首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blooms of the toxin‐producing diatom Pseudo‐nitzschia commonly occur in Monterey Bay, California, resulting in sea lion mortality events. The links between strandings of California sea lions suffering from domoic acid (DA) toxicity, toxic cell numbers, and their associated DA concentration in Monterey Bay and in sea lion feces were examined from 2004 to 2007. While Pseudo‐nitzschia toxic cells and DA concentrations were detectable in the water column most of the time, they were often at low levels. A total of 82 California sea lions were found stranded in the Bay between 2004 and 2007 with acute or chronic signs associated with DA poisoning. The highest number with detectable DA in feces occurred in April 2007 and corresponded with the presence of a highly toxic bloom in the Bay. Higher DA levels occurred in feces from sea lions stranding with acute toxicosis and lower concentrations in feces of sea lions exhibiting signs of chronic DA poisoning or not exhibiting any neurologic signs. Results indicated that sea lions are likely exposed to varying levels of DA through their prey throughout the year, often at sublethal doses that may contribute to a continued increase in the development of chronic neurologic sequelae.  相似文献   

2.
The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.  相似文献   

3.
The long-term consequences of chronic manganese (Mn) exposure on neurological health is a topic of great concern to occupationally-exposed workers and in populations exposed to moderate levels of Mn. We have performed a comprehensive assessment of Mn effects on dopamine (DA) synapse markers using positron emission tomography (PET) in the non-human primate brain. Young male Cynomolgus macaques were given weekly i.v. injections of 3.3-5.0 mg Mn/kg (n = 4), 5.0-6.7 mg Mn/kg (n = 5), or 8.3-10.0 mg Mn/kg (n = 3) for 7-59 weeks and received PET studies of various DA synapse markers before (baseline) and at one or two time points during the course of Mn exposure. We report that amphetamine-induced DA release measured by PET is markedly impaired in the striatum of Mn-exposed animals. The effect of Mn on DA release was present in the absence of changes in markers of dopamine terminal integrity determined in post-mortem brain tissue from the same animals. These findings provide compelling evidence that the effects of Mn on DA synapses in the striatum are mediated by inhibition of DA neurotransmission and are responsible for the motor deficits documented in these animals.  相似文献   

4.
Chronic cocaine administration produces significant increases in cocaine-induced locomotor activity and stereotypy. In vivo microdialysis procedures were used to monitor extracellular dopamine (DA) and cocaine concentrations in the nucleus accumbens (N ACC) and cocaine concentrations in plasma of animals that received chronic or acute cocaine treatments. Following a cocaine challenge injection, concentrations of both cocaine and DA increased to significantly higher levels over time in animals that had received daily cocaine injections for 10 or 30 days than in control animals that received daily injections of saline. Concentrations of cocaine and DA in the N ACC reached maximum levels in the first 30 min following a challenge injection of cocaine. The maximum cocaine concentrations of 10- and 30-day chronic animals were, respectively, 186% and 156%, whereas the maximum DA concentrations were 264% and 216% above the maximum values observed in acute control animals. The results indicate that reverse tolerance effects observed following chronic cocaine administration may in part be accounted for by increased cocaine concentrations. Furthermore, chronic cocaine administration (over a 10- or 30-day period) increased the concentration of cocaine detected in plasma above control levels following a challenge injection. The increase in brain concentrations of cocaine in chronic animals is apparently due to increased concentrations of cocaine in plasma. A physiological change occurs in the periphery as a result of chronic cocaine administration that increases cocaine concentrations in plasma, increases extracellular cocaine levels in the brain, and increases the extracellular concentration of DA in the N ACC.  相似文献   

5.
Our goal in this study was to compare magnetic resonance images and volumes of brain structures obtained alive versus postmortem of California sea lions Zalophus californianus exhibiting clinical signs of domoic acid (DA) toxicosis and those exhibiting normal behavior. Proton density-(PD) and T2-weighted images of postmortem-intact brains, up to 48 h after death, provided similar quality to images acquired from live sea lions. Volumes of gray matter (GM) and white matter (WM) of the cerebral hemispheres were similar to volumes calculated from images acquired when the sea lions were alive. However, cerebrospinal fluid (CSF) volumes decreased due to leakage. Hippocampal volumes from postmortem-intact images were useful for diagnosing unilateral and bilateral atrophy, consequences of DA toxicosis. These volumes were similar to the volumes in the live sea lion studies, up to 48 h postmortem. Imaging formalin-fixed brains provided some information on brain structure; however, images of the hippocampus and surrounding structures were of poorer quality compared to the images acquired alive and postmortem-intact. Despite these issues, volumes of cerebral GM and WM, as well as the hippocampus, were similar to volumes calculated from images of live sea lions and sufficient to diagnose hippocampal atrophy. Thus, postmortem MRI scanning (either intact or formalin-fixed) with volumetric analysis can be used to investigate the acute, chronic and possible developmental effects of DA on the brain of California sea lions.  相似文献   

6.
Haptoglobin (Hp) is an acute-phase protein synthesized in the liver that circulates at elevated concentrations in response to tissue damage caused by inflammation, infection, and trauma. As part of a larger study, sera Hp concentrations were measured in temporarily captive (n = 21) and free-range (n = 38) western stock juvenile Steller sea lions (Eumetopias jubatus) sampled from 2003 to 2006. Baseline Hp concentration at time of capture was 133.3 +/- 17.4 mg/dl. Temporarily captive animals exhibited a 3.2-fold increase in Hp concentrations during the first 4 wk of captivity, followed by a return to entry levels by week 5. Haptoglobin levels were not influenced by age, season, or parasite load. There was a significant positive correlation between Hp concentrations and white blood cell count (P < 0.001) and globulin levels (P < 0.001) and a negative correlation to red blood cell count and hematocrit (P < 0.001 for both). There was no correlation between Hp levels and platelet count (P = 0.095) or hemoglobin (P = 0.457). Routine blubber biopsies collected under gas anesthesia did not produce a measurable Hp response. One animal with a large abscess had an Hp spike of 1,006.0 mg/dl that returned to entry levels after treatment. In conclusion, serum Hp levels correlate to the stable clinical health status observed during captivity, with moderate Hp response during capture and initial acclimation to captivity and acute response to inflammation and infection.  相似文献   

7.
Abstract— The present study was designed to examine the effects of chronic cocaine administration on the extracellular response of serotonin (5-HT) and dopamine (DA) to a peripheral cocaine injection using in vivo brain microdialysis in awake rats. Two different dual probe preparations were used: One group of animals had guide cannulae aimed at the ventral tegmental area (VTA) and nucleus accumbens (N ACC) and a second group of animals had guide cannulae aimed at the dorsal raphe nucleus (DRN) and N ACC. Rats from both groups were given daily injections of either cocaine (20 mg/kg i.p.) or saline (0.9%; 0.05 ml/kg i.p.) for 10 consecutive days. On day 11, baseline dialysate levels of DA, 5-HT, dihydroxyphenylacetic acid, and 5-hydroxyindoleacetic acid were obtained from either the N ACC and VTA or the N ACC and DRN, followed by a 10 mg/kg i.p. cocaine injection and an additional 150 min of dialysate sampling. The percent baseline increases of both 5-HT and DA were significantly higher in the N ACC, VTA, and DRN of animals that received daily injections of cocaine compared with saline controls ( p < 0.05, in each region). Maximum dialysate 5-HT concentrations after cocaine challenge were significantly higher in the N ACC and VTA ( p < 0.05) and DRN ( p < 0.01) of chronically treated animals compared with saline controls. Maximum dialysate DA concentrations were significantly higher in the N ACC and DRN ( p < 0.05) of chronically treated animals compared with saline controls. There was no significant difference between acute and chronic animals in the maximum dialysate DA concentration from the VTA after cocaine challenge. 5-HT was significantly more sensitized in the 5-HT cell body region (DRN) than the N ACC terminal field ( p < 0.05), whereas DA was significantly more sensitized in the N ACC terminal field than the DA cell bodies of the VTA ( p < 0.05).  相似文献   

8.
The goal of study was to evaluate DNA damage in rat's renal, liver and brain cells after in vivo exposure to radiofrequency/microwave (Rf/Mw) radiation of cellular phone frequencies range. To determine DNA damage, a single cell gel electrophoresis/comet assay was used. Wistar rats (male, 12 week old, approximate body weight 350 g) (N = 9) were exposed to the carrier frequency of 915 MHz with Global System Mobile signal modulation (GSM), power density of 2.4 W/m2, whole body average specific absorption rate SAR of 0.6 W/kg. The animals were irradiated for one hour/day, seven days/week during two weeks period. The exposure set-up was Gigahertz Transversal Electromagnetic Mode Cell (GTEM--cell). Sham irradiated controls (N = 9) were apart of the study. The body temperature was measured before and after exposure. There were no differences in temperature in between control and treated animals. Comet assay parameters such as the tail length and tail intensity were evaluated. In comparison with tail length in controls (13.5 +/- 0.7 microm), the tail was slightly elongated in brain cells of irradiated animals (14.0 +/- 0.3 microm). The tail length obtained for liver (14.5 +/- 0.3 microm) and kidney (13.9 +/- 0.5 microm) homogenates notably differs in comparison with matched sham controls (13.6 +/- 0.3 microm) and (12.9 +/- 0.9 microm). Differences in tail intensity between control and exposed animals were not significant. The results of this study suggest that, under the experimental conditions applied, repeated 915 MHz irradiation could be a cause of DNA breaks in renal and liver cells, but not affect the cell genome at the higher extent compared to the basal damage.  相似文献   

9.
The possibility that chronic hyperprolactinaemia results in loss of the ability of hypothalamic dopamine activity to inhibit prolactin secretion was studied in rats. Two degrees of hyperprolactinaemia (moderate and gross) were induced in the animals following the chronic administration of two different doses of oestradiol valerate. In rats with high chronic serum prolactin concentrations (approximately 20 times normal) there was a profound increase in prolactin secretion following inhibition of brain dopamine (DA) synthesis by 3-iodo-L-tyrosine, indicating intact and highly active hypothalamic DA-inhibitory control of prolactin release. However, the degree of hypothalamic inhibition of prolactin release relative to normal controls was significantly reduced. In animals with grossly elevated chronic serum prolactin concentrations (approximately 100 times normal) a prolactin response to DA synthesis inhibition was absent despite a highly significant reduction in hypothalamic DA concentrations induced by 3-iodo-L-tyrosine. These observations show that chronic and gross hyperprolactinaemia in the rat results in loss of hypothalamic DA inhibitory control of prolactin secretion. The use of 3-iodo-L-tyrosine to block brain DA synthesis in these studies has provided significant new data relating to prolactin control in hyperprolactinaemic states and indicates that this compound could be a useful clinical tool in the study of human hyperprolactinaemia.  相似文献   

10.
In recent years, numerous studies have reported a weak association between 60 Hz magnetic-field exposure and the incidence of certain cancers. To date, no mechanism to explain these findings has been identified. The objective of the current study was to investigate whether acute magnetic-field exposure could elicit DNA damage within brain cells from both whole brain and cerebellar homogenates from adult rats, adult mice and immature mice. Rodents were exposed to a 60 Hz magnetic field (0, 0.1, 1 or 2 mT) for 2 h. Then, at 0, 2 and 4 h after exposure, animals were killed humanely, their brains were rapidly removed and homogenized, and cells were cast into agarose gels for processing by the alkaline comet assay. Four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. For each species, a significant increase in DNA damage was detected by each of the four parameters in the positive control (2 Gy X rays) relative to the concurrent nonirradiated negative and sham controls. However, none of the four parameters detected a significant increase in DNA damage in brain cell homogenates from any magnetic-field exposure (0- 2 mT) at any time after exposure. The dose-response and time-course data from the multiple animal groups tested in this study provide no evidence of magnetic-field-induced DNA damage.  相似文献   

11.
We previously reported that injection of bacterial lipopolysaccharide (LPS) into gravid female rats at embryonic day 10.5 resulted in a birth of offspring with fewer than normal dopamine (DA) neurons along with innate immunity dysfunction and many characteristics seen in Parkinson's disease (PD) patients. The LPS-exposed animals were also more susceptible to secondary toxin exposure as indicated by an accelerated DA neuron loss. Glutathione (GSH) is an important antioxidant in the brain. A disturbance in glutathione homeostasis has been proposed for the pathogenesis of PD. In this study, animals prenatally exposed to LPS were studied along with an acute intranigral LPS injection model for the status of glutathione homeostasis, lipid peroxidation, and related enzyme activities. Both prenatal LPS exposure and acute LPS injection produced a significant GSH reduction and increase in oxidized GSH (GSSG) and lipid peroxide (LPO) production. Activity of gamma-glutamylcysteine synthetase (GCS), the rate-limiting enzyme in de novo GSH synthesis, was up-regulated in acute supranigral LPS model but was reduced in the prenatal LPS model. The GCS light subunit protein expression was also down-regulated in prenatal LPS model. GSH redox recycling enzyme activities (glutathione peroxidase, GPx and glutathione reducdase, GR) and glutathione-S-transferase (GST), gamma-glutamyl transpeptidase (gamma-GT) activities were all increased in prenatal LPS model. Prenatal LPS exposure and aging synergized in GSH level and GSH-related enzyme activities except for those (GR, GST, and gamma-GT) with significant regional variations. Additionally, prenatal LPS exposure produced a reduction of DA neuron count in the substantia nigra (SN). These results suggest that prenatal LPS exposure may cause glutathione homeostasis disturbance in offspring brain and render DA neurons susceptible to the secondary neurotoxin insult.  相似文献   

12.
Rats exposed to acute unavoidable stress develop a deficit in escaping avoidable aversive stimuli that lasts as long as unavoidable stress exposure is repeated. A 3-week exposure to unavoidable stress also reduces dopamine (DA) output in the nucleus accumbens shell (NAcS). This study showed that a 7-day exposure to unavoidable stress induced in rats an escape deficit and a decrease in extraneuronal DA basal concentration in the NAcS. Moreover, animals had reduced DA and serotonin (5-HT) accumulation after cocaine administration in the medial pre-frontal cortex (mPFC) and NAcS, compared with control animals. After a 3-week exposure to unavoidable stress, escape deficit and reduced DA output in the NAcS were still significant at day 14 after the last stress administration. In the mPFC we observed: (i) a short-term reduction in DA basal levels that was back to control values at day 14; (ii) a decrease in DA accumulation at day 3 followed by a significant increase beyond control values at day 14; (iii) a significant reduction in 5-HT extraneuronal basal levels at day 3, but not at day 14. Finally, a significant decrease in 5-HT accumulation following cocaine administration was present in the NAcS and mPFC at day 3, but not at day 14. In conclusion, a long-term stress exposure induced long-lasting behavioral sequelae associated with reproducible neurochemical modifications.  相似文献   

13.
Leptospirosis has been reported in California sea lions (Zalophus californianus) since 1970; however, the source of infection and mode of transmission remain unknown. To elucidate these features, demographic and environmental risk factors for leptospirosis were evaluated. California sea lion stranding records from northern California for 2004 were used to identify cases of leptospirosis (n = 316) and controls (n = 143). Demographic characteristics (age class, sex) and environmental factors, representing surrogates for exposure to dogs, cattle, rainfall, and freshwater sources, were compared between cases and controls with the use of a geographic information system (GIS) and logistic regression. Multivariate analyses revealed that summer and autumn seasons, juvenile age class, male sex, high dog-park density, and close proximity to dog parks were significantly associated with leptospirosis in sea lions, whereas county farmland cattle density, rainfall levels 30 days prior to stranding, human density, and proximity to freshwater sources were not associated. Thus, dogs and dog parks, or factors associated with them, might be further investigated to assess their relationship to leptospirosis in sea lions.  相似文献   

14.
We have reported two cases of chronic manganese poisoning. Case 1 followed exposure to manganese fumes in cutting and burning manganese steel. Case 2 resulted from exposure to dusts of manganese dioxide, an ingredient used in glazing of ceramics. There were initial difficulties in establishing the correct diagnosis. Prominent clinical features were severe and persistent chronic depressive psychosis (Case 1), transient acute brain syndrome (Case 2) and the presence of various extrapyramidal symptoms in both cases.Manganese intoxication has not previously been reported as occurring in California. With increasing use of the metal, the disease should be considered in the differential diagnosis of neurologic and psychiatric disease.Our observations were made in the period 1964 through 1968. Recently the prognosis of victims of manganese poisoning has been improved dramatically by the introduction of levodopa as a therapeutic agent.  相似文献   

15.
Oxygen radicals in capsaicin-induced bronchoconstriction   总被引:1,自引:0,他引:1  
The role of oxygen radicals in capsaicin-induced bronchoconstriction was investigated using scavengers of the radicals. A total of 48 guinea pigs weighing 293 +/- 7 g were employed in this study, which consisted of two phases. In phase 1, 35 anesthetized paralyzed animals were divided into five groups: group 1A, control (n = 6); group 1B, chronic dimethylthiourea (DMTU, n = 12); group 1C, acute DMTU (n = 6); group 1D, superoxide dismutase (n = 4); and group 1E, catalase (n = 7). All animals were injected with capsaicin (16 micrograms/kg iv), and changes in respiratory compliance and maximal expiratory flow rate were used as indicators of bronchoconstriction. The capsaicin injection caused a marked airway spasm that was significantly ameliorated by chronic DMTU pretreatment, but no amelioration was noted with the other treatments. An additional study for group 1C was performed using a double dose of DMTU. Again no amelioration was found. In phase 2, 13 animals were divided into two groups: group 2A, substance P (SP, n = 7) and group 2B, chronic DMTU + SP (n = 6). There was no significant difference in SP-induced bronchoconstriction between animals in these two groups. These data suggest that capsaicin-induced airway constriction is modulated by oxygen radicals which may augment mainly on the biosynthesis and/or axonal transport of tachykinins.  相似文献   

16.
Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5–19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol exposure, but raise concerns about the predictive value of this metric at an individual-subject level.  相似文献   

17.
To be successful, marine predators must alter their foraging behavior in response to changes in their environment. To understand the impact and severity of environmental change on a population it is necessary to first describe typical foraging patterns and identify the underlying variability that exists in foraging behavior. Therefore, we characterized the at‐sea behavior of adult female California sea lions (n = 32) over three years (2003, 2004, and 2005) using satellite transmitters and time‐depth recorders and examined how foraging behavior varied among years. In all years, sea lions traveled on average 84.7 ± 11.1 km from the rookery during foraging trips that were 3.2 ± 0.3 d. Sea lions spent 42.7% ± 1.9% of their time at sea diving and displayed short (2.2 ± 0.2 min), shallow dives (58.5 ± 8.5 m). Among individuals, there was significant variation in both dive behavior and movement patterns, which was found in all years. Among years, differences were found in trip durations, distances traveled, and some dive variables (e.g., dive duration and bottom time) as sea lions faced moderate variability in their foraging habitat (increased sea‐surface temperatures, decreased upwelling, and potential decreased prey abundance). The flexibility we found in the foraging behavior of California sea lions may be a mechanism to cope with environmental variability among years and could be linked to the continuing growth of sea lion populations.  相似文献   

18.
Abstract: Although activation of brain catecholaminergic systems has been implicated in the cerebrovascular and metabolic changes during subarachnoid hemorrhage, cerebral ischemia, cortical ablation, and cortical freeze lesions, little is known of the response of regional brain catecholamine systems to traumatic brain injury. The present study was designed to characterize the temporal changes in concentrations of norepinephrine (NE), dopamine (DA), and epinephrine (E) in discrete brain regions following experimental fluid-percussion traumatic brain injury in rats. Anesthetized rats were subjected to fluid-percussion brain injury of moderate severity (2.2–2.3 atm) and killed at 1 h, 6 h, 24 h, 1 week, and 2 weeks postinjury (n = 6 per timepoint). Control animals (surgery and anesthesia without injury) were killed at identical timepoints (n = 6 per timepoint). Tissue concentrations of NE, DA, and E were evaluated using HPLC. Following brain injury, an acute decrease was observed in DA concentrations in the injured cortex ( p < 0.05) at 1 h postinjury, which persisted up to 2 weeks postinjury. Striatal concentrations of DA were significantly increased ( p < 0.05) only at 6 h postinjury. Hypothalamic concentrations of DA and NE increased significantly beginning at 1 h postinjury ( p < 0.05 and p < 0.05, respectively) and persisted up to 24 h for DA ( p < 0.05) and 1 week ( p < 0.05) for NE. These data suggest that acute alterations occur in regional concentrations of brain catecholamines following brain trauma, which may persist for prolonged periods postinjury.  相似文献   

19.
Abstract: Previous studies have shown that fetal ethanol exposure (FEE) may have long-term effects on the function of catecholaminergic neurons in different regions of the CNS. The present study is the first to examine the effects of FEE on regional brain catecholamine responses following acute stress (a single 60-min restraint stress), repeated stress (single periods of restraint stress on 1, 5, or 10 consecutive days), and recovery from stress (recovery for up to 60 min in the home cage following a single 60-min period of restraint stress). Both male and female offspring from FEE, pair-fed (PF), and ad libitum-fed control (C) groups were tested in adulthood to determine catecholamine content in the cortex, hypothalamus, and hippocampus. A single period of restraint reduced cortical norepinephrine (NE) content in FEE and PF animals compared with that in the cortex of C animals, and reduced hypothalamic NE content in FEE female offspring below that found in animals in all other groups. In contrast, hippo-campal NE content was higher in FEE than in C animals following a single period of restraint; PF animals had intermediate levels of hippocampus NE and did not differ significantly from either FEE or C animals. Following repeated periods of restraint, cortical NE content was lower in FEE than in C animals; PF animals once again had intermediate levels of NE. Importantly, basal (non stressed) NE content did not differ among groups in any brain area examined. In addition, several significant changes in regional brain catecholaminergic responses to acute stress were observed in animals across all treatment groups. Females generally had significantly lower cortical NE levels than males following both single and multiple exposures to restraint. In addition, the cortical NE content decreased below non-stressed levels in all groups following a single restraint period, and remained significantly below basal levels during the 60-min recovery period, whereas the hypothalamic NE content was significantly decreased immediately following the restraint period but showed some recovery toward basal levels by 60 min. There were no significant changes over time in hippocampal NE level or in cortical or hypothalamic dopamine (DA) content following a single restraint stress. Following multiple periods of restraint, hippocampal NE levels were significantly increased and hypothalamic DA levels were significantly decreased in all animals compared with basal levels. These data suggest that the brain noradrenergic response to acute stress is particularly sensitive to the effects of FEE, and that with regard to the hypothalamus, male and female offspring were differentially affected. Furthermore, nutritional effects appear to play some role in mediating the changes in regional brain catecholamine content that are observed. In addition, stress effects on brain catecholamine content across all treatment groups were found to be both region and sex specific.  相似文献   

20.
The effect of chronic versus acute administration of lithium on receptor-linked phosphoinositide metabolism was assessed by comparing the change in the cerebral cortex levels of myo-inositol 1-phosphate in response to pilocarpine, physostigmine, or pargyline in rats. Rats were exposed to either 29 consecutive days of LiCl injections or 27 and 39 days of dietary Li2CO3, followed by injected LiCl at the end of the diet to insure a constant level of exposure to the drug. In each experiment, an acute group received a single injection of LiCl 20-24 h before they were killed. One hour before being killed, some of the animals acutely exposed to lithium and some of the animals chronically exposed to lithium each received pilocarpine, physostigmine, or pargyline. At the conclusion of the experiment, the rats were killed and brain levels of myo-inositol 1-phosphate and lithium were determined. A differential production of myo-inositol 1-phosphate in groups receiving acute versus chronic lithium would provide evidence of a change in receptor-linked phosphoinositide metabolism due to the chronic administration of lithium. Brain levels of myo-inositol 1-phosphate are dependent on tissue lithium concentrations; consequently, significant differences observed in brain lithium levels between the groups receiving acute versus chronic lithium prevented a meaningful assessment of the effect of the mode of lithium administration on the production of myo-inositol 1-phosphate in those groups. Stepwise multiple regression analysis and the measured brain lithium levels were used to assess the response of myo-inositol 1-phosphate levels to stimulation in animals receiving acute or chronic lithium treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号