首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Free amino acid levels and high affinity uptake of glutamate, aspartate γ-aminobutyrate, glycine and taurine were studied in retina and retinal pigment epithelium of streptozotocin diabetic rats. Results show that experimental diabetes produces a generalized fall in the content of free amino acids in both retina and retinal pigment epithelium. With regard to the high affinity uptake, in the two tissues of diabetic animals showed decreased aspartate uptake, enhanced taurine and γ-aminobutyrate uptake, whereas that of glycine and glutamate was unchanged. These results might suggest that diabetes causes alterations of specific amino acid transport systems and/or alterations of some cell populations.  相似文献   

2.
The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO2 production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO2 yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO2 production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress.  相似文献   

3.
Book Review in this Article:
Neurology and Neurobiology, Vol. 1: Cytochemical Methods in Neuroanatomy edited by Victoria Chan-Palay and Sanford Palay. Alan R. Liss
: Mechanisms and Functions edited by J. de Belleroche.
Proteins of the Brain and Cerebrospinal Fluid in Health and Disease by Elisabeth Roboz Einstein. Charles C Thomas
The Synthesis of Carbon-11, Fluorine-18, and Nitrogen-13 Labeled Radiotracers for Biomedical Applications by J. S. Fowler and A. P. Wolf.
Thermal Sensations and Thermoreceptors in Man by Herbert Hensel. Charles C Thomas  相似文献   

4.
Abstract: We examined the immunocytochemical expression of GM3 and QD3 in 3-day-old chick embryo retinal pigment epithelium (RPE) and neural retina (NR). We also compared the composition of gangliosides and the activities of key ganglioside glycosyltransferases of the RPE and NR of 8-, 12-, and 15-day old embryos. The immunocytochemical studies in 3-day-old embryos showed heavy expression of GM3 and GD3 at the inner and outer layers of the optic vesicle that are the precursors of the RPE and NR, respectively. The compositional and enzymatic studies showed pronounced differences between RPE and NR of 8-day and older embryos. HPTLC showed that at 8 days the major species were GM3 and GD3 in RPE and GD3 and GT3 in NR. As development proceeded, GD3 decreased in both tissues, GM3 became the major ganglioside in RPE, and ganglio-series gangliosides (mainly GD1a) became the major species in NR. At 15 days the major species were GD1 a in NR and GM3 in RPE. Enzyme determinations showed that whereas in RPE from 12-day-old embryos GM2 synthase was under the limit of detection and GD3 synthase activity was about sixfold lower than GM3 synthase, in NR the activities of GM3 and GD3 synthases were similar and both six-to ninefold lower than GM2 synthase. These results evidence a markedly different modulation of the ganglioside glycosylating system in cells of a common origin that through distinct differentiation pathways originate two closely related tissues of the optic system. In addition, they reinforce the relevance of the relative activities of key transferases in determining the pattern of gangliosides in different cell types.  相似文献   

5.
Retinal pigment epithelium(RPE) has essential functions, such as nourishing and supporting the neural retina, and is of vital importance in the pathogenesis of age-related retinal degeneration. However, the exact molecular changes of RPE during aging remain poorly understood.Here, we isolated human primary RPE(h RPE) cells from 18 eye donors distributed over a wide age range(10–67 years old). A quantitative proteomic analysis was performed to analyze changes in their intracellular and secreted p...  相似文献   

6.
Neurochemical alterations, which may be associated with the development of diabetic retinal dysfunction, were investigated using streptozotocin (STZ)-induced hyperglycemia in rats. Young male Wistar rats, weighing 100-150 g, were made diabetic with daily intraperitoneal injections of STZ (30 mg/kg) for 5 days. This treatment caused a continuous hyperglycemia (400-600 mg/dl) and suppressed gain in body weight. Nine weeks after the STZ treatment, a significant increment in retinal valine and a decline in phenylalanine were noted, while the concentrations of other neuroactive amino acids, such as gamma-aminobutyric acid and aspartic acid, in the retina remained unchanged. On the other hand, the concentration of retinal dopamine (DA) was found to decrease significantly from the third week of hyperglycemia, when [3H]spiperone binding showed a tendency to increase in the retinal particulate fraction. However, the activities of tyrosine hydroxylase and aromatic L-amino acid decarboxylase (AADC) and the uptake of [3H]tyrosine showed no alteration in the retina of diabetic rats. The accumulation rate of 3,4-dihydroxyphenylalanine (DOPA) in vivo in the retina of diabetic rats, measured following the administration of the AADC inhibitor m-hydroxybenzyl-hydrazine (100 mg/kg i.p.), was also unchanged. Although [3H]DA uptake by retinal tissue was similar in control and diabetic animals, the spontaneous efflux of [3H]DA from the retina was found to be significantly accelerated in STZ-treated animals. In addition, the release of preloaded [3H]DA, elicited by repeated photic stimulation, was significantly attenuated in retina from diabetic rats. These results suggest that an accelerated efflux of DA, possibly leading to the depletion of DA from the retinal DA system, may account for early retinal dysfunctions known to occur in diabetic subjects.  相似文献   

7.
Diabetes-induced increase in oxidative stress is postulated as playing a significant role in the development of retinopathy. The retinal pigment epithelium (RPE) which forms part of the retinal blood barrier has been reported to be affected in diabetes. Besides functioning as a neurotransmitter, the radical nitric oxide (NO) can act as a cytotoxic agent. NO is synthesized by nitric oxide synthase (NOS) that oxidizes arginine to citrulline producing NO. Given that intracellular concentration of arginine depends mainly on its transport, we studied arginine transport in RPE and retina from normal and streptozotocin-induced diabetic rats. Retina and RPE take up arginine by a saturable system with an apparent KM of 70–80 μM. Tissue incubation in the presence of insulin or high glucose concentrations significantly increased arginine transport in RPE but not in retina from control rats. Similarly, arginine uptake was enhanced in RPE, but not in the retina from streptozotocin-induced diabetic rats. However, NO content was two-fold higher in diabetic retina and RPE compared to that in the control rats. Such findings may suggest that diabetes induced an increase in NO levels in RPE, which may have brought about alterations in its functioning and in turn manifestations of diabetic retinopathy. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

8.
Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch''s membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch''s membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4−/− and Rdh8−/−/Abca4−/− mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4−/− but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4−/− mice revealed that carbonyl adduct deposition in Bruch''s membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4−/− mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch''s membrane that can confer risk of age-related macular degeneration.  相似文献   

9.
The aim in this study is to observe the hippocampal redox state during kainic-acid (KA)-induced seizure status, and examine the effect of systemic preinjection of anticonvulsant zonisamide (ZNS) on the hippocampal redox. To perform under a freely moving state, in vivo microdialysis method was applied to electron paramagnetic resonance (EPR) spectroscopy. Half-life of 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCAM), a five-membered ring nitroxide radical, was used for the indicator of the hippocampal antioxidant ability. The changes in EPR signal intensities of PCAM decreased exponentially in all rats used. The average half-lives of PCAM was significantly shorter in the rats pretreated with ZNS than that of control group, and while the average half-lives of PCAM in the perfusate was significantly longer in the rats KA-induced status epilepticus than that of control (P < 0.01). Those of PCAM in the ZNS-pretreated rats followed by KA-injection were almost the same as those of control. These findings indicate that the pretreatment of ZNS increased the antioxidant ability in the hippocampus during KA-induced seizure. This study is the first in vivo evaluation of the antioxidant ability of ZNS as neuroprotective role against the free radicals performed under the condition of freely moving rats during seizure status.  相似文献   

10.
猫视网膜年龄相关的形态学变化   总被引:7,自引:1,他引:6  
取老年猫(12龄,3~3.5kg)和青年猫(1~3龄,2~2.5kg)各4只的视网膜,经4%多聚甲醛处理后,用H.E.染色以显示视网膜结构,Nissl染色显示神经节细胞,免疫组织化学ABC法染色以显示星形胶质细胞特征性标志物胶质纤维酸性蛋白(GFAP)的阳性反应细胞的分布。显微镜下观察测量视网膜厚度,计数神经节细胞、GFAP免疫反应阳性细胞数。与青年猫比较,老年猫视网膜总厚度以及外核层、外网状层、内核层和内网状层厚度均显著减小;神经节细胞层的细胞密度显著下降;GFAP免疫反应阳性细胞显著增加,GFAP阳性细胞阳性反应强,胞体明显膨胀,突起稠密粗大。推测在衰老过程中视网膜细胞有神经元丢失现象,可能是造成视觉功能衰退的重要原因之一;视网膜星形胶质细胞的功能增强可能会延缓衰老。  相似文献   

11.
Glycerol Phosphate Dehydrogenase in Developing Chick Retina and Brain   总被引:1,自引:1,他引:0  
Abstract: The development of cytoplasmic glycerol phosphate dehydrogenase (GPDH) activity in chick neural retina is compared with that in brain. GPDH converts dihydroxyacetone phosphate to glycerol 3-phosphate, an intermediate in phospholipid synthesis. The enzyme is known to be under corticosteroid control in rat brain and spinal cord (but not muscle or liver) and in primary oligodendrocyte cultures. It has not been previously studied in the eye. In chick brain the GDPH specific activity rises fivefold from the early embryo to the adult, with nearly all the increase occurring between embryonic day 14 and hatching. This time course correlates well with the known maturation of chick adrenal cortex (which produces corticosteroids). On the other hand, in chick retina the GPDH specific activity remains at a low basal level throughout development. Furthermore, adult rat and beef retinas show much lower enzyme activity than do the corresponding brain tissues. GPDH can be induced precociously by hydrocortisone in embryonic chick brain from days 12 through 16, both in the intact embryo and in tissue culture; however, GPDH is not at all inducible in chick retina. The developmental increase in chick brain GPDH can be correlated qualitatively with myelin formation, as shown by luxol fast blue staining, whereas no myelin is seen in retina at any age. Our results are consistent with recent immunocytochemical studies demonstrating that GPDH in rat brain is associated with myelin-producing oligodendroglial cells, absent in retina. In comparison, another glial enzyme, glutamine synthetase (GS), known to be inducible in both chick brain and retina, is localized in brain astrocytes and retinal Müller cells.  相似文献   

12.
Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.  相似文献   

13.
Abstract: The inactivation of γ-aminobutyrate (GABA)-transaminase by the highly specific and potent neurotoxin gabaculine leads to different neurochemical consequences in the chick brain as opposed to the chick retina. In the brain, GABA levels continually climb, reaching approximately eightfold increases over control values after 24 h. The elevation in GABA levels leads to a time-dependent and coincident fall in glutamate decarboxylase and cysteine- sulfinatc decarboxylase activities, to approximately 50% of control values. On the other hand, in the retina GABA levels only increase to a plateau level two- to threcfold that of control after inactivation of GABA-transaminase. Further- more, although the glutamate decarboxylase activity decreases to about 50% of control values, cysteinesulfinate decarboxylase activity is not affected. These studies show that the processing of GABA in the retina differs from that in the brain, and that cysteinesulfinate and glutamate decarboxylase activity probably reside in different enzyme molecules in the retina, although they may reside in the same enzyme in the brain.  相似文献   

14.
Streptozotocin-Induced Diabetes Reduces Brain Serotonin Synthesis in Rats   总被引:3,自引:3,他引:3  
The rate of brain 5-hydroxytryptamine (serotonin) synthesis and turnover in streptozotocin-diabetic rats was assessed using three separate methods: the rate of 5-hydroxytryptophan accumulation following decarboxylase inhibition with Ro 4-4602; the decline in 5-hydroxyindoleacetic acid levels following monoamine oxidase inhibition with pargyline; and the rate of 5-hydroxyindoleacetic acid accumulation following blockade of acid transport with probenecid. Each of the three methods revealed that 5-hydroxytryptamine synthesis and turnover is decreased by 44-71% in diabetic rats with plasma glucose levels of between 500 and 600 mg%. In addition, the levels of free and bound plasma tryptophan were measured and the levels of the free amino acid were found to be the same in control and diabetic rats. Since diabetic rats exhibit a 40% decrease in brain tryptophan, the free tryptophan level in plasma does not predict brain tryptophan levels in diabetic rats. These data are discussed within the context of psychiatric disturbances experienced by diabetic patients.  相似文献   

15.
The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive ‘eye spot’ in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report—based on evidence of size, shape, preservation mode and localized occurrence—the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin.  相似文献   

16.
取老年猫(12龄,2.5~3 kg)和青年猫(1~3龄,2~2.5 kg)各4只的视网膜,经4%多聚甲醛处理后用H.E染色以显示视网膜和脉络膜的结构。光学显微镜下观察感光细胞层、玻璃膜(Bruch’s membrane)结构的变化,计数色素上皮层(retinal pigment epithelium,RPE)细胞数、脉络膜毛细血管数,测量玻璃膜、脉络膜厚度,脉络膜毛细血管之间的距离。结果显示,与青年猫比较,老年猫视网膜感光细胞层结构杂乱;色素上皮细胞数显著下降;玻璃膜厚度无显著变化,出现较多碎片;脉络膜厚度明显变薄,脉络膜毛细血管数显著减小,脉络膜毛细血管之间的距离显著增大。推测老年猫脉络膜的退化可能是导致玻璃膜、色素上皮层的退化,进而导致感光细胞的功能衰退的重要原因。  相似文献   

17.
The distribution of glucose-1,6-bisphosphate (G16P2) synthase was measured in more than 70 regions of mouse brain, and nine layers of monkey retina. Activities in gray areas varied as much as 10-fold, in a hierarchical manner, from highest in telencephalon, especially the limbic system, to lowest in cerebellum, medulla, and spinal cord. The synthase levels were significantly correlated among different regions with G16P2 itself, as well as with previously published levels of a brain specific IMP-dependent G16P2 phosphatase. In contrast, neither G16P2 nor either its synthase or phosphatase correlated positively with phosphoglucomutase, and in all regions the G16P2 levels greatly exceeded requirements for activation of this mutase. This strengthens the view that G16P2 has some function besides serving as coenzyme for phosphoglucomutase. However, attempts to correlate the "G16P2 system," as defined by the three coordinately related elements, synthase, phosphatase, and G16P2, with other enzymes of carbohydrate metabolism, or with regional data of Sokoloff et al. [J. Neurochem. 28, 897-916 (1977)] for glucose consumption, were unsuccessful. This leaves open the possibility that brain G16P2 might serve as a phosphate donor for specific nonmetabolic effector proteins.  相似文献   

18.
《Free radical research》2013,47(11-12):1245-1266
Abstract

The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.  相似文献   

19.
The activity of glucose-1,6-bisphosphatase and the level of its substrate were measured in 16 gray areas and four fiber areas of mouse brain and 10 layers or sublayers of monkey retina. Because of the low activity of the enzyme and the small sample sizes, it was necessary to develop a method with two different amplification steps (overall amplification about 106). The enzyme ranged in activity 100-fold from a low in monkey retina photoreceptor cells to a high in the pyramidal layer of the hippocampus. However, in gray areas of the brain proper the range was only about fourfold. This, together with its requirement for IMP, suggests that the enzyme has a widespread metabolic function related to states of increased neuronal activity. Glucose-1,6-bisphosphate levels varied from 80 to 960 μmol/kg dry weight in different areas of mouse brain and from 44 to 200 μmol/kg dry weight in different layers of monkey retina. In general, the glucose bisphosphate levels correlated positively with the bisphosphatase activities; however, the three areas with the highest enzyme concentrations did not fit this pattern.  相似文献   

20.
Abstract: Previous studies have shown that complete blockade of metabolism in embryonic chick retina causes a time-dependent increase in the release of glutamate into the extracellular space. The present study examined the cellular source of this glutamate, i.e., neuronal and/or glial. Pure cultures of retinal neurons or glia were labeled for 10 min at 37°C with [3H]acetate. Retinal glia, but not retinal neurons, were found to selectively and preferentially metabolize acetate, thus producing 3H-labeled amino acids in the glial compartment. This finding provides direct evidence to substantiate findings from several other laboratories that have indirectly determined the preferential metabolism of acetate by glia by using mixed neuronal/glial populations. To study the cellular source of glutamate released during total metabolic blockade, whole retina were prelabeled with [3H]acetate plus [U-14C]glucose (to label the neuronal compartment). Total metabolic blockade was instituted with a combination of iodoacetate (IOA) plus KCN, and the release of glutamate into the medium was followed at 5, 15, and 30 min. During total energy blockade, net extracellular glutamate was not elevated at 5 min [0.17 ± 0.02 vs. 0.12 ± 0.01 µM for treated vs. control retina (means ± SEM), respectively], but was increased significantly at 15 (1.2 ± 0.26 µM) and 30 min (2.6 ± 0.22 µM). Total [3H]glutamate in the medium during IOA/KCN treatment was unchanged at 5 min, but was increased 1.5- and threefold above basal levels at 15 and 30 min, respectively. During the time when extracellular glutamate increased, the specific activity of [3H]glutamate remained fairly constant, 731 ± 134 and 517 ± 82 dpm/nmol (means ± SEM) at 15 and 30 min, respectively. In contrast, 14C-labeled glutamate in the medium did not increase during IOA/KCN treatment and paralleled basal levels. Thus, the specific activity of 14C-labeled extracellular glutamate decreased from 309 ± 87 dpm/nmol at 15 min to 42 ± 8 dpm/nmol at 30 min. Prior loading of the tissue with 0.5 mM trans-pyrrolidine-2,4-dicarboxylate (t-PDC), a glutamate transport inhibitor, blocked 57% of the glutamate released at 30 min of IOA/KCN exposure, suggesting that reversal of an Na+-dependent glutamate transporter was a key contributor to the appearance of extracellular glutamate during energy deprivation. The increase in extracellular [3H]glutamate, constancy of the specific activity of extracellular [3H]glutamate, decrease in the specific activity of extracellular [14C]glutamate, and attenuation of release by prior loading with t-PDC indicate that glial pools of glutamate released via reversal of the transporter contribute significantly to the rise in extracellular glutamate after metabolic inhibition in this preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号