首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
X H Sun  D Baltimore 《Cell》1991,64(2):459-470
The kappa E2 sequence binding proteins, E12 and E47, are generated by alternative splicing of the E2A gene, giving closely related basic and helix-loop-helix structures crucial for DNA binding and dimerization. Measurements of dimerization constants and binding strengths to the optimal DNA sequence (the kappa E2 site or its near relatives) showed that E47 homodimers and MyoD heterodimers with E12 or E47 dimerized and bound avidly, but E12 homodimerized efficiently and bound to DNA poorly; MyoD homodimerized poorly and bound strongly. An inhibitory domain N-terminal to the basic region of E12 prevents E12 homodimers but not E12/MyoD heterodimers from binding to DNA. Thus, E47 binds to DNA both as a heterodimer with MyoD and as a homodimer, while E12 and MyoD bind to DNA efficiently only as heterodimers.  相似文献   

2.
C Murre  P S McCaw  D Baltimore 《Cell》1989,56(5):777-783
Two cDNAs were isolated whose dimerized products bind specifically to a DNA sequence, kappa E2, located in the immunoglobulin kappa chain enhancer. Both cDNAs share a region of extensive identity to the Drosophila daughterless gene and obvious similarity to a segment in three myc proteins, MyoD, and members of the Drosophila achaete-scute and twist gene family. The homologous regions have the potential to form two amphipathic helices separated by an intervening loop. Remarkable is the stringent conservation of hydrophobic residues present in both helices. We demonstrate that this new motif plays a crucial role in both dimerization and DNA binding.  相似文献   

3.
4.
Recent studies have identified a family of DNA-binding proteins that share a common DNA-binding and dimerization domain with the potential to form a helix-loop-helix (HLH) structure. Various HLH proteins can form heterodimers that bind to a common DNA sequence, termed the E2-box. We demonstrate here that E2-box-binding B-cell- and myocyte-specific nuclear factors contain subunits which are identical or closely related to ubiquitously expressed (E12/E47) HLH proteins. These biochemical function for E12/E47-like molecules in mammalian differentiation, similar to the genetically defined function of daughterless in Drosophila development.  相似文献   

5.
R L Davis  P F Cheng  A B Lassar  H Weintraub 《Cell》1990,60(5):733-746
A 60 amino acid domain of the myogenic determination gene MyoD is necessary and sufficient for sequence-specific DNA binding in vitro and myogenic conversion of transfected C3H10T1/2 cells. We show that a highly basic region, immediately upstream of the helix-loop-helix (HLH) oligomerization motif, is required for MyoD DNA binding in vitro. Replacing helix1, helix2, or the loop of MyoD with the analogous sequence of the Drosophila T4 achaete-scute protein (required for peripheral neurogenesis) has no substantial effect on DNA binding in vitro or muscle-specific gene activation in transfected C3H10T1/2 cells. However, replacing the basic region of MyoD with the analogous sequence of other HLH proteins (the immunoglobulin enhancer binding E12 protein or T4 achaete scute protein) allows DNA binding in vitro, yet abolishes muscle-specific gene activation. These findings suggest that a recognition code that determines muscle-specific gene activation lies within the MyoD basic region and that the capacity for specific DNA binding is insufficient to activate the muscle program.  相似文献   

6.
7.
8.
9.
10.
The protein Id: a negative regulator of helix-loop-helix DNA binding proteins   总被引:261,自引:0,他引:261  
We have isolated a cDNA clone encoding a novel helix-loop-helix (HLH) protein, Id. Id is missing the basic region adjacent to the HLH domain that is essential for specific DNA binding in another HLH protein, MyoD. An in vitro translation product of Id can associate specifically with at least three HLH proteins (MyoD, E12, and E47) and attenuate their ability to bind DNA as homodimeric or heterodimeric complexes. Id is expressed at varying levels in all cell lines tested. In three cell lines that can be induced to undergo terminal differentiation, Id RNA levels decrease upon induction. Transfection experiments indicate that over-expression of Id inhibits the trans-activation of the muscle creatine kinase enhancer by MyoD. Based on these findings, we propose that HLH proteins lacking a basic region may negatively regulate other HLH proteins through the formation of nonfunctional heterodimeric complexes.  相似文献   

11.
12.
13.
Although the ubiquitous helix-loop-helix (HLH) protein E12 does not homodimerize efficiently, the myogenic factor MyoD forms an avid DNA-binding heterodimer with E12 through the conserved HLH dimerization domain. However, the mechanism which ensures this selective dimerization is not understood at present. In our functional studies of various amino acid changes in the E12 HLH domain, we found that a single substitution in E12 helix 1 can abolish the effect of the E12 inhibitory domain and results in the efficient DNA binding of the E12 homodimer. Competition experiments revealed that the inhibitory domain, in fact, blocks the dimerization of E12 rather than DNA binding. MyoD contains two glutamic residues in helix 2 that are required for efficient dimerization with E12. More importantly, these residues were not essential for dimerization with E12 mutants in which the dimerization inhibitory domain had been relaxed, or for dimerization with E47 which does not contain the inhibitory domain owing to the use of an alternative exon. The positions of these glutamic residues are conserved among the four myogenic factors. Thus, members of the MyoD family of gene regulatory proteins can overcome the E12 dimerization inhibitory domain through a mechanism involving, in part, the negatively charged amino acid residues in helix 2. This result describes a novel mechanism facilitating the selective formation of the MyoD(MRF)-E12 heterodimer that enhances dimerization specificity and may apply to other members of the E-protein family.  相似文献   

14.
15.
16.
17.
A class of helix-loop-helix (HLH) proteins, including E2A (E12 and E47), E2-2, and HEB, that bind in vitro to DNA sequences present in the immunoglobulin (Ig) enhancers has recently been identified. E12, E47, E2-2, and HEB are each present in B cells. The presence of many different HLH proteins raises the question of which of the HLH proteins actually binds the Ig enhancer elements in B cells. Using monoclonal antibodies specific for both E2A and E2-2, we show that both E2-2 and E2A polypeptides are present in B-cell-specific Ig enhancer-binding complexes. E2-box-binding complexes in pre-B cells contain both E2-2 and E2A HLH subunits, whereas in mature B cells only E2A gene products are present. We show that the difference in E2-box-binding complexes in pre-B and mature B cells may be caused by differential expression of E2A and E2-2.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号