首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biomass and production of lake charr, Salvelinus namaycush, was studied in Lake 223, a lake that was intentionally acidified to pH 5.0 and then allowed to gradually recover, and in Lake 224, a natural lake of neutral pH. During the first 6 years pH decreased, biomass of Lake 223 lake charr increased, primarily due to high recruitment during the initial years of acidification. Biomass then decreased the final year of acidification. Biomass of Lake 223 lake charr remained low during the subsequent 10 years of pH recovery and 5 additional years after lake pH had returned to neutral pH. Production of lake charr decreased during acidification and increased during pH recovery. Production was still at least an order of magnitude lower at the end of this study than 22 years earlier before lake pH was lowered. The continued low production was caused primarily by low abundance during the years of pH recovery and following years. Production per individual fish in Lake 223 decreased during acidification and quickly increased during pH recovery to values similar to that prior to acidification. Production, biomass, and production per individual varied little between years for lake charr in Lake 224.  相似文献   

2.
Four central Florida lakes were monitored for 3 years to determine the effects of macrophyte reduction and elimination by grass carp and herbicide on phytoplankton populations. Clear Lake, in which grass carp were stocked after a year of baseline studies, had all macrophytes eliminated within 14 months. The density of phytoplankton increased significantly from an initial 24-month mean of 165 000 cells 1−1 to a mean level of 787 900 cells 1−1 in the third year. In Little Lake Fairview, stocked with grass carp in both the first and third years of study, vegetation was not eliminated until the 34th month. Phytoplankton density increased significantly from a 24-month mean of 64 200 cells 1−1 to a mean of 370 200 cells 1−1 in the third year. Lake Orienta, stocked with grass carp in the first year, had all vegetation eliminated within 6 months. Phytoplankton abundance did not change significantly over the course of the study (mean: 2 700 000 cells 1−1). Lake Mann was treated with herbicide alone after an initial year of baseline data collection. Submerged vegetation was reduced in the second year but increased to near initial biomass levels in Year 3, with Nitella sp. replacing Hydrilla verticillata (L.f.) Royle as the dominant macrophyte. No significant yearly changes were noted in density of phytoplankton in this lake. Lake Orienta was the only lake in which the number of phytoplankton species collected differed significantly between years. Cyanophytes (notably species of Anacystis, Microcystis and Anabaena) and the diatom, Fragilaria sp., predominated in all lakes as macrophytes were removed. Most changes observed were in the direction of apparent increased trophic state. Major shifts in the phytoplankton assemblage (e.g., Shannon diversity indices and abundance) coincided with periods of maximal fluctuation in vegetation. Reversals of these tendencies were observed during prolonged stable periods of both high and low macrophute biomass.  相似文献   

3.
R. Aerts 《Oecologia》1989,78(1):115-120
Summary Leaf turnover and aboveground productivity in relation to nutrient availability were studied in the evergreen shrubs Erica tetralix and Calluna vulgaris. In monospecific stands of these species four levels of nutrient (NPK) availability were created during three growing seasons. Percentage survival and life expectancy of Erica leaves decreased with increasing nutrient availability. For Calluna there was no effect. Winter mortality of Erica leaves was smaller than growing season mortality. These was no difference for Calluna. The timing of leaf mortality of both species was not affected by nutrient treatment. At the end of the experimental period current year leaf biomass, total biomass and current year second year and third year biomass of both species showed a significant increase with increasing nutrient availability. The relative increase was greater for Calluna, except for second and third year biomass. Stem production and stem mortality of both species increased with increasing nutrient availability. The increased stem mortality resulted also for Calluna in an increased leaf turnover (per unit ground area) with increasing nutrient availability. Nutrient cycling in ecosystems dominated by these species will increase with increasing nutrient availability, because of increased leaf and stem turnover and productivity. This phenotypic effect is similar to the effect of the shift in dominance between different species which occurs along natural gradients of nutrient availability.  相似文献   

4.
The planktonic ciliate populations of 20 Florida lakes ranging from oligotrophic to hypereutrophic were examined monthly for one year. Oligotrophic lakes displayed abundance peaks during fall mixis and biomass peaks in late winter and fall. Mesotrophic systems exhibited a spring-fall bimodality in ciliate abundance with a biomass maxima occurring during fall. Eutrophic/hypereutrophic lakes had pronounced abundance and biomass maxima during summer, with the large ciliates Plagiopyla nasuta and Paramecium trichium often contributing heavily to the midsummer biomass peak. Members of the Oligotrichida numerically dominated abundance and biomass peaks in oligotrophic lakes while the Scuticociliatida dominated the communities of higher trophic states. Total ciliate abundance and biomass were strongly correlated with chlorophyll a concentrations as were various ciliate taxonomic groups. The relationship between ciliate seasonal distribution in these subtropical lakes with lake thermal regimes and trophic state is discussed.  相似文献   

5.
The fish stock of a deep temperate, mesotrophic lake was sampled at different depths using a fixed‐frame fry trawl, during two nights in mid‐September 2009. Additionally, horizontal and vertical hydroacoustics were used simultaneously to evaluate fish abundance and biomass estimates obtained by the trawl. Roach Rutilus rutilus and smelt Osmerus eperlanus were the dominant species of young‐of‐the‐year (YOY) fish in the trawl catches from the surface layers (0–9 m). Bleak Alburnus alburnus dominated the catch of older fish in the upper part of the surface profile (0–6 m). Around the thermocline (9–13 m) smelt dominated the catches of both the YOY and older fish. Beneath the thermocline (13–36 m) vendace Coregonus albula dominated the catch of YOY fish, and smelt was the only species of older fish in the trawl catches. Species composition, abundance and biomass of the YOY and older fish were heterogeneous throughout the depth profiles of the lake, but only abundance differed significantly between the layers. The hydroacoustics gave relatively similar estimates of abundance and biomass to those obtained by the trawl in all the depths sampled. Our results indicate that there is a clear separation of small fish of different species along the vertical profile of a deep temperate lake during the night, and an unequal vertical distribution of fish abundance and biomass. The similarity of the trawl and hydroacoustics estimates of abundances and biomass indicated that the trawl sampling did not cause important avoidance reactions of small fish during the night in this deep temperate lake (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Biomanipulation improved water transparency of Lake Zwemlust (The Netherlands) drastically. Before biomanipulation no submerged vegetation was present in the lake, but in summer 1987, directly after the measure, submerged macrophyte stands developed following a clear-water phase caused by high zooplankton grazing in spring. During the summers of 1988 and 1989 Elodea nuttallii was the most dominant species and reached a high biomass, but in the summers of 1990 and 1991 Ceratophyllum demersum became dominant. The total macrophyte biomass decreased in 1990 and 1991. In 1992 and 1993 C. demersum and E. nuttallii were nearly absent and Potamogeton berchtholdii became the dominant species, declining to very low abundance during late summer. Successively algal blooms appeared in autumn of those years reaching chlorophyll-a concentrations between 60–130 µg l–1. However, in experimental cages placed on the lake bottom, serving as exclosures for larger fish and birds, E. nuttallii still reached a high abundance during 1992 and 1993. Herbivory by coots (Fulica atra) in autumn/winter, and by rudd (Scardinius erythrophthalmus) in summer, most probably caused the decrease in total abundance of macrophytes and the shift in species composition.  相似文献   

7.
1. In this study, we examine how a 7‐year period of expanding submerged stonewort (Chara spp.) vegetation during a shift from turbid to clear water in a shallow lake influenced individual growth and population size structure of perch (Perca fluviatilis). We expected that a shift from phytoplankton to macrophyte dominance and clear water would improve feeding conditions for perch during a critical benthivorous ontogenetic stage, and enhance the recruitment of piscivorous perch. 2. Growth analysis based on opercula showed that growth during the second year of life was significantly higher in years with abundant vegetation than in years with turbid water and sparse vegetation. Growth was not affected during the first, third and fourth year of life. Stable isotope analyses on opercula from 2‐year‐old perch showed that the increase in growth coincided with a change in carbon source in the diet. Stable nitrogen ratio did not change, indicating that the increased growth was not an effect of any change in trophic position. 3. Following the expansion of submerged vegetation, perch size range and abundance of piscivorous perch increased in central, unvegetated areas of the lake. In stands of stoneworts, however, mainly benthivorous perch were caught, and size range did not change with time. 4. Our findings provide empirical support for the notion that establishment of submerged vegetation may lead to increased recruitment of piscivorous perch, because of improved competitive conditions for perch during the benthivorous stage. This is likely to constitute a benthic‐pelagic feedback coupling, in which submerged vegetation and clear water promote the recruitment of piscivorous perch, which, in turn, may increase water clarity through top‐down effects in the pelagic.  相似文献   

8.
Question: We studied the development and persistence of the effects of nutrient pulses on biomass production and species composition in a fen meadow. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Single pulse fertilization with N and P in a factorial design on an undrained central and a drained margin site in a species‐rich fen meadow (Cirsio dissecti‐Molinietum). Biomass production and species composition were monitored during four years. Results: At the central site, N addition boosted biomass production, but only during one year. The species composition was not changed. P fertilization increased the biomass production and changed the species composition from a vegetation dominated by Carex panicea to a grassland community with abundant Holcus lanatus, but not before the second year. At the margin site, P fertilization changed the species composition in a similar way, but biomass production was not increased. N fertilization had no effect. At both sites the P induced shift in species composition persisted for four years although the P effect declined during the experiment. Conclusions: The biomass responses show that N was limiting in the central site. Another nutrient, besides N and P (probably K) must have been limiting in the marginal site. The fast decline of the N effect on biomass is ascribed to increased denitrification and biomass removal. The delay in the P effect on biomass and species composition and the persistence of the P effect on species composition are ascribed to fast immobilisation and subsequent slow release of fertilizer P in the peat soil. Recurrence of the P pulses is expected to cause permanent changes in species composition.  相似文献   

9.
The impact of atmospheric pollution, including nitrogen deposition, on bracken fern herbivores has never been studied. Bracken fern is globally distributed and has a high potential to accumulate nitrogen in plant tissue. We examined the response of bracken fern and its herbivores to N fertilization at a high and low pollution site in forests downwind of Los Angeles, California. Foliage from the high pollution site had higher total N and nitrate than the low pollution site. Bracken fern biomass, foliar N and herbivore abundance were all affected by fertilization treatments. Biomass and herbivore responses were greatest during a year of high precipitation. N additions at the low pollution site were primarily associated with decreased fern biomass, and with transient impacts on herbivore abundance. N additions significantly affected bracken fern and its herbivores at the high pollution site where foliar N and nitrate decreased in response to N addition treatments, while biomass and herbivore abundance increased. High atmospheric deposition and fertilization were both associated with increased herbivore richness. Herbivore abundance was most impacted by fertilization during the early expansion of fern fronds. The most abundant chewing herbivore, a sawfly, was positively associated with plant nitrogen at the low pollution site, but negatively associated with plant nitrogen at the high pollution site, where concentrations of both total N and nitrate were high. While overall growth and herbivore impacts in this xeric location were limited, the variable response we observed associated with rainfall, may indicate impacts could be larger in more mesic environments.  相似文献   

10.
1. The response of major food‐web constituents to combinations of nutrient addition and zooplanktivorous fish abundance was tested during two subsequent years in the shallow charophyte‐dominated lake Naardermeer in the Netherlands, using in situ enclosures. 2. Treatment effects differed sharply between study years. In 1998, when the summer temperature was low (17–21 °C), high algal biomass only developed at high nutrient levels in the presence of fish, but with no major effect on Chara biomass. In 1999, when the summer temperature was relatively high (20–25 °C), algal blooms occurred at high nutrient levels regardless of fish abundance, and were associated with a drastic decline in Chara biomass. 3. Differences between years in temperature and initial zooplankton composition and biomass were likely to contribute to the varying relative importance of top‐down and bottom‐up effects in these enclosure experiments. 4. The results suggest that when nutrient loads are increased towards levels where the macrophyte‐dominated state is being destabilised, a ‘switch’ is more likely to occur in warm summers.  相似文献   

11.
Gill RA  Boie JA  Bishop JG  Larsen L  Apple JL  Evans RD 《Oecologia》2006,148(2):312-324
In the two decades following the 1980 eruption of Mount St. Helens in Washington State, the N2-fixing colonizer Lupinus lepidus is associated with striking heterogeneity in plant community and soil development. We report on differences in nutrient availability and plant tissue chemistry between older, dense patches (core) of L. lepidus and more recently established low density patches (edge). In addition, we conducted a factorial nitrogen and phosphorus fertilization experiment in core patches to examine the degree of N and P limitation in early primary succession. We found that there were no significant differences in N or P availability between core and edge L. lepidus patches during the dry summer months, although nutrient availability is very low across the landscape. In the high density patches we found lower tissue N content and higher fiber content in L. lepidus tissue than in the younger edge patches. The addition of nutrients substantially altered plant community composition, with N addition causing an increase in other forb biomass and a corresponding competition-induced decline in L. lepidus biomass. The majority of the positive biomass response came from Hypochaeris radicata. In the second year of the fertilization experiment, the addition of N significantly increased total community biomass while L. lepidus biomass declined by more than 50%. The response of every species other than L. lepidus to N additions suggests that N may be the macronutrient most limiting plant production on Mount St. Helens but that the gains in productivity were somewhat offset by a decline of the dominant species. By the third year of the experiment, L. lepidus began to increase in abundance with P addition. This result suggests co-limitation of the community by N and P.  相似文献   

12.
To determine the influence of a multiple inversion aeration system upon the limnology of a small sinkhole lake, we monitored physical-chemical and biological parameters for 15 months prior to starting aeration and for 24 months thereafter. Aeration eliminated thermal stratification and dissolved oxygen concentrations of bottom waters increased significantly. Secchi disk transparency increased during aeration while turbidity, pH, alkalinity, total nitrogen, hydrogen sulfide and iron concentrations decreased significantly. Primary production and mean chlorophyll a did not change significantly during aeration but total phytoplankton cell volume decreased 2-fold. This decrease was caused by a marked reduction in blue-green algae which appears to be attributable to rapid mixing of the lake and to decreases in the pH. Cell volumes of green algae remained constant but numbers of taxa increased 70%. Densities of crustacean zooplankton were reduced markedly by aeration while densities of rotifers increased significantly during the first year but then returned to preaeration levels during the second year. Large-bodied cladocerans were replaced by small-bodied forms during aeration, and copepod populations became dominated by nauplii (97%). Densities of benthic macroinvertebrates declined 2-fold during aeration due to to a marked reduction (10-fold) in the Chaoborus population which correlated strongly with decreases in crustacean zooplankton abundance. The total number of taxa collected on individual sample dates increased throughout the two year aeration period (from 12 to 25) and chironomids became the predominant group (70%).The multiple inversion aeration system successfully eliminated many of the undesirable features of eutrophication (e.g., oxygen depletion, blue-green algal blooms, low benthic diversity), but it did not change the trophic state. Aeration of hypereutrophic lakes for multiple years may be necessary to maintain desired conditions.  相似文献   

13.
To investigate how the composition of wetland communities changes over time in response to altered light regimes, experimental communities of five Carex and four grass species were subjected to artificial shading (continuous or seasonal) in a three-year field experiment. Shoot number and size was measured after six weeks, and shoot biomass was harvested five times during the experiment. Communities were initially dominated by three grass species in all treatments, but subsequently, the Carex species increased and reached dominance in the control plots, whereas grasses remained dominant in the shaded plots. Shading had no effect on the biomass of communities or of single species in the first year. In the second year, community biomass was still unaffected, but shading reduced the biomass of three Carex species and also reduced species diversity. In the third year, shading reduced community biomass and all Carex species, but not species diversity. The greater shade tolerance of the grasses could not be explained by differences in morphological plasticity: after six weeks of growth all species had increased shoot height in response to shade by 40–70%. Grasses were hardly more plastic than Carex species. We propose that the long-term success of the Carex species in full light was due to a high allocation of biomass to belowground parts, which may have reduced losses caused by repeated harvesting of shoots (a simulation of management in productive wet meadows). Shading probably caused the Carex plants to change their allocation pattern, and thus prevented their progressive increase.  相似文献   

14.
Changes in the ecological stoichiometry of C, N, and P in the pelagic zone are reported from a whole-lake manipulation of the food web of Lake 227, an experimentally eutrophied lake at the Experimental Lakes Area, Canada. Addition of northern pike eliminated populations of planktivorous minnows by the third year (1995) after pike introduction, and in the fourth year after pike addition (1996), a massive increase in the abundance of the large-bodied cladoceran Daphnia pulicaria occurred. Accompanying this increase in Daphnia abundance, zooplankton community N:P declined, seston concentration and C:P ratio decreased, and dissolved N and P pools increased. During peak abundance, zooplankton biomass comprised a significant proportion of total epilimnetic phosphorus (greater than 30%). During the period of increased Daphnia abundance, concentrations of dissolved inorganic nitrogen (TIN) increased more strongly than dissolved phosphorus (TDP), and thus TIN:TDP ratios were elevated. Sedimentation data indicated that increased grazing led to greatly reduced residence times of C, N, and especially P in the water column during 1996. Finally, previously dominant N-fixing cyanobacteria were absent during 1996. Our results show that strong effects of food-web structure can occur in eutrophic lakes and that stoichiometric mechanisms play a potentially important role in generating these effects.  相似文献   

15.
A protective limestone treatment was applied to an acid-sensitive lake in northeastern Minnesota as part of the Acid Precipitation Mitigation Program. This 6–year study evaluated the impact of that treatment on lakes in the upper Midwest that experience episodes of acid stress but have not lost basic species integrity and community structure. Several changes in the fish community can be directly or indirectly attributed to the addition of 4.6 tonnes of calcium carbonate early in the third year of the study. An almost 30–fold increase in the population of Pimephales promelas(fathead minnow) a year after liming, based on mark-recapture estimates from trap netting and snorkeling, was attributed to a pH increase and a three-fold increase in the calcium concentration of the epilimnion. After the initial increase, the abundance of fathead minnows declined in subsequent years, as did the elevated pH and calcium concentrations. The Salvelimis fontinalis(brook trout) population also increased in the lake following application of limestone, but this was due in part to closing the lake to fishing. An increase in survival of stocked brook trout to age 1+ and an increase in growth of older brook trout after liming were attributed to the increased forage that the fathead minnows provided. Fathead minnows may have also reduced predation pressure on young brook trout by older brook trout. This study demonstrated that liming of a slightly acidic lake did not adversely affect the integrity of the fish community, and in fact may have increased the abundance and biomass of the forage fish community and indirectly increased the survival, abundance, and growth of brook trout.  相似文献   

16.
Phytoplankton periodicity in a subtropical lake (Lake Kinneret,Israel)   总被引:5,自引:5,他引:0  
Lake kinneret is a subtropical monomictic lake characterized by a Pyrrhophyta-Chlorophyta assemblage, supplemented by Cyanophyta in some years. Concerning their abundance and seasonal occurrence, the phytoplanktonic algae belong to two groups: algae appearing in quantity at a definite annual period and algae present throughout the year. Four stages of algal succession occur in the lake. There is a marked periodicity in the phytoplankton composition with a high standing stock in winter-spring, due to the dinoflagellate water-bloom, and a low one during the summer months, related to the high stability of summer stratification. The annual succession at the species level has been an almost constant event in the lake for many years.The increase in nutrient concentrations in 1973 and 1974 increased the diversity and abundance of algae (except Peridinium) but did not lead to significant changes in algal succession. Conversely, the decrease of the zooplankton grazing pressure in 1975 and 1976 facilitated the development of algal maxima during summer-fall. They were caused by nanoplanktonic forms, and they developed without additional enrichment of nutrients. The algal abundance and diversity decreased. The years 1981 and 1982 were characterized by both an increase in phosphorus and a decrease in zooplankton. These conditions favored the concomitant abundance of many species and an increase of non-Pyrrhophyta biomass.  相似文献   

17.
Frequent fires reduce the abundance of woody plant species and favour herbaceous species. Plant species richness also tends to increase with decreasing vegetation biomass and cover due to reduced competition for light. We assessed the influence of variable fire histories and site biomass on the following diversity measures: woody and herbaceous species richness, overall species richness and evenness, and life form evenness (i.e. the relative abundance or dominance among six herbaceous and six woody plant life forms), across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands in south‐west Australia. Fire frequency was defined as the total number of fires over a 30‐year period. Overall species richness and species evenness did not vary with fire frequency or biomass. However, there were more herbaceous species (particularly rushes, geophytes and herbs) where there were fewer shrubs and low biomass, suggesting that more herbaceous species coexist where dominance by shrubs is low. Frequently burnt plots also had lower number and abundance of shrub species. Life form evenness was also higher at both high fire frequency and low biomass sites. These results suggest that the impact of fire frequency and biomass on vegetation composition is mediated by local interactions among different life forms rather than among individual species. Our results demonstrate that measuring the variation in the relative diversity of different woody and herbaceous life forms is crucial to understanding the compositional response of forests and other structurally complex vegetation communities to changes in disturbance regime such as increased fire frequency.  相似文献   

18.
This investigation was performed during a 5-yr period (1974–1978) in the oligotrophic Lake Langvatn, Central Norway. In 1975 and 1976 the lake was enriched with a commercial fertilizer, In 1975 increase in phytoplankton biomass was first recorded more than three weeks after the fertilization started, despite a near fivefold increase in the primary production after fertilizer application. The mean seasonal biomass increased from c. 3500 mg wet weight m−2 in 1974 to 4400 mg in 1975. In 1976 the biomass increased to near 9600 mg −2 and the seasonal primary production to 49.0 g C m−2 (22.2 g C in 1975), despite a reduction in the nutrients added. Chrysophytes constituted the largest share of the seasonal algal biomass in all years, but in fertilization periods cryptophytes dominated in 1975 and diatoms, chlorophytes and cryptophytes in 1976. The highest biomass turnover rate was recorded during a period of cryptophyte dominance. The different biomass and production development in the fertilization years may be explained by a change in the consumer level.  相似文献   

19.
不同有机肥源及其与化肥配施对稻田   总被引:1,自引:1,他引:0  
比较了不同施肥方式对江苏金坛(31°39′41.8″ N, 119°28′23.5″ E)稻麦轮作体系下稻季土壤线虫群落结构的影响.试验共设CK(不施肥)、F(100%化肥)、PF(猪粪堆肥配施50%化肥)、SF(秸秆全量还田配施100%化肥)、PSF(猪粪堆肥和秸秆全量还田配施50%化肥)和PMF(猪粪商品有机无机复合肥)6个处理,在秋季水稻收获后进行采样.连续两年的试验结果表明: 线虫种群在不同处理和年份间存在变化.配施有机肥能够增加线虫总数,降低食细菌线虫的丰度,显著提高杂食/捕食性线虫的丰度;各处理食真菌线虫的丰度无显著差异;单施化肥和猪粪商品有机无机复合肥对植食性线虫的抑制作用不明显.第二年配施有机肥的食细菌线虫丰度较第一年相对提高,植食性线虫(潜根属Hirschmanniella)丰度相对降低.从土壤线虫生态学指数来看,配施有机肥处理第二年的土壤线虫多样性均显著提高,丰富度指数有上升的趋势,而线虫通路比值几乎没有变化.第二年瓦斯乐斯卡指数较第一年相对提高,而植食性线虫成熟指数相对降低.施用有机肥能够提高土壤食微线虫的丰度,使土壤环境趋于健康.  相似文献   

20.
The number of individuals and species of zooplankton were sampled concurrently with Hydrilla biomass and water quality for one year in a small, eutrophic central Florida lake. Throughout the study, rotifer species and individuals dominated the zooplankton. The abundance of the zooplankton tended to remain high when Hydrilla biomass was at its seasonal low during late winter and early spring. When hydrilla growth increased in the late spring and summer months causing a decrease in total alkalinity, specific conductivity, water color, turbidity, orthophosphate and chlorophyll a concentrations; the abundance of the zooplankton declined. During this time, there was a shift from limnetic to littoral species, principally rotifers. Hydrilla growth did not affect the mean number of cladoceran or copepod species, but may have led to an increase in rotifer species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号