首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disorders caused by mitochondrial respiratory chain deficiency due to mutations in mitochondrial DNA have varied phenotypes but many involve neurological features often associated with cell loss within specific brain regions. These disorders, along with the increasing evidence of decline in mitochondrial function with ageing, have raised speculation that primary changes in mitochondria could have an important role in age-related neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Evidence supporting a role for mitochondria in common neurodegenerative diseases comes from studies with the toxin MPP+ and familial PD, which has been shown to involve proteins such as DJ-1 and Pink1 (both of which are predicted to have a role in mitochondrial function and oxidative stress). Mutations within the mitochondrial genome have been shown to accumulate with age and in common neurodegenerative diseases. Mitochondrial DNA haplogroups have also been shown to be associated with certain neurodegenerative conditions. This review covers the primary mitochondrial diseases but also discuss the potential role of mitochondria and mitochondrial DNA mutations in mitochondrial and neurodegenerative diseases, in particular in PD and in AD.  相似文献   

2.
《Autophagy》2013,9(12):1822-1823
Mitochondrial DNA (mtDNA) is different in many ways from nuclear DNA. A key difference is that certain types of DNA damage are not repaired in the mitochondrial genome. What, then, is the fate of such damage? What are the effects? Both questions are important from a health perspective because irreparable mtDNA damage is caused by many common environmental stressors including ultraviolet C radiation (UVC). We found that UVC-induced mtDNA damage is removed slowly in the nematode Caenorhabditis elegans via a mechanism dependent on mitochondrial fusion, fission, and autophagy. However, knockdown or knockout of genes involved in these processes—many of which have homologs involved in human mitochondrial diseases—had very different effects on the organismal response to UVC. Reduced mitochondrial fission and autophagy caused no or small effects, while reduced mitochondrial fusion had dramatic effects.  相似文献   

3.
线粒体转移技术的发展和成熟使得我们业已成功的建立了转线粒体小鼠动物模型。目前常用的方法主要有:一是直接应用显微注射技术将活的线粒体转入小鼠胚胎;二是通过脱核胞质体与胚胎干细胞融合,再将胚胎干细胞显微注入小鼠囊胚,从而形成嵌和鼠;三是将脱核胞质体与小鼠胚胎直接融合而产生的转线粒体小鼠。随着越来越多线粒体相关疾病的发现,各种不同线粒体疾病的转线粒体小鼠的开发具有十分重要的应用价值和广阔的研究前景。  相似文献   

4.
Mitochondrial DNA diseases are common neurological conditions caused by mutations in the mitochondrial genome or nuclear genes responsible for its maintenance. Current treatments for these disorders are focussed on the management of the symptoms, rather than the correction of biochemical defects caused by the mutation. This review focuses on the molecular effects of mutations, the symptoms they cause and current work focusing on the development of targeted treatments for mitochondrial DNA disease.  相似文献   

5.
Leber hereditary optic neuropathy is a maternally inherited type of blindness caused by degeneration of the optic nerve. It is caused by point mutations in mitochondrial DNA. Like in other mitochondrial diseases, its penetrance and inheritance is complicated by heteroplasmy, tissue distribution, and the bottleneck phenomenon in oocyte maturation. On the cellular level, the mechanism of the disease development is still mysterious. Currently three theories of pathomechanism of LHON are considered: biochemical, ROS (reactive oxygen species) and apoptotic.  相似文献   

6.
7.
Accumulation of mutations in mitochondrial DNA leads to the development of severe, currently untreatable diseases. The contribution of these mutations to aging and progress of neurodegenerative diseases is actively studied. Elucidation of DNA repair mechanisms in mitochondria is necessary for both developing approaches to the therapy of diseases caused by mitochondrial mutations and understanding specific features of mitochondrial genome functioning. Mitochondrial DNA repair systems have become a subject of extensive studies only in the last decade due to development of molecular biology methods. DNA repair systems of mammalian mitochondria appear to be more diverse and effective than it had been thought earlier. Even now, one may speak about the existence of mitochondrial mechanisms for the repair of single–and double–stranded DNA lesions. Homologous recombination also takes place in mammalian mitochondria, although its functional significance and molecular mechanisms remain obscure. In this review, I describe DNA repair systems in mammalian mitochondria, such as base excision repair (BER) and microhomology–mediated end joining (MMEJ) and discuss a possibility of existence of mitochondrial DNA repair mechanisms otherwise typical for the nuclear DNA, e.g., nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination, and classical non–homologous end joining (NHEJ). I also present data on the mechanisms for coordination of the nuclear and mitochondrial DNA repair systems that have been actively studied recently.  相似文献   

8.
线粒体疾病是一种累及不同的组织和器官的复杂异质性疾病,由核基因或线粒体基因的遗传缺陷导致,同时也受环境因素的影响。近十年来,有关线粒体疾病的诊断及发生机制的研究进展迅速,而疾病的治疗方法却研究较少。着重介绍线粒体疾病的相关治疗方法和干预策略。  相似文献   

9.
Dysfunctions caused by genetic defects in the mitochondrial DNA (mtDNA) of humans are called mitochondrial diseases; however, mtDNA mutations are also associated with aging and age-related diseases. Here, we present an original cellular model that allows gathering information on molecules that might contrast or prevent mitochondrial dysfunctions and their related diseases. This model allowed us to show that resveratrol (RSV), a phytochemical present in food, exerts protective effects at low concentrations on resting human fibroblasts carrying dysfunctional respiratory chain Complex I. Cells were maintained both in resting condition, to mimic the high energy demanding post-mitotic tissues (serum absence and gramicidin presence), and under glucose deficiency to push the synthesis of ATP via oxidative phosphorylation. Pre-incubation with RSV prolonged the viability of the fibroblasts exposed to rotenone, a well-known specific inhibitor of the respiratory chain Complex I, and decreased mitochondrial fragmentation. It significantly prevented the oxidative phosphorylation impairment indirectly caused by the rotenone-mediated Complex I inhibition, allowing for an almost complete preservation of the cellular ATP level. Indeed, RSV limited the rotenone-induced reactive oxygen species increase, allowing for the maintenance of a functional mitochondrial membrane potential. These findings indicate the potential usage of resveratrol to prevent or possibly treat many disorders, in which the bioenergetic defects and oxidative stress are the primary (mitochondrial encephalomyopathy), or the secondary (age-related diseases) causes of the pathology; and to also assist cell senescence during aging.  相似文献   

10.
Diseases caused by defects of mitochondrial carriers: a review   总被引:2,自引:0,他引:2  
A strikingly large number of mitochondrial DNA (mtDNA) mutations have been found to be the cause of respiratory chain and oxidative phosphorylation defects. These mitochondrial disorders were the first to be investigated after the small mtDNA had been sequenced in the 80s. Only recently numerous diseases resulting from mutations in nuclear genes encoding mitochondrial proteins have been characterized. Among these, nine are caused by defects of mitochondrial carriers, a family of nuclear-coded proteins that shuttle a variety of metabolites across the mitochondrial membrane. Mutations of mitochondrial carrier genes involved in mitochondrial functions other than oxidative phosphorylation are responsible for carnitine/acylcarnitine carrier deficiency, HHH syndrome, aspartate/glutamate isoform 2 deficiency, Amish microcephaly, and neonatal myoclonic epilepsy; these disorders are characterized by specific metabolic dysfunctions, depending on the physiological role of the affected carrier in intermediary metabolism. Defects of mitochondrial carriers that supply mitochondria with the substrates of oxidative phosphorylation, inorganic phosphate and ADP, are responsible for diseases characterized by defective energy production. Herein, all the mitochondrial carrier-associated diseases known to date are reviewed for the first time. Particular emphasis is given to the molecular basis and pathogenetic mechanism of these inherited disorders.  相似文献   

11.
Cardiovascular diseases (CVD) are the leading cause of death all over the world. Beside general risk factors, there are some genetic factors which lead to cardiovascular diseases. Various nuclear DNA mutation and also mitochondrial DNA mutations have been related with cardiovascular diseases. In the present study, a total of 21 samples were collected from different families residing in district Dir. DNA was extracted from buccal epithelial cells using saliva. The mitochondrial tRNA leu (MT TL1) gene was amplified by PCR and 10 samples of different families were sequenced. The sequence was aligned with revised Cambridge Reference Sequence (rCRS) accession # NC-012920.1. It is concluded that cardiovascular diseases in our subjects are not due to mutation in the mitochondrial leucine tRNA gene. However, a large population of subjects with cardiovascular diseases needs to be studied and whole mitochondrial DNA is needed to be sequenced in the subjects with CVD. This will give an idea about the probable DNA marker which can be used to prevent loses due to these diseases at a very early stages.  相似文献   

12.
In mammalian cells, there is an extensive and continuous exchange of mitochondrial DNA (mtDNA) and its products between mitochondria. This mitochondrial complementation prevents individuals from expression of respiration deficiency caused by mutant mtDNAs. Thus, the presence of mitochondrial complementation does not support the generally accepted mitochondrial theory of aging, which proposes that accumulation of somatic mutations in mtDNA is responsible for age-associated mitochondrial dysfunction. Moreover, the presence of mitochondrial complementation enables gene therapy for mitochondrial diseases using nuclear transplantation of zygotes.  相似文献   

13.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the gene encoding thymidine phosphorylase (TP). The disease is characterized clinically by impaired eye movements, gastrointestinal dysmotility, cachexia, peripheral neuropathy, myopathy, and leukoencephalopathy. Molecular genetic studies of MNGIE patients' tissues have revealed multiple deletions, depletion, and site-specific point mutations of mitochondrial DNA. TP is a cytosolic enzyme required for nucleoside homeostasis. In MNGIE, TP activity is severely reduced and consequently levels of thymidine and deoxyuridine in plasma are dramatically elevated. We have hypothesized that the increased levels of intracellular thymidine and deoxyuridine cause imbalances of mitochondrial nucleotide pools that, in turn, lead to the mtDNA abnormalities. MNGIE was the first molecularly characterized genetic disorder caused by abnormal mitochondrial nucleoside/nucleotide metabolism. Future studies are likely to reveal further insight into this expanding group of diseases.  相似文献   

14.
Mutations in mitochondrial DNA (mtDNA) might contribute to expression of the tumor phenotypes, such as metastatic potential, as well as to aging phenotypes and to clinical phenotypes of mitochondrial diseases by induction of mitochondrial respiration defects and the resultant overproduction of reactive oxygen species (ROS). To test whether mtDNA mutations mediate metastatic pathways in highly metastatic human tumor cells, we used human breast carcinoma MDA-MB-231 cells, which simultaneously expressed a highly metastatic potential, mitochondrial respiration defects, and ROS overproduction. Since mitochondrial respiratory function is controlled by both mtDNA and nuclear DNA, it is possible that nuclear DNA mutations contribute to the mitochondrial respiration defects and the highly metastatic potential found in MDA-MB-231 cells. To examine this possibility, we carried out mtDNA replacement of MDA-MB-231 cells by normal human mtDNA. For the complete mtDNA replacement, first we isolated mtDNA-less (ρ(0)) MDA-MB-231 cells, and then introduced normal human mtDNA into the ρ(0) MDA-MB-231 cells, and isolated trans-mitochondrial cells (cybrids) carrying nuclear DNA from MDA-MB-231 cells and mtDNA from a normal subject. The normal mtDNA transfer simultaneously induced restoration of mitochondrial respiratory function and suppression of the highly metastatic potential expressed in MDA-MB-231 cells, but did not suppress ROS overproduction. These observations suggest that mitochondrial respiration defects observed in MDA-MB-231 cells are caused by mutations in mtDNA but not in nuclear DNA, and are responsible for expression of the high metastatic potential without using ROS-mediated pathways. Thus, human tumor cells possess an mtDNA-mediated metastatic pathway that is required for expression of the highly metastatic potential in the absence of ROS production.  相似文献   

15.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the gene encoding thymidine phosphorylase (TP). The disease is characterized clinically by impaired eye movements, gastrointestinal dysmotility, cachexia, peripheral neuropathy, myopathy, and leukoencephalopathy. Molecular genetic studies of MNGIE patients' tissues have revealed multiple deletions, depletion, and site‐specific point mutations of mitochondrial DNA. TP is a cytosolic enzyme required for nucleoside homeostasis. In MNGIE, TP activity is severely reduced and consequently levels of thymidine and deoxyuridine in plasma are dramatically elevated. We have hypothesized that the increased levels of intracellular thymidine and deoxyuridine cause imbalances of mitochondrial nucleotide pools that, in turn, lead to the mtDNA abnormalities. MNGIE was the first molecularly characterized genetic disorder caused by abnormal mitochondrial nucleoside/nucleotide metabolism. Future studies are likely to reveal further insight into this expanding group of diseases.  相似文献   

16.
Pathological mutations in the mitochondrial DNA (mtDNA) produce a diverse range of tissue-specific diseases and the proportion of mutant mitochondrial DNA can increase or decrease with time via segregation, dependent on the cell or tissue type. Previously we found that adenocarcinoma (A549.B2) cells favored wild-type (WT) mtDNA, whereas rhabdomyosarcoma (RD.Myo) cells favored mutant (m3243G) mtDNA. Mitochondrial quality control (mtQC) can purge the cells of dysfunctional mitochondria via mitochondrial dynamics and mitophagy and appears to offer the perfect solution to the human diseases caused by mutant mtDNA. In A549.B2 and RD.Myo cybrids, with various mutant mtDNA levels, mtQC was explored together with macroautophagy/autophagy and bioenergetic profile. The 2 types of tumor-derived cell lines differed in bioenergetic profile and mitophagy, but not in autophagy. A549.B2 cybrids displayed upregulation of mitophagy, increased mtDNA removal, mitochondrial fragmentation and mitochondrial depolarization on incubation with oligomycin, parameters that correlated with mutant load. Conversely, heteroplasmic RD.Myo lines had lower mitophagic markers that negatively correlated with mutant load, combined with a fully polarized and highly fused mitochondrial network. These findings indicate that pathological mutant mitochondrial DNA can modulate mitochondrial dynamics and mitophagy in a cell-type dependent manner and thereby offer an explanation for the persistence and accumulation of deleterious variants.  相似文献   

17.
In this study a well-characterized pathological mutation at nucleotide position 3243 of human mitochondrial DNA was introduced into human rho(0) teratocarcinoma (NT2) cells. In cloned and mixed populations of NT2 cells heteroplasmic for the mutation, mitotic segregation toward increasing levels of mutant mitochondrial DNA always occurred. Rapid segregation was frequently followed by complete loss of mitochondrial DNA. These findings support the idea that pathological mitochondrial DNA mutations are particularly deleterious in specific cell types, which can explain some of the tissue-specific aspects of mitochondrial DNA diseases. Moreover, these findings suggest that mitochondrial DNA depletion may be an important and widespread feature of mitochondrial DNA disease.  相似文献   

18.
Mitochondria play a pivotal role in mammalian cell metabolism, hosting a number of important biochemical pathways including oxidative phosphorylation. As might be expected from this fundamental contribution to cell function, abnormalities of mitochondrial metabolism are a common cause of human disease. Primary mutations of mitochondrial DNA result in a diverse group of disorders often collectively referred to as the mitochondrial encephalomyopathies. Perhaps more importantly in numerical terms are those neurodegenerative diseases caused by mutations of nuclear genes encoding mitochondrial proteins. Finally there are mitochondrial abnormalities induced by secondary events e.g. oxidative stress that may contribute to senescence, and environmental toxins that may cause disease either alone or in combination with a genetic predisposition. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

19.
Mitochondrial cytopathies are a heterogeneous group of systemic disorders caused by mutations in mitochondrial or nuclear genome. The review presents some data on pathogenic mutations in mitochondrial DNA leading to the imbalance in the oxidation phosphorylation processes and energy metabolism in the cells and eventually to the development of mitochondrial cytopathy. The pathways of medicated correction are examined, which are aimed at obtaining optimal energy efficiency of mitochondria with impaired functions, increase of the efficiency of energy metabolism in the tissues, as well as prevention of mitochondrial membrane damage by free radicals using antioxidants and membrane protectors. A conclusion is drawn on the inefficiency of currently used therapeutic strategies and the necessity of new approaches, which can be gene therapy of mitochondrial diseases. Some modern methods for gene defects correction, capable of restoring or removing the damaged gene, expressing full gene product, or blocking the mutant or strange genes work are analyzed. It is shown that the described approaches to the gene therapy of human mitochondrial diseases demand the introduction of foreign sequences into nuclear or mitochondrial genome of a living person, which completely excludes their practical application because of the uncertainty of the outcome. A perspective approach in solving this problem may be a creation of a system allowing the correction of defect genes without introducing synthetic nucleotides into the human genome. Phenotypic selection combined with a capacity of homologous recombination, artificially imparted to mitochondria of yeast Yarrowia lipolytica, allows for replication of intact human mitochondrial DNA in yeast mitochondria, supporting a full-size native human mitochondrial DNA in the yeast cells and eliminating pathogenic mutations by means of standard sitedirected PCR mutagenesis. After the correction in the Y. lipolytica cells, copies of mitochondrial DNA of an individual patient may be returned to him using the transfection of mesenchymal stromal cells followed by selection of transfectants grown in minimal culture media, in which the cells with higher respiratory mitochondrial activity will gain the advantage.  相似文献   

20.
Mitochondrial diseases in children are more frequently caused by mutations in nuclear DNA then in mtDNA. Special clinical phenotypes are associated with the mutations in SURF1 gene, in SCO2 gene and with mtDNA depletion syndromes. Leigh syndrome is the most common clinical presentation of various mitochondrial disorders during childhood. Elevation of lactate in blood, cerebrospinal fluid and urine is a simple biochemical marker of mitochondrial disorders but its specificity and sensitivity are low. Biochemical investigation of muscle biopsy and search for mitochondrial mutations remain a gold standard in the diagnosis. The standarized diagnostic criteria to establish level of diagnostic certainty (possible, probable, definite) are proposed to be used in practice; these include clinical features, neuroimaging and muscle biopsy investigations. Further research directions to improve our understanding of mitochondrial pathologies in children are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号