EMPs at both physiological and pathophysiological concentrations of EMPs in hearts from hypercholesterolemic LDLr(-/-) mice. Pathophysiological concentrations of EMPs decreased eNOS phosphorylation at Ser(1177) and NO generation without altering eNOS expression in hearts from C57BL6 mice. Both physiological and pathophysiological concentrations of EMPs decreased not only eNOS phosphorylation at Ser(1177) and NO generation, but eNOS expression in hypercholesterolemic hearts from LDLr(-/-) mice. These data demonstrated that pathophysiological concentrations of EMPs could inhibit angiogenesis in hearts by decreasing eNOS activity. EMPs and hypercholesterolemia mutually enhanced their inhibitory effect of angiogenesis by inducing eNOS dysfunction. Our findings suggest a novel mechanism by which hypercholesterolemia impairs angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号