首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditionally, phylogenetic analyses over many genes combine data into a contiguous block. Under this concatenated model, all genes are assumed to evolve at the same rate. However, it is clear that genes evolve at very different rates and that accounting for this rate heterogeneity is important if we are to accurately infer phylogenies from heterogeneous multigene data sets. There remain open questions regarding how best to incorporate gene rate parameters into phylogenetic models and which properties of real data correlate with improved fit over the concatenated model. In this study, two methods of accounting for gene rate heterogeneity are compared: the n-parameter method, which allows for each of the n gene partitions to have a gene rate parameter, and the alpha-parameter method, which fits a distribution to the gene rates. Results demonstrate that the n-parameter method is both computationally faster and in general provides a better fit over the concatenated model than the alpha-parameter method. Furthermore, improved model fit over the concatenated model is highly correlated with the presence of a gene with a slow relative rate of evolution.  相似文献   

2.
Evolution of a cytokine using DNA family shuffling.   总被引:18,自引:0,他引:18  
DNA shuffling of a family of over 20 human interferon-alpha (Hu-IFN-alpha) genes was used to derive variants with increased antiviral and antiproliferation activities in murine cells. A clone with 135,000-fold improved specific activity over Hu-IFN-alpha2a was obtained in the first cycle of shuffling. After a second cycle of selective shuffling, the most active clone was improved 285,000-fold relative to Hu-IFN-alpha2a and 185-fold relative to Hu-IFN-alpha1. Remarkably, the three most active clones were more active than the native murine IFN-alphas. These chimeras are derived from up to five parental genes but contained no random point mutations. These results demonstrate that diverse cytokine gene families can be used as starting material to rapidly evolve cytokines that are more active, or have superior selectivity profiles, than native cytokine genes.  相似文献   

3.
Rate of protein evolution versus fitness effect of gene deletion   总被引:6,自引:0,他引:6  
Whether nonessential genes evolve faster than essential genes has been a controversial issue. To resolve this issue, we use the data from a nearly complete set of single-gene deletions in the yeast Saccharomyces cerevisiae to assess protein dispensability. Also, instead of the nematode, which was used previously but is only distantly related to S. cerevisiae, we use another yeast, Candida albicans, as a second species to estimate the evolutionary distances between orthologous genes in two species. Our analysis reveals only a weak correlation between protein dispensability and evolutionary rate. More important, the correlation disappears when duplicate genes are removed from the analysis. And surprisingly, the average rate of nonsynonymous substitution is considerably lower than that for single-copy genes in the yeast genome. This observation suggests that structural constraints are more important in determining the rate of evolution of a protein than dispensability because duplicate genes are on average more dispensable than single-copy genes. For duplicate genes, those with only a weak effect or no effect of deletion on fitness evolve on average faster than those with a moderate or strong effect of deletion on fitness, which in turn evolve on average faster than those with a lethal effect of deletion.  相似文献   

4.

Background  

Horizontal gene transfer (HGT) has allowed bacteria to evolve many new capabilities. Because transferred genes perform many medically important functions, such as conferring antibiotic resistance, improved detection of horizontally transferred genes from sequence data would be an important advance. Existing sequence-based methods for detecting HGT focus on changes in nucleotide composition or on differences between gene and genome phylogenies; these methods have high error rates.  相似文献   

5.
In mammals, some embryonic genes are expressed differently depending on whether they are inherited from the sperm or egg, a phenomenon known as genomic imprinting. The information on the parental origin is transmitted by an epigenetic mark. Both the molecular mechanisms and evolutionary processes of genomic imprinting have been studied extensively. Here, I illustrate the simplest evolutionary dynamics of imprinting evolution based on the “conflict theory,” by considering the evolution of a gene encoding an embryonic growth factor controlling the maternal resource supply. It demonstrates that (a) the autosomal genes controlling placenta development to modify maternal resource acquisition may evolve a strong asymmetry of gene expression, provided the mother has some chance of accepting multiple males. (b) The genomic imprinting may not evolve if there is a small fraction of recessive deleterious mutations on the gene. (c) The growth-enhancing genes should evolve to paternally expressed, while the growth-suppressing genes should evolve to maternally expressed. (d) The X-linked genes also evolve genomic imprinting, but the main evolutionary force is the sex difference in the optimal embryonic size. I discuss other aberrations that can be explained by the modified versions of the basic model.  相似文献   

6.
Arrangements in the modular evolution of proteins   总被引:5,自引:0,他引:5  
It has been known for the last couple of decades that proteins evolve partly through rearrangements of larger fragments, typically domains. These units are considered the basic modules of protein structure, evolution and function. In the last few years, the analysis of protein-domain rearrangements has provided us with functional and evolutionary insights and has aided improved functional predictions and domain assignments to previously uncharacterised genes and proteins. Although some mechanisms that govern modular rearrangements of protein domains have been uncovered, such as the addition or deletion of a single N- or C-terminal domain, much is still unknown about the genetics behind these arrangements.  相似文献   

7.
New enzymes often evolve by duplication and divergence of genes encoding enzymes with promiscuous activities that have become important in the face of environmental opportunities or challenges. Amplifications that increase the copy number of the gene under selection commonly amplify many surrounding genes. Extra copies of these coamplified genes must be removed, either during or after evolution of a new enzyme. Here we report that amplicon remodeling can begin even before mutations occur in the gene under selection. Amplicon remodeling and mutations elsewhere in the genome that indirectly increase fitness result in complex population dynamics, leading to emergence of clones that have improved fitness by different mechanisms. In this work, one of the two most successful clones had undergone two episodes of amplicon remodeling, leaving only four coamplified genes surrounding the gene under selection. Amplicon remodeling in the other clone resulted in removal of 111 genes from the genome, an acceptable solution under these selection conditions, but one that would certainly impair fitness under other environmental conditions.  相似文献   

8.
Chemosensation is the most ubiquitous sense in animals, enacted by the products of complex gene families that detect environmental chemical cues and larger-scale sensory structures that process these cues. While there is a general conception that olfactory receptor (OR) genes evolve rapidly, the universality of this phenomenon across vertebrates, and its magnitude, are unclear. The supposed correlation between molecular rates of chemosensory evolution and phenotypic diversity of chemosensory systems is largely untested. We combine comparative genomics and sensory morphology to test whether OR genes and olfactory phenotypic traits evolve at faster rates than other genes or traits. Using published genomes, we identified ORs in 21 tetrapods, including amphibians, reptiles, birds, and mammals and compared their rates of evolution to those of orthologous non-OR protein-coding genes. We found that, for all clades investigated, most OR genes evolve nearly an order of magnitude faster than other protein-coding genes, with many OR genes showing signatures of diversifying selection across nearly all taxa in this study. This rapid rate of evolution suggests that chemoreceptor genes are in “evolutionary overdrive,” perhaps evolving in response to the ever-changing chemical space of the environment. To obtain complementary morphological data, we stained whole fixed specimens with iodine, µCT-scanned the specimens, and digitally segmented chemosensory and nonchemosensory brain regions. We then estimated phenotypic variation within traits and among tetrapods. While we found considerable variation in chemosensory structures, they were no more diverse than nonchemosensory regions. We suggest chemoreceptor genes evolve quickly in reflection of an ever-changing chemical space, whereas chemosensory phenotypes and processing regions are more conserved because they use a standardized or constrained architecture to receive and process a range of chemical cues.  相似文献   

9.
10.
H. A. Orr 《Genetics》1995,139(4):1805-1813
Speciation often results from the accumulation of ``complementary genes,' i.e., from genes that, while having no deleterious effect within species, cause inviability or sterility when brought together with genes from another species. Here I model speciation as the accumulation of genic incompatibilities between diverging populations. Several results are obtained. First, and most important, the number of genic incompatibilities between taxa increases much faster than linearly with time. In particular, the probability of speciation increases at least as fast as the square of the time since separation between two taxa. Second, as Muller realized, all hybrid incompatibilities must initially be asymmetric. Third, at loci that have diverged between taxa, evolutionarily derived alleles cause hybrid problems far more often than ancestral alleles. Last, it is ``easier' to evolve complex hybrid incompatibilities requiring the simultaneous action of three or more loci than to evolve simple incompatibilities between pairs of genes. These results have several important implications for genetic analyses of speciation.  相似文献   

11.
DNA shuffling and screening strategies for improving vaccine efficacy   总被引:11,自引:0,他引:11  
The efficacy of vaccines can be improved by increasing their immunogenicity, broadening their crossprotective range, as well as by developing immunomodulators that can be coadministered with the vaccine antigen. One technology that can be applied to each of these aspects of vaccine development is MolecularBreeding directed molecular evolution. Essentially, this technology is used to evolve genes in vitro through an iterative process consisting of recombinant generation followed by selection of the desired recombinants. We have used DNA shuffling and screening strategies to develop and improve vaccine candidates against several infectious pathogens including Plasmodium falciparum (a common cause of severe and fatal human malaria), dengue virus, encephalitic alphaviruses such as Venezuelan, western and eastern equine encephalitis viruses (VEEV, WEEV, and EEEV, respectively), human immunodeficiency virus-1 (HIV-1), and hepatitis B virus (HBV). By recombining antigen-encoding genes from different serovar isolates, new chimeras are selected for crossreactivity; these vaccine candidates are expected to provide broader crossprotection than vaccines based on a single serovar. Furthermore, the vaccine candidates can be selected for improved immunogenicity, which would also improve their efficacy. In addition to vaccine candidates, we have applied the technology to evolve several immunomodulators that when coadministered with vaccines can improve vaccine efficacy by fine-tuning the T cell response. Thus, DNA shuffling and screening technology is a promising strategy to facilitate vaccine efficacy.  相似文献   

12.
Genes that are differentially expressed between the sexes (sex-biased genes) are among the fastest evolving genes in animal genomes. The majority of sex-biased expression is attributable to genes that are primarily expressed in sex-limited reproductive tissues, and these reproductive genes are often rapidly evolving because of intra- and intersexual selection pressures. Additionally, studies of multiple taxa have revealed that genes with sex-biased expression are also expressed in a limited number of tissues. This is worth noting because narrowly expressed genes are known to evolve faster than broadly expressed genes. Therefore, it is not clear whether sex-biased genes are rapidly evolving because they have sexually dimorphic expression, because they are expressed in sex-limited reproductive tissues, or because they are narrowly expressed. To determine the extend to which other confounding variables can explain the rapid evolution of sex-biased genes, I analyzed the rates of evolution of sex-biased genes in Drosophila melanogaster and Mus musculus in light of tissue-specific measures of expression. I find that genes with sex-biased expression in somatic tissues shared by both sexes are often evolving faster than non-sex-biased genes, but this is best explained by the narrow expression profiles of sex-biased genes. Sex-biased genes in sex-limited tissues in D. melanogaster, however, evolve faster than other narrowly expressed genes. Therefore, the rapid evolution of sex-biased genes is limited only to those genes primarily expressed in sex-limited reproductive tissues.  相似文献   

13.
Sex chromosomes can evolve gene contents that differ from the rest of the genome, as well as larger sex differences in gene expression compared with autosomes. This probably occurs because fully sex‐linked beneficial mutations substitute at different rates from autosomal ones, especially when fitness effects are sexually antagonistic (SA). The evolutionary properties of genes located in the recombining pseudoautosomal region (PAR) of a sex chromosome have not previously been modeled in detail. Such PAR genes differ from classical sex‐linked genes by having two alleles at a locus in both sexes; in contrast to autosomal genes, however, variants can become associated with gender. The evolutionary fates of PAR genes may therefore differ from those of either autosomal or fully sex‐linked genes. Here, we model their evolutionary dynamics by deriving expressions for the selective advantages of PAR gene mutations under different conditions. We show that, unless selection is very strong, the probability of invasion of a population by an SA mutation is usually similar to that of an autosomal mutation, unless there is close linkage to the sex‐determining region. Most PAR genes should thus evolve similarly to autosomal rather than sex‐linked genes, unless recombination is very rare in the PAR.  相似文献   

14.
DNA shuffling is a practical process for directed molecular evolution which uses recombination to dramatically accelerate the rate at which one can evolve genes. Single and multigene traits that require many mutations for improved phenotypes can be evolved rapidly. DNA shuffling technology has been significantly enhanced in the past year, extending its range of applications to small molecule pharmaceuticals, pharmaceutical proteins, gene therapy vehicles and transgenes, vaccines and evolved viruses for vaccines, and laboratory animal models.  相似文献   

15.
Reinforcement is the process whereby assortative mating evolves due to selection against costly hybridization. Sexual imprinting could evolve as a mechanism of reinforcement, decreasing hybridization, or it could potentially increase hybridization in genetically purebred offspring of heterospecific social pairs. We use deterministic population genetic simulations to explore conditions under which sexual imprinting can evolve through reinforcement. We demonstrate that a sexual imprinting component of female preference can evolve as a one‐allele assortative mating mechanism by reducing the risk of hybridization, and is generally effective at causing trait divergence. However, imprinting often evolves to be a component rather than the sole determinant of female preference. The evolution of imprinting has the unexpected side effect of homogenizing existing innate preference, because the imprinted preference neutralizes any innate preference. We also find that the weight of the imprinting component may evolve to a lower value when migration and divergent selection are strong and the cost of hybridization is low; these conditions render hybridization adaptive for immigrant females because they can acquire locally adaptive genes by mating with local males. Together, these results suggest that sexual imprinting can itself evolve as part of the speciation process, and in doing so has the capacity to promote or retard divergence through complex interactions.  相似文献   

16.
17.
The genomes that organisms transmit between generations contain information about different kinds of functions. The genome with the "best" mix and number of genes for these functions is the one that natural selection favours. Here I introduce a new way to model simple organisms with genes for external and internal functions, and use it to study the evolution of genome size. The external functions are exemplified by resource use and the internal functions by mutation control (repair). It is shown that even with a suitable proportion of genes for mutation control, the genomes in the organisms do not forever incorporate genes that increase resource use. Instead they evolve towards an optimal genome of limited size. The optimal proportion of genes for mutation control is shown to have an upper limit given by the ease with which transmission accuracy is improved by adding extra genes for this purpose to the genome. The model illustrates how natural selection on genomes integrates systems for the transmission of genetic information with systems relating to the external adaptation of the organism. It also opens up for other, more detailed theoretical investigations of genome functions.  相似文献   

18.
The recently discovered CRISPR-Cas adaptive immune system is present in almost all archaea and many bacteria. It consists of cassettes of CRISPR repeats that incorporate spacers homologous to fragments of viral or plasmid genomes that are employed as guide RNAs in the immune response, along with numerous CRISPR-associated (cas) genes that encode proteins possessing diverse, only partially characterized activities required for the action of the system. Here, we investigate the evolution of the cas genes and show that they evolve under purifying selection that is typically much weaker than the median strength of purifying selection affecting genes in the respective genomes. The exceptions are the cas1 and cas2 genes that typically evolve at levels of purifying selection close to the genomic median. Thus, although these genes are implicated in the acquisition of spacers from alien genomes, they do not appear to be directly involved in an arms race between bacterial and archaeal hosts and infectious agents. These genes might possess functions distinct from and additional to their role in the CRISPR-Cas-mediated immune response. Taken together with evidence of the frequent horizontal transfer of cas genes reported previously and with the wide-spread microscale recombination within these genes detected in this work, these findings reveal the highly dynamic evolution of cas genes. This conclusion is in line with the involvement of CRISPR-Cas in antiviral immunity that is likely to entail a coevolutionary arms race with rapidly evolving viruses. However, we failed to detect evidence of strong positive selection in any of the cas genes.  相似文献   

19.
Mammalian housekeeping genes evolve more slowly than tissue-specific genes   总被引:20,自引:0,他引:20  
Do housekeeping genes, which are turned on most of the time in almost every tissue, evolve more slowly than genes that are turned on only at specific developmental times or tissues? Recent large-scale gene expression studies enable us to have a better definition of housekeeping genes and to address the above question in detail. In this study, we examined 1581 human-mouse orthologous gene pairs for their patterns of sequence evolution, contrasting housekeeping genes with tissue-specific genes. Our results show that, in comparison to tissue-specific genes, housekeeping genes on average evolve more slowly and are under stronger selective constraints as reflected by significantly smaller values of Ka/Ks. Besides stronger purifying selection, we explored several other factors that can possibly slow down nonsynonymous rates in housekeeping genes. Although mutational bias might slightly slow the nonsynonymous rates in housekeeping genes, it is unlikely to be the major cause of the rate difference between the two types of genes. The codon usage pattern of housekeeping genes does not seem to differ from that of tissue-specific genes. Moreover, contrary to the old textbook concept, we found that approximately 74% of the housekeeping genes in our study belong to multigene families, not significantly different from that of the tissue-specific genes ( approximately 70%). Therefore, the stronger selective constraints on housekeeping genes are not due to a lower degree of genetic redundancy.  相似文献   

20.
Sexual imprinting is the learning of a mate preference by direct observation of the phenotype of another member of the population. Sexual imprinting can be paternal, maternal, or oblique if individuals learn to prefer the phenotypes of their fathers, mothers, or other members of the population, respectively. Which phenotypes are learned can affect trait evolution and speciation rates. “Good genes” models of polygynous systems predict that females should evolve to imprint on their fathers, because paternal imprinting helps females to choose mates that will produce offspring that are both viable and sexy. Sexual imprinting by males has been observed in nature, but a theory for the evolution of sexual imprinting by males does not exist. We developed a good genes model to study the conditions under which sexual imprinting by males or by both sexes can evolve and to ask which sexual imprinting strategies maximize the fitness of the choosy sex. We found that when only males imprint, maternal imprinting is the most advantageous strategy. When both sexes imprint, it is most advantageous for both sexes to use paternal imprinting. Previous theory suggests that, in a given population, either males or females but not both will evolve choosiness in mating. We show how environmental change can lead to the evolution of sexual imprinting behavior by both sexes in the same population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号