首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell fusions have been used to determine the biological activity of the MPF complex in murine oocytes during their progression through anaphase and telophase to metaphase II. Oocytes (1) at metaphase I, (2) during the anaphase-telophase transition, or (3) at metaphase II were fused to germinal vesicle-staged (immature) oocytes. The hybrids were cultured for 1 h in the presence of db cAMP before fixation and nuclear evaluation. Metaphase I oocytes invariably induced germinal vesicle breakdown (GVBD) in the immature partner. By contrast, anaphase/telophase oocytes never induced GVBD in immature oocytes. The capacity to induce GVBD reappears after the formation of the second metaphase plate. In a second study, histone H1 kinase activity was measured during mouse oocyte maturation in single oocytes. H1 kinase activity was low in GV oocytes, increased sharply at MI, declined during anaphase and telophase and increased again at MII. After egg activation, H1 kinase activity was reduced to basal levels. These results provide direct evidence that a drop in activity of MPF in murine oocytes occurs concomitantly with the exit from metaphase I; MPF activity remains low until the cell re-enters metaphase.  相似文献   

2.
Oocytes of wild-type mice are ovulated as the secondary oocytes arrested at metaphase of the second meiotic division. Their fertilization or parthenogenetic activation triggers the completion of the second meiotic division followed by the first embryonic interphase. Oocytes of the LT/Sv strain of mice are ovulated either at the first meiotic metaphase (M I) as primary oocytes or in the second meiotic metaphase (M II) as secondary oocytes. We show here that duringin vitromaturation a high proportion of LT/Sv oocytes progresses normally only until metaphase I. In these oocytes MAP kinase activates shortly after histone H1 kinase (MPF) activation and germinal vesicle breakdown. However, MAP kinase activation is slightly earlier than in oocytes from wild-type F1 (CBA/H × C57Bl/10) mice. The first meiotic spindle of these oocytes forms similarly to wild-type oocytes. During aging, however, it increases in size and finally degenerates. In those oocytes which do not remain in metaphase I the extrusion of first polar bodies is highly delayed and starts about 15 h after germinal vesicle breakdown. Most of the oocytes enter interphase directly after first polar body extrusion. Fusion between metaphase I LT/Sv oocytes and wild-type mitotic one-cell embryos results in prolonged M-phase arrest of hybrids in a proportion similar to control LT/Sv oocytes and control hybrids made by fusion of two M I LT/Sv oocytes. This indicates that LT/Sv oocytes develop cytostatic factor during metaphase I. Eventually, anaphase occurs spontaneously and the hybrids extrude the polar body and form pronuclei in a proportion similar as in controls. In hybrids between LT/Sv metaphase I oocytes and wild-type metaphase II oocytes (which contain cytostatic factor) anaphase I proceeds at the time observed in control LT/Sv oocytes and hybrids between two M I LT/Sv oocytes, and is followed by the parthenogenetic activation and formation of interphase nuclei. Also the great majority of hybrids between M I and M II wild-type oocytes undergoes the anaphase but further arrests in a subsequent M-phase. These observations suggest that an internally triggered anaphase I occurs despite the presence of the cytostatic activity both in LT/Sv and wild-type M I oocytes. Anaphase I triggering mechanism must therefore either inactivate or override the CSF activity. The comparison between spontaneous and induced activation of metaphase I LT/Sv oocytes shows that mechanisms involved in anaphase I triggering are altered in these oocytes. Thus, the prolongation of metaphase I in LT/Sv oocytes seems to be determined by delayed anaphase I triggering and not provoked directly by the cytostatic activity.  相似文献   

3.
Fully grown rabbit oocytes, isolated from preovulatory follicles, exhibit highly condensed bivalents within an intact germinal vesicle while a very low level of histone H1 kinase activity could be detected in their extracts. Chromatin condensation started in growing oocytes isolated from antral follicles presenting a diameter of 0.5 mm. This event was accompanied by a transient rise in histone H1 kinase activity which culminated in large antral follicles measuring 0.75 to 1 mm in diameter. However, the extent of histone H1 kinase activity observed in these growing oocytes remained far less important than that recorded in extracts prepared from in vitro cultured metaphase I and metaphase II oocytes. Moreover, this activity was insufficient to induce germinal vesicle breakdown which will only occur with an increasing efficiency, following in vitro culture of medium, large, and fully grown antral follicles. © 1994 Wiley-Liss, Inc.  相似文献   

4.
A large population (62-90%) of pig follicular oocytes can mature to metaphase II after culture for 48 h. However, a proportion (6-22%) remain in an immature stage at metaphase I (metaphase I-arrested). The main objective of this study was to determine whether the cytoplasm of metaphase I-arrested pig oocytes is capable of being activated by sperm penetration or parthenogenetic stimulation. After culture for 48 h, oocytes without a polar body (73% were shown to be at metaphase I after staining) and those with a polar body (94% were at metaphase II) were fertilized in vitro. A total of 69% and 62% of the oocytes were activated to form a female pronucleus, respectively, and the rate of polar body extrusion induced by fertilization in the activated oocytes was 90% (the first polar body) and 95% (the second polar body), respectively. When oocytes without and with a polar body were stimulated with an electric pulse, 53% and 81% of the oocytes were activated, respectively. The rate of polar body extrusion in the activated oocytes was 73% (the first polar body) and 79% (the second polar body), respectively. In contrast, young metaphase I oocytes cultured for 24 h had low (6%) or zero activation rate after in vitro fertilization or electric pulse stimulation. However, about one-third of the young metaphase I oocytes penetrated by spermatozoa after in vitro fertilization responded to electric pulse 12 h after insemination, and almost all (93%) were activated when they were stimulated 24 h after insemination. Patterns of polypeptide synthesis and histone H1 kinase activity were similar in metaphase I-arrested and metaphase II oocytes, and were characterized by increase in a 25 kDa polypeptide and by decrease in kinase activity. Although the first step of meiotic division is impaired, these results indicate that metaphase I-arrested oocytes are mature cytoplasmically.  相似文献   

5.
p34cdc2 protein kinase is a universal regulator of M-phase in eukaryotic cell cycle. To investigate the regulation of meiotic and mitotic cell cycle in mammals, we examined the changes in phosphorylation states of p34cdc2 and its histone H1 kinase activity in mouse oocytes and embryos. We showed that p34cdc2 has three different migrating bands (referred to as upper, middle and lower bands) on SDS-PAGE followed by immunoblotting with anti-PSTAIR antibody, and that the upper and middle bands are phosphorylated forms since these two bands shifted to the lower one by alkaline phosphatase treatment. In meiotic cell cycle, only germinal vesicle (GV) stage oocytes had the three forms. The phosphorylated forms decreased gradually in oocytes up to 2 h after isolation from follicles, and thereafter the phosphorylation states did not change significantly until metaphase II. However, the histone H1 kinase activity oscillated, being activated at the first and second metaphase in meiosis and inactivated at the time of the first polar body extrusion. These results suggest that changes in phosphorylation states of p34cdc2 triggered its activation at the first metaphase, but not inactivation and reactivation at the first and second metaphase, respectively. In mitotic cell cycle, phosphorylated forms appeared at 4 h after insemination, increased greatly just before metaphase, and were dephosphorylated in metaphase. Histone H1 kinase activity was high only at metaphase. This kinase activation is probably triggered by dephosphorylation of p34cdc2.  相似文献   

6.
When oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with the Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine 1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during the meiotic maturation of pig oocytes and 2) the effects of protein phosphatase 1/2A (PP1/ PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase, and histone H3 kinase in this process. The phosphorylation of histone H3 (Ser10) was first detected in the clump of condensed chromosomes at the diakinesis stage and was maintained until metaphase II. The kinase assay showed that histone H3 kinase activity was low in oocytes at the germinal vesicle stage (GV) and increased at the diakinesis stage and that high activity was maintained until metaphase II. Treatment of GV-oocytes with okadaic acid (OA) or calyculin-A (CL-A), the PP1/PP2A inhibitors, induced rapid chromosome condensation with histone H3 (Ser10) phosphorylation after 2 h. Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and the MEK inhibitor U0126, neither Cdc2 kinase nor MAP kinase were activated and no oocytes underwent germinal vesicle breakdown (GVBD), although histone H3 kinase was still activated and the chromosomes condensed with histone H3 (Ser10) phosphorylation. These results suggest that the phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Furthermore, the chromosome condensation is correlated with histone H3 kinase activity but not with Cdc2 kinase and MAP kinase activities.  相似文献   

7.
Histone H1 kinase (H1K) activity was assayed during meiotic maturation in porcine oocytes matured in a modified Krebs-Ringer bicarbonate solution (KRB) or in porcine follicular fluid (pFF) in vitro. Oocytes matured in KRB displayed lower male pronucleus formation ability, delayed first polar body emission, and a higher spontaneous activation rate than oocytes matured in pFF. In oocytes matured in pFF, H1K activity was low at the germinal vesicle stage and increased about 8-fold at first and second metaphases, with a transient depression at first anaphase and telophase. The H1K activity at second metaphase in oocytes matured in KRB was significantly lower than that in oocytes matured in pFF. These results suggest that the maturation medium used influences the fluctuation pattern of H1K activity and the biological characteristics of porcine oocytes cultured in vitro.  相似文献   

8.
Two principal kinases, p34cdc2 kinase and MAP kinase play a pivotal role in maturation of mammalian oocytes. In the porcine and bovine oocytes both kinases are activated around the time of germinal vesicle breakdown (GVBD). Butyrolactone I (BL I), a specific inhibitor of cdk kinases, prevents effectively and reversibly resumption of meiosis in the porcine and bovine oocytes. Neither p34cdc2 kinase nor MAP kinase are activated in oocytes inhibited in the GV stage. The bovine oocytes maintained for 48 h in the medium supplemented with BL I, progress subsequently to metaphase II in 91%, their cumuli expand optimally and after in vitro fertilization they possess two pronuclei. When the cdc2 kinase is blocked in the porcine oocytes by BL I, MAP kinase, activated by okadaic acid treatment, is able to substitute cdc2 kinase and induce GVBD. The histone H1 kinase activity sharply decreases in the metaphase II oocytes treated by BL I and one or two female pronuclei are formed. These data indicate that BL I is a useful tool either for the two step in vitro culture of mammalian oocytes or for their activation in nuclear transfer experiments.  相似文献   

9.
Fully grown oocytes of most laboratory mice progress without interruption from the germinal vesicle (GV) stage to metaphase II, where meiosis is arrested until fertilization. In contrast, many oocytes of strain LT mice arrest precociously at metaphase I and often undergo subsequent spontaneous parthenogenetic activation. Cytostatic factor (CSF), which prevents the degradation of cyclin B and maintains high maturation-promoting factor (MPF) activity, is required for maintenance of metaphase I-arrest in LT oocytes, similar to its requirement for maintaining metaphase II-arrest in normal oocytes. However, CSF does not instigate metaphase I-arrest since a temporary metaphase I-arrest occurs in MOS-null LT oocytes. This paper addresses the mechanism(s) that may instigate metaphase I-arrest and tests the hypothesis that there may be one or more defects in LT oocytes that delay their acquisition of competence to trigger the cascade of processes that normally drive entry into and progression through anaphase I. To test this hypothesis, MPF activity was artificially abrogated by treating oocytes with a general protein kinase inhibitor, 6-DMAP, at various times during the progression of meiosis I. This allowed a comparison of the time at which LT and normal oocytes become competent to undergo the metaphase I/anaphase transition even if oocytes were arrested at metaphase I when 6-DMAP-treatment was begun. There were no differences between LT and control oocytes in the kinetics of MPF suppression by 6-DMAP. However, it was found that LT oocytes do not acquire competence to undergo the metaphase I/anaphase transition in response to 6-DMAP until 50-60 min after normal oocytes. A similar delay was observed in strain CX8-4 oocytes, which also have a high incidence of metaphase I-arrest, but not in strain CX8-11 oocytes, which exhibit a low incidence of metaphase I-arrest. MOS-null LT oocytes also exhibit a delay in acquisition of competence to undergo the metaphase I/anaphase transition. Thus, a delay in competence to undergo the metaphase I/anaphase transition in response to 6-DMAP-treatment correlates with metaphase I-arrest. It is therefore hypothesized that the observed delay in acquisition of competence to enter anaphase I may instigate the sustained metaphase I-arrest in LT oocytes by allowing CSF activity to rise to a level that prevents cyclin B degradation and maintains high MPF activity before anaphase can be initiated by normal triggering mechanisms.  相似文献   

10.
The decrease in maturation-promoting factor (MPF) activity precedes that in mitogen-activated protein kinase (MAPK) activity after egg activation, but the cellular functions of this delayed inactivation of MAPK are still unclear. The present study was conducted to examine the essential role of MAPK activity for supporting the transition from metaphase to interphase in porcine oocytes matured in vitro. The increases in the phosphorylated forms of MAPK and the activities of MAPK and histone H1 kinase (H1K) were shown in oocytes arrested at the metaphase II (MII) stage. After additional incubation of MII-arrested oocytes in medium with added U0126, a specific inhibitor of MAPK kinase, 24% of oocytes completed the second meiotic division and underwent entry into interphase with pronucleus (PN) formation, but not second polar body (PB-2) emission. The intensities of the phosphorylated forms of MAPK and the activities of MAPK and H1K in matured oocytes treated with U0126 were significantly decreased by the treatment with U0126. Electrostimulation to induce artificial activation caused both H1K and MAPK inactivation; the inactivation of H1K preceded the inactivation of MAPK and sustained high levels of MAPK activity were detected during the period of PB-2 emission. However, the time sequence required for MAPK inactivation was significantly reduced by the addition of U0126 to the culture medium following electrostimulation, resulting in the dramatic inactivation of MAPK distinct from that of H1K. In these oocytes, PB-2 emission was markedly inhibited but little difference was found in the time course of PN formation compared with oocytes not treated with U0126. These findings suggest that the decrease in MAPK activity is partly involved in driving matured oocytes out of metaphase to induce PN development, and that the delayed MAPK inactivation after the onset of MPF inactivation in activated oocytes has a crucial role for PB-2 emission to accomplish the transition from meiosis to mitosis.  相似文献   

11.
The kinetics of nuclear maturation, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes were examined. A further objective was to determine the duration of the meiotic stages during the maturation process. Porcine and bovine cumulus-oocyte complexes (COCs) were incubated in TCM 199 supplemented with 20% (v/v) heat inactivated fetal calf serum (FCS), 0.05microg/ml gentamycin, 0.02mg/ml insulin, 2.5microg/ml FSH and 5microg/ml LH. COCs were removed from the culture media in hourly intervals starting immediately after recovery from the follicle until 24 (bovine) or 48h (porcine) of culture. Oocytes were either fixed to evaluate the maturation status or the activity of MPF, assessed by its histone H1 kinase activity, and MAP kinase were determined by a radioactive assay simultaneously. In oocytes of both species, the MPF activity oscillated during the culture period with two maxima corresponding with the two metaphases: between 27-32 and after 46h (porcine) and between 6-9 and after 22h (bovine). There was a temporary decline in activity after 33-38 (porcine) and after 19h (bovine), which corresponded with anaphase I and telophase I. MAP kinase activity increased during the whole culture period and reached maximum levels after 47 (porcine) and after 22h (bovine). In porcine oocytes, the MAP kinase was activated before GVBD and MPF activation. In bovine oocytes, MPF and MAP kinase were activated at approximately the same time as the GVBD (8-9h of incubation). In average porcine, oocytes remain 23.4h in the germinal vesicle (GV) stage (13h in GV I, 5.7h in GV II, 3.2h in GV III and 1.5h in GV IV), 0.9h in diakinese, 9.6h in the metaphase I, 2.8h in anaphase I and 1.9h in telophase I of the first meiotic division. In bovine oocytes, the temporal distribution of the meiotic stages were 8.5h for the GV stage, 1.2h for diakinese, 8.3h for metaphase I, 1.6h for anaphase I and 1.9h for telophase I. These results indicate that the duration of the meiotic stages differs between the species and that MAP kinase is activated before MPF and GVBD in porcine oocytes.  相似文献   

12.
In this study a specific inhibitor of cyclin-dependent kinases (cdks), butyrolactone I (BL I), was used for activation of pig and cattle metaphase II (MII) oocytes. BL I at a concentration of 100 microM was able to induce activation of both pig and cattle MII oocytes in a manner dependent on exposure time; however, precise timing of BL I exposure was required for the best activation results. The optimum activation rates were obtained when cattle MII oocytes were treated for 5 h with BL I and subsequently for 3-11 h in control medium, and pig MII oocytes for 8 h in BL I and then for 8-16 h in control medium; the percentage of activated oocytes after such treatment varied between 55% and 74% and between 53% and 81% for cattle and pig oocytes, respectively. Shorter exposures to BL I led to re-entry of the oocytes to the metaphase state in 35-50% of oocytes, the remaining oocytes forming a pronuclear stage; longer exposure to BL I led to increased numbers of oocytes being abnormal or degenerated. The behaviour of histone H1 kinase and mitogen activated protein (MAP) kinase, also measured during the experiment, reflected the morphological changes in the oocytes: both were inactivated after BL I treatment, though the inactivation of histone H1 kinase occurred 2 h ahead of that of MAP kinase. However, in the oocytes treated for a shorter time with BL I, with the reoccurrence of condensed chromatin in proportion of the oocytes cultured in control medium after BL I treatment, both kinases became reactivated. Taken together, these results suggest the possibility of using BL I for activation and cloning experiments in both species.  相似文献   

13.
In the present study the effects of roscovitine on the in vitro nuclear maturation of porcine oocytes were investigated. Roscovitine, a specific inhibitor of cyclin-dependent protein kinases, prevented chromatin condensation in a concentration-dependent manner. This inhibition was reversible and was accompanied by non-activation of p34cdc2/histone H1 kinase. It also decreased enzyme activity of MAP kinase, suggesting a correlation between histone H1 kinase activation and the onset of chromatin condensation. The addition of roscovitine (50 microM) to extracts of metaphase II oocytes revealed that the MAP kinase activity was not directly affected by roscovitine, which indicates a possible link between histone H1 and MAP kinase. Chromatin condensation occurred between 20 and 28 h of culture of cumulus-oocyte complexes (COCs) in inhibitor-free medium (germinal vesicle stage I, GV1: 74.6% and 13.7%, respectively). Nearly the same proportion of chromatin condensation was detected in COCs incubated initially in inhibitor-free medium for 20-28 h and subsequently in roscovitine-supplemented medium (50 microM) for a further 2-10 h (GV I: 76.2% and 18.8%, respectively). This observation indicates that roscovitine prevents chromatin condensation even after an initial inhibitor-free cultivation for 20 h. Extending this initial incubation period to > or = 22 h led to an activation of histone H1 and MAP kinase and increasing proportions of oocytes exhibiting chromatin condensation in the presence of roscovitine. It is concluded that histone H1 kinase is involved in the induction of chromatin condensation during in vitro maturation of porcine oocytes.  相似文献   

14.
Oocytes from LTXBO mice exhibit a delayed entry into anaphase I and frequently enter interphase after the first meiotic division. This unique oocyte model was used to test the hypothesis that protein kinase C (PKC) may regulate the meiosis I-to-meiosis II transition. PKC activity was detected in LTXBO oocytes at prophase I and increased with meiotic maturation, with the highest (P < 0.05) activity observed at late metaphase I (MI). Treatment of late MI-stage oocytes with the PKC inhibitor, bisindolylmaleimide I (BIM), transiently reduced (P < 0.05) M-phase-promoting factor (MPF) activity and promoted (P < 0.05) progression to metaphase II (MII), while mitogen-activated protein kinase (MAPK) activity remained elevated during the MI-to-MII transition. Confocal microscopy analysis of LTXBO oocytes during this transition showed PKC-delta associated with the meiotic spindle and then with the chromosomes at MII. Inhibition of PKC activity also prevented untimely entry into interphase, but only when PKC activity was reduced in oocytes before the progression to MII and thus indicates that the transition into interphase is directly associated with the delayed triggering of anaphase I. Moreover, the defect(s) that initiate activation occur upstream of MAPK, as suppression of PKC activity failed to prevent activation by Mos(tm1Ev)/ Mos(tm1Ev) LTXBO oocytes expressing no detectable MAPK activity. In summary, PKC participates in the regulatory mechanisms that delay entry into anaphase I in LTXBO oocytes, and the disruption promotes untimely entry into interphase. Thus, loss of regulatory control over PKC activity during oocyte maturation disrupts the critical MI-to-MII transition, leading to a precocious exit from meiosis.  相似文献   

15.
In this study, butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinases, was shown to block germinal vesicle (GV) breakdown (GVBD) in bovine oocytes in a concentration-dependent manner; GVBD was almost totally inhibited over the course of 24-48 h of culture when 100 microM BL I was included in tissue culture medium 199 containing either polyvinyl alcohol or BSA. Correlated with this inhibition was the failure of either p34(cdc2) kinase or mitogen-activated protein (MAP) kinase to become activated, and it was unlikely that BL I directly inhibited MAP kinase, since 100 microM BL I did not inhibit MAP kinase activity present in extracts obtained from metaphase II-arrested bovine eggs that possess high levels of MAP kinase activity. Nevertheless, the formation of highly condensed bivalents was observed in 78% of the BL I-treated GV-intact oocytes. This result suggests that chromosome condensation during first meiosis in bovine oocytes does not require the activity of either p34(cdc2) kinase or MAP kinase. Treatment of BL I-arrested oocytes with okadaic acid (OA) did not result in either the activation of p34(cdc2) kinase or MAP kinase, or inducement of GVBD. The BL I-induced block of GVBD for 24 h was reversible, and a subsequent 24-h culture resulted in 90% of oocytes reaching metaphase II with emission of the first polar body. Correlated with the progression to and arrest at metaphase II was the full activation of both p34(cdc2) and MAP kinases. The reversibility after 48 h of culture in BL I was partially decreased when compared to that achieved after an initial 24-h culture. Fertilization in vitro of these eggs resulted in a high incidence of both sperm penetration and pronucleus formation (88% and 70%, respectively).  相似文献   

16.
N Furuno  Y Ogawa  J Iwashita  N Nakajo    N Sagata 《The EMBO journal》1997,16(13):3860-3865
In vertebrates, M phase-promoting factor (MPF), a universal G2/M regulator in eukaryotic cells, drives meiotic maturation of oocytes, while cytostatic factor (CSF) arrests mature oocytes at metaphase II until fertilization. Cdk2 kinase, a G1/S regulator in higher eukaryotic cells, is activated during meiotic maturation of Xenopus oocytes and, like Mos (an essential component of CSF), is proposed to be involved in metaphase II arrest in mature oocytes. In addition, cdk2 kinase has been shown recently to be essential for MPF activation in Xenopus embryonic mitosis. Here we report injection of Xenopus oocytes with the cdk2 kinase inhibitor p21Cip in order to (re)evaluate the role of cdk2 kinase in oocyte meiosis. Immature oocytes injected with p21Cip can enter both meiosis I and meiosis II normally, as evidenced by the typical fluctuations in MPF activity. Moreover, mature oocytes injected with p21Cip are retained normally in metaphase II for a prolonged period, whereas those injected with neutralizing anti-Mos antibody are released readily from metaphase II arrest. These results argue strongly against a role for cdk2 kinase in MPF activation and its proposed role in metaphase II arrest, in Xenopus oocyte meiosis. We discuss the possibility that cdk2 kinase stored in oocytes may function, as a maternal protein, solely for early embryonic cell cycles.  相似文献   

17.
BubR1 (Bub1-related kinase or MAD3/Bub1b) is an essential component of the spindle assembly checkpoint (SAC) and plays an important role in kinetochore localization of other spindle checkpoint proteins in mitosis. But its roles in mammalian oocyte meiosis are unclear. In the present study, we examined the expression, localization and function of BubR1 during mouse oocyte meiotic maturation. The expression level of BubR1 increased progressively from germinal vesicle to metaphase II stages. Immunofluorescent analysis showed that BubR1 localized to kinetochores from the germinal vesicle breakdown to the prometaphase I stages, co-localizing with polo-like kinase 1, while it disappeared from the kinetochores at the metaphase I stage. Spindle disruption by nocodazole treatment caused relocation of BubR1 to kinetochores at metaphase I, anaphase I and metaphase II stages; spindle microtubules were disrupted by low temperature treatment in the BubR1-depleted oocytes in meiosis I, suggesting that BubR1 monitors kinetochore-microtubule (K-MT) attachments. Over-expression of exogenous BubR1 arrested oocyte meiosis maturation at the M I stage or earlier; in contrast, dominant-negative BubR1 and BubR1 depletion accelerated meiotic progression. In the BubR1-depleted oocytes, higher percentage of chromosome misalignment was observed and more oocytes overrode the M I stage arrest induced by low concentration of nocodazole. Our data suggest that BubR1 is a spindle assembly checkpoint protein regulating meiotic progression of oocytes.  相似文献   

18.
The level of cyclin B-associated cdc2 kinase, a component of maturation promoting factor (MPF), is known to be high during metaphase of the meiotic maturation of oocytes. The time-related action of gonadotropin-releasing hormones (GnRH) on histone H1 kinase activity (known to reflect cdc2 kinase activity) was investigated in vitro in follicle-enclosed goldfish oocytes. Germinal vesicle breakdown (GVBD) and testosterone production were also investigated in the same follicle-enclosed goldfish oocytes to determine the temporal relationship between GnRH-induced histone H1 kinase activity and the reinitiation of meiosis and steroidogenesis. Treatments with gonadotropin (GTH) or GnRH stimulated the histone H1 kinase activity to the same maximum level. However, sGnRH- and cGnRH-II-induced histone H1 kinase activity were significantly higher compared with controls after 2 hours of treatment, whereas the GTH-induced increase became significantly higher after 6-8 hours of incubation. Overall, the results demonstrate a close temporal relationship between GVBD response and histone H1 kinase activity induced by GTH and sGnRH-cGnRH-II.  相似文献   

19.
The influence of number of Ca2+ stimulations on the profile of histone H1 kinase activity in bovine oocytes was investigated. A Ca2+ stimulation consisted of transferring oocytes directly from culture medium to mannitol containing 100 μM Ca2+ and pulsing oocytes with a 0.2 kVcm?1, 20 μsec discharge. One, three, or six Ca2+ stimulations were given, each 22 min apart. Oocytes were frozen from 0 to 8 hr after the first stimulation at indicated time points and assayed for histone H1 kinase activity. H1 kinase activity was quantified using a densitometer and expressed as a percent of activity in nonpulsed metaphase II oocytes. Stimulating oocytes in the absence of Ca2+ in the pulsing medium did not inactivate H1 kinase. In the presence of Ca2+, however, H1 kinase was rapidly inactivated after stimulation. A single stimulation decreased H1 kinase activity to 44% ± 11% of its initial level in 1 hr. However, H1 kinase was dramatically reactivated at 2 hr after the stimulation and reached 122% ± 22% of the initial activity at 6 hr. With three stimulations, basal H1 kinase activity was 21% ± 3% and was obtained in 30 min. H1 kinase reactivation started at 4 hr after the first stimulation and level of activity reached 38% ± 15% at 8 hr. Six stimulations also led to rapid H1 kinase inactivation and to a basal activity of 14% ± 0.4%. With six stimulations, however, basal H1 kinase activity was maintained over at least 8 hr, and no reactivation occurred during this period. Basal H1 kinase activity obtained after six stimulations was similar to that of fertilized oocytes. Immunoprecipitation of p34cdc2 with an anti-cdc2 antibody strongly suggested an identity between histone H1 kinase and maturation-promoting factor. The data indicate that histone H1 kinase activity in oocytes could be regulated by the number of Ca2+ stimulations. A single Ca2+ stimulation led to H1 kinase inactivation, followed by reactivation of the kinase. Increasing the number of Ca2+ stimulations delayed the onset and reduced the extent of H1 kinase reactivation in the first parthenogenetic cell cycle. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Reinitiation of meiosis in oocytes usually occurs as a two-step process during which release from the prophase block is followed by an arrest in metaphase of the first or second meiotic division [metaphase I (MI) or metaphase II (MII)]. The mechanism of MI arrest in meiosis is poorly understood, although it is a widely observed phenomenon in invertebrates. The blockage of fully grown starfish oocytes in prophase of meiosis I is released by the hormone 1-methyladenine. It has been believed that meiosis of starfish oocytes proceeds completely without MI or MII arrest, even when fertilization does not occur. Here we show that MI arrest of starfish oocytes occurs in the ovary after germinal vesicle breakdown. This arrest is maintained both by the Mos/MEK/MAP kinase pathway and the blockage of an increase of intracellular pH in the ovary before spawning. Immediately after spawning into seawater, activation of Na+/H+ antiporters via a heterotrimeric G protein coupling to a 1-methyladenine receptor in the oocyte leads to an intracellular pH increase that can overcome the MI arrest even in the presence of active MAP kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号