首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of bovine serum albumin (BSA) on the formation of J-aggregates of meso-tetra(4-sulfonatophenyl)porphine (TPPS4) in aqueous acid solution (pH 1.3) has been investigated by means of absorption and fluorescence spectroscopy. TPPS4 concentration was kept constant at 2 microM while BSA concentration was varied to get TPPS4 : BSA molar ratios from 1 : 0.005 to 1 : 20. In the presence of protein at all used concentrations the intensity of J-aggregates absorption band was higher than that in the pure solution. Spectral changes indicated that the dynamic equilibrium of the aggregated TPPS4 species was highly dependent on the molar ratio between TPPS4 and BSA. Small relative concentrations of BSA (TPPS4 : BSA, 1 : 0.005-1 : 0.1) had a stimulating effect on formation of J-aggregates. Several fractions of J-aggregates located in protein and aqueous moieties were detected in mixed solutions at intermediate BSA concentrations (TPPS4 : BSA, 1 : 0.5-1 : 8), when the absorbance intensity of the J-aggregates was the highest. At the highest used BSA concentrations (TPPS4 : BSA, 1 : 10-1 : 20) the spectral properties of the remaining J-aggregates were similar to those typical for pure porphyrin solution. Additionally, the split of the Soret band into two with peaks at 440 nm and 423 nm was followed by the simultaneous appearance of Q bands and reflected the formation of TPPS4-BSA complexes including both protonated and deprotonated TPPS4 forms.  相似文献   

2.
The interaction of monosulfonate tetraphenyl porphine (TPPS(1)) with immobilized acetylcholinesterase (AChE) yields a characteristic absorbance peak at 446 nm. Addition of acetylcholine iodide or the competitive inhibitor tetracaine to the immobilized TPPS(1)-AChE complex results in a decrease in absorbance intensity at 446 nm due to displacement of the porphyrin from the active site. The loss in intensity at 446 nm is linearly dependent on tetracaine concentration at levels below 100 ppb. Tetracaine concentrations as low as 300 ppt have been detected.  相似文献   

3.
Competitive inhibitors of acetylcholinesterase (AChE) are detected using an evanescent wave technique to monitor changes in the absorbance spectrum of an AChE-monosulfonate tetraphenyl porphyrin (TPPS(1)) complex immobilized on the surface of a glass slide. In this technique, porphyrin is displaced from the AChE active site by the inhibitor. The loss in absorbance intensity of the characteristic absorbance peak for the AChE-TPPS(1) complex at 446 nm is linearly dependent on the log of the inhibitor concentration. This technique yields detection limits at 3:1 S/N of 37 ppt for eserine, 50 ppt for galanthamine, 100 ppt for scopolamine, 250 ppt for tetracaine, 45 ppt for diazinon, and 83 ppb for Triton X-100. When stored under vacuum, the enzymatic lifetime of the immobilized AChE surface is greater than 73 days while the responsive lifetime of the immobilized AChE-TPPS(1) surface is currently 49 days.  相似文献   

4.
The nuclear transport pathways of the photosensitizers meso-tetra(4-sulfonatophenyl)porphyrin (TPPS4) and meso-tetra(4-N-methylpyridyl)porphyrin (TMPyP) during photosensitization and oxidative stress were characterized in CT-26 murine colon carcinoma cells using fluorescence microscopy and multi-pixel spectral imaging. Prior to irradiation, TPPS4 and TMPyP localized mainly in the lysosomes, while irradiation or H2O2 treatment induced a relocalization into the nucleus and nucleoli. Flow cytometry analysis of isolated nuclei from the treated cells showed an increase in nuclear fluorescence accompanying the relocalization. Isolation and separation of the nuclear proteins according to molecular weight was performed using a sephadex G-100 column. The protein fractions exhibiting high fluorescence were separated by high performance liquid chromatography. Five major classes of proteins with a retention time of 1, 7, 11, 12 and 15 min were obtained. Each photosensitizer was associated with a distinct class of proteins. While TPPS4 fluorescence was detected in the protein fraction with a retention time of 11 min, TMPyP fluorescence was associated with a protein fraction having a retention time of 7 min. We conclude that although oxidative stress triggers entry into the nucleus of both TPPS4 and TMPyP, each sensitizer uses a distinct transport mechanism based on its chemical properties.  相似文献   

5.
Monosulfonate tetraphenyl porphyrin (TPPS(1)) forms a 1:1 complex with electric eel acetylcholinesterase (AChE) inducing a loss in TPPS(1) absorbance at 402 nm and the appearance of a new absorbance centered at 442 nm. In the presence of AChE, the fluorescence of TPPS(1) at 652 nm is slightly narrowed, with the maximal 652 nm fluorescence shifted from 407 to 412 nm excitation wavelength. The fluorescence peak of TPPS(1) at 712 nm shifts to 716 nm in the presence of AChE. TPPS(1) is a competitive inhibitor of AChE. The addition of acetylcholine iodide (AChI) or the competitive inhibitor tetracaine to the preformed AChE-TPPS(1) complex results in a loss of the 442 nm absorbance band as the porphyrin is displaced from AChE. The absorbance peak does not decrease in the presence of procaine, a non-competitive inhibitor.  相似文献   

6.
We have developed a sensor surface for optical detection of organophosphates based on reversible inhibition of organophosphorus hydrolase (OPH) by copper complexed meso-tri(4-sulfonato phenyl) mono(4-carboxy phenyl) porphyrin (CuC1TPP). OPH immobilized onto glass microscope slides retains catalytic activity for more than 232 days. CuC1TPP is a reversible, competitive inhibitor of OPH, binding at the active site of the immobilized enzyme. The absorbance spectrum of the porphyrin-enzyme complex is measured via planar waveguide evanescent wave absorbance spectroscopy using a blue LED as a light source and an Ocean Optics USB2000 as the spectrophotometer. The characteristics of the absorbance spectrum of CuC1TPP are specific and different when the porphyrin is bound to the enzyme or is bound non-specifically to the surface of the slide. Addition of a substrate of OPH such as one of the organophosphates paraoxon, coumaphos, diazinon, or malathion displaces the porphyrin from the enzyme resulting in reduced absorbance intensity at 412 nm. Absorbance changes at 412 nm show log-linear dependence on substrate concentration. Paraoxon concentrations between 7 parts per trillion (ppt) and 14 parts per million (ppm) were investigated and a 3:1 S/N detection limit of 7 ppt was determined. Concentrations of 700 ppt to 40 ppm were investigated for diazinon, malathion, and coumaphos with detection limits of 800 ppt, 1 part per billion, and 250 ppt, respectively. This optical technique does not require the addition of reagents or solutions other than the sample and absorbance spectra can be collected in less than 6 s.  相似文献   

7.
The aggregation of meso-tetra(4-sulfonatophenyl)porphyrin (H(2)TPPS(4-)) in phosphate solutions was investigated as a function of pH, concentration, time, ionic strength, and solution preparation (either from dilution of a freshly prepared 2 mM stock or by direct preparation of μM solution concentrations) using a combination of complementary analytical techniques. UV-vis and fluorescence spectroscopy indicated the formation of staggered, side-by-side (J-type) assemblies. Their size and self-associative behavior were determined using analytical ultracentrifugation and small-angle X-ray scattering. Our results indicate that in neutral and basic solutions of H(2)TPPS(4-), porphyrin dimers and trimers are formed at micromolar concentrations and in the absence of NaCl to screen any ionic interactions. At these low concentrations and pH 4, the protonated H(4)TPPS(2-) species self-assembles, leading to the formation of particularly stable aggregates bearing 25 ± 3 macrocycles. At higher concentrations, these structures further organize or reorganize into tubular, rod-like shapes of various lengths, which were imaged by cryogenic and freeze-fracture transmission electron microscopy. Micron-scale fibrillar aggregates were obtained even at micromolar concentrations at pH 4 when prepared from dilution of a 2 mM stock solution, upon addition of NaCl, or both.  相似文献   

8.
Metal-substituted protoporphyrin IXs (Co(III)PPIX (1), Cr(III)PPIX (2), Mn(III)PPIX (3), Cu(II)PPIX (4), Mg(II)PPIX (5), Zn(II)PPIX (6) and Sn(IV)PPIX (7)), phthalocyanine tetrasulfonates (PcS (8) and Ni(II)PcS (9)), and anionic and cationic porphyrins (meso-tetra(4-sulfonatophenyl)porphine (TPPS4, 10), meso-tetra(4-carboxyphenyl)porphine (TPPC4, 11), tetrakis(4-N-trimethylaminophenyl)porphine (TMAP, 12) and meso-tetra(N-methyl-4-pyridyl)porphine (TMPyP4, 13)) have been used as probes to compare two different assays for the inhibition of beta-hematin formation. The results demonstrate that the efficacy of these probes in either the beta-hematin inhibition assay (9, 7, 6, 5>4>11, 3>10, 8>2, 1; 12 and 13 did not inhibit.) or the bionucleating template assay (8>1>11>9, 2>4>3>7>10>5>6; 12 and 13 did not inhibit.) differ significantly. These differences are examined in light of possible interactions between the inhibitor probes, heme, beta-hematin and the bionucleating template. This detailed analysis highlights the fact that while dominant modes of interactions may be occasionally identified, the precise mechanism of inhibition undoubtedly consists of the interplay between multiple interactions.  相似文献   

9.
The interaction of meso-tetra(4-N-hydroxyethylpyridyl)porphyrin, meso-tetra(3-N-hydroxyethylpyridyl)porphyrin, and their zinc complexes with bovine serum albumin (BSA) was studied by electronic spectroscopy, CD, and equilibrium dialysis at pH 7.2. The titration of the porphyrins with BSA was accompanied by a decrease in light absorption and a bathochromic shift of the Soret band, as well as by the appearance of an isobestic point. The porphyrin interaction with BSA also led to the induction of positive CD spectra in the visible region, which is explained by the porphyrin sorption on the protein globule. The equilibrium dialysis helped in determining the stoichiometry of binding and the binding constants of the porphyrins under study with BSA using Scatchard plots. This interaction is nonspecific and reversible. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 2; see also http://www.maik.ru.  相似文献   

10.
The suitability of a liposomal form of hydrophobic nonsulfonated meso-tetraphenyl porphyrin (TPP) for the photodynamic therapy of tumors was investigated. TPP was solubilized in small unilamellar lipid vesicles prepared by extrusion on a LIPOSOFAST apparatus. These samples were studied by laser-excited time resolved luminescence and triplet-triplet absorption spectroscopy. In this lipid environment TPP was still an efficient singlet oxygen producer, as indicated by the characteristic singlet oxygen phosphorescence at 1270 nm in D2O, when excited with a 28 ns laser pulse at 412 nm. Moreover, unlike with sulfonated TPP (TPPS4), liposomal TPP showed the reduced decay rates of TPP triplet-states with the increasing time of pre-illumination by a Xenon lamp. This was shown in an indirect way, based upon the appearance of a second component of the luminescence decay at 1270 nm in D2O; and by direct TPP triplet state monitoring, detecting triplet-triplet absorption at 440 nm in H2O. The deactivation of higher triplet states was delayed upon pre-illumination. This reflects an irreversible interaction of singlet oxygen with membrane lipids, thus demonstrating the potential of the liposomal form of TPP to efficiently disintegrate tumor cell membranes and to be a suitable preparation for the photodynamic therapy.  相似文献   

11.
Vibrio vulnificus strain L-180, a clinical isolate, can obtain iron from a synthetic heme, iron-tetra(4-sulfonatophenyl)porphyrin (Fe-TPPS), as well as from a natural heme, protoheme. This assimilation of iron bound to TPPS was demonstrated to be a common property of V. vulnificus by testing a total of 27 strains isolated from both clinical and environmental sources. Strain L-180 could also utilize Fe-TCPP, but not Fe-TMPyP, as a sole iron source. TPPS or its complex with a metal ion reduced bacterial multiplication in the broth containing a minimum dose of Fe-TPPS. When inoculated into human serum supplemented with Fe-TCPP, L-180 could grow only in the presence of a protease from the same bacterium. In both TPPS and TCPP, each side chain of a porphyrin ring has a negative charge. Therefore, this negative charge may be important for interaction with an outer membrane receptor involving in a heme-assimilating system of V. vulnificus.  相似文献   

12.
Traces of biological contaminants that cannot be detected, but are expected to be present, in ultra-pure water suffice to select the emerging chiral sign in the spontaneous mirror symmetry breaking that takes place during the formation of the J-aggregates of the amphiphilic diprotonated tetrakis-(4-sulfonatophenyl)porphyrin (H(4)TPPS(4)(2-)). This is demonstrated by competition experiments with a chiral cationic surfactant. The sensitivity of the detection depends on the hierarchical control of the H(4)TPPS(4)(2-) self-aggregation.  相似文献   

13.
Noncovalent interactions of poly(L-lysine) (PL), oligopeptides L-lysyl-L-alanyl-L-alanine and (L-lysyl-L-alanyl-L-alanine)(2) with meso-tetrakis(4-sulfonatophenyl)porphine (TPPS), and poly(L-glutamic acid) (PLGA) with meso-tetrakis(1-methyl-4-pyridyl)porphine tetra-p-tosylate (TMPyP) in aqueous solutions have been studied using combination of spectroscopic methods: Vibrational circular dichroism (VCD) spectroscopy in the mid-infrared region provides a direct information on conformational changes of the polypeptides and oligopeptides caused by interactions with porphyrins; ultraviolet-visible absorption, fluorescence, and electronic circular dichroism (ECD) reveal the aggregation characterization of the porphyrin part of the complexes. Interactions of TPPS with tripeptide, hexapeptide, and PL containing about ten amino acid residues in the molecular chain are accompanied with the changes of VCD patterns in the amide I' region. In these cases, the conformation of the oligopeptide part of complexes is obviously influenced by interactions with TPPS and partial changes of random coil structure are observed in VCD. When PL was composed of the hundreds of lysine residues, just a weak intensity decrease was detected and the shape of VCD spectrum typical for the random coil structure was preserved. As follows from the uv-vis absorption and fluorescence spectra, porphyrin molecules are attached to peptides by electrostatic interaction as a monomer or dimer and interaction between porphyrin and peptide depends on the polypeptide chain length. For the PLGA-TMPyP system with PLGA containing from tens to hundreds of glutamic acid residues in the chain, the VCD spectra were unchanged when TMPyP was presented in the aqueous solution of PLGA and random coil conformation of PLGA-TMPyP aggregates was preserved.  相似文献   

14.
Meso-tetra(4-carboxyphenyl)porphine (CTPP(4)) binds reversibly to immobilized glucose oxidase (GOD), resulting in an absorbance peak for the CTPP(4)-GOD complex at 427nm. The absorbance intensity of the 427nm peak is reduced upon exposure to glucose, which causes the dissociation of CTPP(4) from GOD. The change in absorbance at 427nm shows linear dependence on glucose concentration from 20 to 200mg/dL (1.1-11.1mM).  相似文献   

15.
A number of porphyrin derivatives have been found to inhibit yeast glyoxalase I (EC 4.4.1.5) at 25 degrees C, including haemin, protoporphyrin IX, coproporphyrin III, haematoporphyrin, deuteroporphyrin as well as meso-(tetrasubstituted) porphines. Bilirubin and chlorophyllin were also inhibitory, but not cobalamin, adipic, pimelic or suberic acids. Whilst the Ki value for linear competitive inhibition by meso-tetra(4-methylpyridyl)porphine was pH-dependent, analogous Ki values for meso-tetra(4-carboxyphenyl)- and meso-tetra(4-sulphonatophenyl)porphines followed the Henderson-Hasselbalch equation with pKapp values of 7.10 and 6.50, respectively. Protoporphyrin showed similar behaviour (pKapp 7.06) with a deviation at lower pH. The haemin pH profile for Ki showed a maximum at approx. pH 6.5. The redox reaction between haemin and glutathione did not interfere in the inhibition studies. The Ki value for S-(p-bromobenzyl)glutathione was pH-independent. A detailed analysis of porphyrin binding modes was undertaken.  相似文献   

16.
The interaction of several metallo-porphyrins with the galactose-specific lectin from Trichosanthes cucumeirna (TCSL) has been investigated. Difference absorption spectroscopy revealed that significant changes occur in the Soret band region of the porphyrins upon binding to TCSL and these changes have been monitored to obtain association constants (Ka) and stoichiometry of binding (n). The dimeric lectin binds two porphyrin molecules and the presence of the specific saccharide lactose did not affect porphyrin binding significantly, indicating that the sugar and the porphyrin bind at different sites. The Ka values obtained for the binding of different porphyrins with TCSL at 25 degrees C were in the range of 2 x 10(3)-5 x 10(5) m(-1). Association constants for meso-tetra(4-sulphonatophenyl)porphyrinato copper(II) (CuTPPS), a porphyrin bearing four negative charges and meso-tetra(4-methylpyridinium)porphyrinato copper(II) (CuTMPyP), a porphyrin with four positive charges, were determined at several temperatures; from the temperature dependence of the association constants, the thermodynamic parameters change in enthalpy (DeltaH degrees ) and change in entropy (DeltaS degrees ) associated with the binding process were estimated. The thermodynamic data indicate that porphyrin binding to TCSL is driven largely by a favourable entropic contribution; the enthalpic contribution is very small, suggesting that the binding process is governed primarily by hydrophobic forces. Stopped-flow spectroscopic measurements show that binding of CuTMPyP to TCSL takes place by a single-step process and at 20 degrees C, the association and dissociation rate constants were 1.89 x 10(4) m(-1).s(-1) and 0.29 s(-1), respectively.  相似文献   

17.
Absorption spectra and induced CD have been measured on aqueous solutions of water-soluble porphyrins with α-helical poly(L -glutamic acid) or α-helical poly (L -lysine) at different mixing ratios. For the former, porphyrin is porphine-meso-tetra (4-N-methylpyridinium) (TMpyP), and for the latter, it is porphine-meso-tetra (4-benzenesulfonate) (TPPS) or porphine-meso-tetra(4-benzoate) (TPPC). All the solutions of porphyrin-polypeptide systems show hypochromism in the Soret band and induced CD in the Soret region. The CD is characterized by a positive band at a shorter wavelength and a stronger negative band at a longer wavelength. The hypochromicity and the magnitude of molar ellipticities are much larger for the TPPS– and TPPC–poly (L -lysine) systems than for the TMpyP–poly (L -glutamic acid) system. Porphyrin ions bind to the α-helix electrostatically, and the two components of the Soret transition of porphyrin are subject to dissymmetric perturbation. TMpyP ions bind to the α-helix at isolated sites, while TPPS ions and TPPC ions are in pairs on the α-helix, that is, two ions bind consecutively and dissymmetrically. In the TMpyP–poly (L -glutamic acid) system a single CD band is associated with each of the two components of the Soret transition, and these are of opposite sign. In the TPPS– and TPPC–poly (L -lysine) systems, a pair of positive and negative CD bands is associated with each of the two components, thus giving apparently a single pair of CD bands with a shoulder, owing to partial overlapping.  相似文献   

18.
The aggregate morphology of meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS(4)) in aqueous solution is investigated by using small angle x-ray scattering (SAXS) technique. Measurements were performed at pH 4.0 and 9.0 to monitor the pH influence on the structural parameters of the aggregates. Radii of gyration were obtained from distance distribution functions p(r) analysis. The experimental data of TPPS(4) at pH 4.0 showed well-defined oscillations characteristic of large aggregates in contrast to the SAXS curve of 5 mM TPPS(4) at pH 9.0, where both a significant decrease in the intensity and the disappearance of the oscillation peaks suggest the dissociation of the aggregate. A 340-A long "hollow" cylinder with shell thickness of 20 A, compatible to the porphyrin molecule dimension, represents well the scattering curve of the aggregates at pH 4.0. According to the fitting parameters, 26 porphyrin molecules self-associate into a ringlike configuration in the plane of the cylinder cross-section. The total number of porphyrin molecules in the whole aggregate was also estimated as approximately 3000. The model compatible to SAXS data of a hollow cylinder with J-aggregation in the cross-section and H-aggregation (columnar stacking) between the cylinder layers is consistent with optical absorption spectroscopic data both in the literature and obtained in this work.  相似文献   

19.
The mechanism of transport of the tumor localizing agent, meso-tetra(p-sulfophenyl)porphine (TPPS4), was investigated in Vero and HEp-2 cells in vitro. Vero cells proved to be basically impermeable to the porphyrin, but a slow transport was observed. The uptake was linear with time and appeared to be carrier mediated, as it was strongly inhibited by cyanide or low temperature and demonstrated saturation kinetics. Transport in HEp-2 cells was more rapid and non-linear, reaching a plateau after about 2 h. Analysis of this uptake over a 20-fold range of porphyrin concentration revealed it to be biphasic. A low affinity, high capacity component appeared to be unsaturable and was unaffected by low temperature or metabolic inhibitors. This system is probably one of a passive diffusion. The high affinity, low capacity phase is probably carrier mediated. The tumor cells appear to be "leaky" to the porphyrin, with respect to the Vero cells. This may explain part of the localizing ability of TPPS4.  相似文献   

20.
Zhou H  Groves JT 《Biophysical chemistry》2003,105(2-3):639-648
Synthetic hemoprotein model compounds are of great interest due to the vital roles and complexities of hemoproteins. This study reports a novel, self-assembled hemoprotein model, hemodextrin. The synthesis and characterization of py-PPCD (2(A)-monopyridylmethyl-perPEGylated-beta-cyclodextrin) (2) is described. The molecular design is based on a pegylated cyclodextrin scaffold that bears both a heme-binding pocket and an axial ligand that binds an iron porphyrin. The binding constant for Fe(III)TPPS [iron(III) meso-tetra(4-sulphonatophenyl)porphyrin] by py-PPCD (2) was determined to be 2 x 10(6) M(-1) at pH 6.0 by observing characteristic changes in the UV-Vis spectrum of the porphyrin. The pyridyl nitrogen of py-PPCD (2) was shown to ligate to the iron center by observing signal changes in the Fe(II)-porphyrin 1H-NMR spectrum. This hemodextrin ensemble was shown to bind dioxygen reversibly and to form a stable ferryl species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号