首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used an enzymatic technique to determine the weakening effect of paratropomyosin, a new myofibrillar protein, on rigor linkages formed between actin and myosin, and to clarify the distinct function of paratropomyosin, as to that of tropomyosin. Paratropomyosin inhibited the Mg-ATPase activity and enhanced the K-ATPase activity of reconstituted actomyosin stoichiometrically, and its maximal binding to actin was estimated to occur at a molar ratio of 1: 12.5. Paratropomyosin also inhibited the myofibrillar Mg-ATPase activity by 49% and enhanced the myofibrillar K-ATPase activity to 126%, while tropomyosin had no effect on these ATPases. These results indicate that paratropomyosin is able to bind to thin filaments of myofibrils, because the binding site for paratropomyosin on F-actin is different from that for tropomyosin, and that, due to its greater affinity for the myosin binding site on actin, paratropomyosin competes for the binding site and helps weaken rigor linkages.  相似文献   

2.
A protein component which is released from skeletal-muscle myofibrils on the treatment with Ca2+ at concentrations above 10(-5) M and modifies the actin-myosin interaction was purified by a method involving column chromatography on Sephadex G-200 and DEAE-cellulose in succession. Although this protein resembles tropomyosin in some physicochemical properties, it has the same chain weight of 34,000 as the alpha-component of tropomyosin on SDS-polyacrylamide gel electrophoresis, and differed from tropomyosin not only in the amino acid composition but also in prolonging the clearing phase of superprecipitation of reconstituted actomyosin. We therefore concluded that this protein is a new myofibrillar one, and termed it "paratropomyosin." In postrigor muscle, it seems likely that paratropomyosin is released from its original locus with an increased concentration of Ca2+, and that it weakens rigor linkages formed between actin and myosin.  相似文献   

3.
The effects of caldesmon on structural and dynamic properties of phalloidin-rhodamine-labeled F-actin in single skeletal muscle fibers were investigated by polarized microphotometry. The binding of caldesmon to F-actin in glycerinated fibers reduced the alterations of thin filaments structure and dynamics that occur upon the transition of the fibers from rigor to relaxing conditions. In fibers devoid of myosin and regulatory proteins (ghost fibers) the binding of caldesmon to F-actin precluded structural changes in actin filaments induced by skeletal muscle myosin subfragment 1 and smooth muscle tropomyosin. These results suggest that the restraint for the alteration of actin structure and dynamics upon binding of myosin heads and/or tropomyosin evoked by caldesmon can be related to its inhibitory effect on actin-myosin interaction.  相似文献   

4.
The structural state of tropomyosin (TM) modified by 5-(iodoacetamidoethyl)-aminonaphthalene-1-sulfonate (1.5-IAEDANS) upon F-actin decoration with myosin subfragment 1 (S1) and heavy meromyosin (HMM) in glycerinated myosin- and troponin-free muscle fibers was studied. HMM preparations contained native phosphorylated myosin light chains, while S1 preparations did not. The changes in the polarized fluorescence of 1.5-IAEDANS-TM during the F-actin interaction with S1 were independent of light chains phosphorylation and Ca2+ concentration, but were dependent on these factors during the F-actin interaction with HMM. The binding of myosin heads to F-actin is supposed to initiate conformational changes in TM which are accompanied by changes in the flexibility and molecular arrangement of TM. In the presence of light chains, the structural changes in TM depend on light chains phosphorylation and Ca2+ concentration. The conformational changes in TM seem to be responsible for the mechanisms of coupling of the myosin and tropomyosin modulation system during the actin-myosin interaction in skeletal muscles.  相似文献   

5.
The binding of paratropomyosin to beta-connectin, which has been suggested to interact at the A-I junction of a sarcomere, was confirmed by measuring the changes in turbidity of a mixture with changing NaCl concentration, pH and free calcium ions, and by morphological observation and a coprecipitation assay of the aggregates formed in the mixture. Paratropomyosin also bound to the 400-kDa fragment which is the N-terminal portion of beta-connectin and contains the A-I junction region. Moreover, the interaction of paratropomyosin with the 400-kDa fragment was enhanced by a calcium ion concentration from 10(-7) M to 10(-5) M and markedly suppressed above 10(-4) M calcium ions. We conclude that paratropomyosin probably binds to the 400-kDa fragment of beta-connectin in the A-I junction region in living and pre-rigor skeletal muscle. In postmortem skeletal muscle paratropomyosin may be released from the 400-kDa portion of the connectin filament by increased calcium ion concentration and translocated on to thin filaments to induce meat tenderization.  相似文献   

6.
The binding of cytochalasin B (CB) to F-actin was studied using a trace amount of [3H]-cytochalasin B. F-Actin-bound CB was separated from free CB by ultracentrifugation and the amount of F-actin-bound CB was determined by comparing the radioactivity both in the supernatant and in the precipitate. A filament of pure F-actin possessed one high-affinity binding site for CB (Kd = 5.0 nM) at the B-end. When the filament was bound to native tropomyosin (complex of tropomyosin and troponin), two low-affinity binding sites for CB (Kd = 230 nM) were created, while the high-affinity binding site was reserved (Kd = 3.4 nM). It was concluded that the creation of low-affinity binding sites was primarily due to binding of tropomyosin to F-actin, as judged from the following two observations: (1) a filament of F-actin/tropomyosin complex possessed one high-affinity binding site (Kd = 3.9 nM) plus two low-affinity binding sites (Kd = 550 nM); (2) the Ca2(+)-receptive state of troponin C in F-actin/native tropomyosin complex did not affect CB binding.  相似文献   

7.
Steady-state fluorescence anisotropy technique was used to determine the binding constant of troponin for IAEDANS-labeled tropomyosin under various conditions. In the absence of actin, Ca does not affect the binding between troponin and tropomyosin. The presence of actin greatly strengthens troponin-tropomyosin binding in the absence of Ca. However, Ca weakens troponin-tropomyosin binding by about 2.5-fold in the reconstituted filament. It is suggested that the Ca-regulated binding may serve as a molecular switch for the troponin molecule to get “on” and “off” the actin-myosin interaction site regulating muscle contraction-relaxation cycles.  相似文献   

8.
The regulation of vertebrate striated muscle contraction involves a number of different molecules, including the thin-filament accessory proteins tropomyosin and troponin that provide Ca2+-dependent regulation by controlling access to myosin binding sites on actin. Cardiac myosin binding protein C (cMyBP-C) appears to modulate this Ca2+-dependent regulation and has attracted increasing interest due to links with inherited cardiac diseases. A number of single amino acid mutations linked to clinical diseases occur in the N-terminal region of cMyBP-C, including domains C0 and C1, which previously have been shown to bind to F-actin. This N-terminal region also has been shown to both inhibit and activate actomyosin interactions in vitro. Using electron microscopy and three-dimensional reconstruction, we show that C0 and C1 can each bind to the same two distinctly different positions on F-actin. One position aligns well with the previously reported binding site that clashes with the binding of myosin to actin, but would force tropomyosin into an “on” position that exposes myosin binding sites along the filament. The second position identified here would not interfere with either myosin binding or tropomyosin positioning. It thus appears that the ability to bind to at least two distinctly different positions on F-actin, as observed for tropomyosin, may be more common than previously considered for other actin binding proteins. These observations help to explain many of the seemingly contradictory results obtained with cMyBP-C and show how cMyBP-C can provide an additional layer of regulation to actin-myosin interactions. They also suggest a redundancy of C0 and C1 that may explain the absence of C0 in skeletal muscle.  相似文献   

9.
I K Chandy  J C Lo  R D Ludescher 《Biochemistry》1999,38(29):9286-9294
Polarized phosphorescence from the triplet probe erythrosin-5-iodoacetamide attached to sulfhydryls in rabbit skeletal and cardiac muscle tropomyosin (Tm) was used to measure the microsecond rotational dynamics of these tropomyosins in a complex with F-actin. The steady-state phosphorescence anisotropy of skeletal tropomyosin on F-actin was 0.025 +/- 0.005 at 20 degrees C; the comparable anisotropy for cardiac tropomyosin was 0.010 +/- 0. 003. Measurements of the anisotropy as a function of temperature and solution viscosity (modulated by addition of glycerol) indicated that both skeletal and cardiac tropomyosin undergo complex rotational motions on the surface of F-actin. Models assuming either long axis rotation of a rigid rod or torsional twisting of a flexible rod adequately fit these data; both analyses indicated that cardiac Tm is more mobile than skeletal Tm and that the increased mobility on the surface of F-actin reflected either the rotational motion of a smaller physical unit or the torsional twisting of a less rigid molecule. The binding of myosin heads (S1) to the Tm-F-actin complexes increased the anisotropy to 0.049 +/- 0.004 for skeletal and 0.054 +/- 0.007 for cardiac tropomyosin. The titration of the skeletal tropomyosin-F-actin complex by S1 showed a break at an S1/actin ratio of 0.14; this complex had an anisotropy of 0.040 +/- 0.007, suggesting that one bound head effectively restricted the motion of each skeletal tropomyosin. A similar titration with cardiac tropomyosin reached a plateau at an S1/actin ratio of 0.4, suggesting that 2-3 myosin heads are required to immobilize cardiac Tm. Surface mobility is predicted by structural models of the interaction of tropomyosin with the actin filament while the decrease in tropomyosin mobility upon S1 binding is consistent with current theories for the proposed role of myosin binding in the mechanism of tropomyosin-based regulation of muscle contraction.  相似文献   

10.
Differential scanning calorimetry (DSC) and light scattering were used to analyze the interaction of duck gizzard tropomyosin (tropomyosin) with rabbit skeletal-muscle F-actin. In the absence of F-actin, tropomyosin, represented mainly by heterodimers, unfolds at 41 degrees C with a sharp thermal transition. Interaction of tropomyosin heterodimers with F-actin causes a 2-6 degrees C shift in the tropomyosin thermal transition to higher temperature, depending on the tropomyosin/actin molar ratio and protein concentration. A pronounced shift of the tropomyosin thermal transition was observed only for tropomyosin heterodimers, and not for homodimers. The most pronounced effect was observed after complete saturation of F-actin with tropomyosin molecules, at tropomyosin/actin molar ratios > 1 : 7. Under these conditions, two well-separated peaks of tropomyosin were observed on the thermogram besides the peak of F-actin, the peak characteristic of free tropomyosin heterodimer, and the peak with a maximum at 45-47 degrees C corresponding to tropomyosin bound to F-actin. By measuring the temperature-dependence of light scattering, we found that thermal unfolding of tropomyosin is accompanied by its dissociation from F-actin. Thermal unfolding of tropomyosin is almost completely reversible, whereas F-actin denatures irreversibly. The addition of tropomyosin has no effect on thermal unfolding of F-actin, which denatures with a maximum at 64 degrees C in the absence and at 78 degrees C in the presence of a twofold molar excess of phalloidin. After the F-actin-tropomyosin complex had been heated to 90 degrees C and then cooled (i.e. after complete irreversible denaturation of F-actin), only the peak characteristic of free tropomyosin was observed on the thermogram during reheating, whereas the thermal transitions of F-actin and actin-bound tropomyosin completely disappeared. Therefore, the DSC method allows changes in thermal unfolding of tropomyosin resulting from its interaction with F-actin to be probed very precisely.  相似文献   

11.
Paratropomyosin is a myofibrillar protein believed to weaken rigor linkages formed between actin and myosin. Using glycerinated fibers of rabbit psoas muscles, we studied the effect of paratropomyosin on the weakening of rigor linkages, which was followed in terms of the increase in sarcomere length of rigor-shortened muscles. The rigor tension developed was reduced to about 65% of the initial value within 10 min after the addition of purified paratropomyosin, whereas it remained constant for at least 3.5 h in control fibers. Paratropomyosin showed a stronger effect on the increase in sarcomere length of passively stretched fibers, which developed weaker rigor-tensions. The purpose of our research was to establish a rigor solution which would best permit the observation of the workings of paratropomyosin. The most successful rigor solution contained 0.2-0.25 M KCl, pH 5.5, at 5-10 degrees C. Under these conditions, the sarcomere length was easily increased from 2.4 to 3.6 micron, if rigor-contracted fibers were passively stretched after the addition of purified paratropomyosin. Because the experimental conditions coincide well with those of postmortem muscles, it is very probable that paratropomyosin plays an important role in restoration of the sarcomere length of rigor-shortened muscles, resulting in tenderization of meat during postrigor ageing.  相似文献   

12.
H Miyata  S Chacko 《Biochemistry》1986,25(9):2725-2729
The binding of gizzard tropomyosin to gizzard F-actin is highly dependent on free Mg2+ concentration. At 2 mM free Mg2+, a concentration at which actin-activated ATPase activity was shown to be Ca2+ sensitive, a molar ratio of 1:3 (tropomyosin:actin monomer) is required to saturate the F-actin with tropomyosin to the stoichiometric ratio of 1 mol of tropomyosin to 7 mol of actin monomer. Increasing the Mg2+ could decrease the amount of tropomyosin required for saturating the F-actin filament to the stoichiometric level. Analysis of the binding of smooth muscle tropomyosin to smooth muscle actin by the use of Scatchard plots indicates that the binding exhibits strong positive cooperativity at all Mg2+ concentrations. Calcium has no effect on the binding of tropomyosin to actin, irrespective of the free Mg2+ concentration. However, maximal activation of the smooth muscle actomyosin ATPase in low free Mg2+ requires the presence of Ca2+ and stoichiometric binding of tropomyosin to actin. The lack of effect of Ca2+ on the binding of tropomyosin to actin shows that the activation of actomyosin ATPase by Ca2+ in the presence of tropomyosin is not due to a calcium-mediated binding of tropomyosin to actin.  相似文献   

13.
Interaction of tropomyosin with F-actin-heavy meromyosin complex   总被引:1,自引:0,他引:1  
The effect of phosphorylated and dephosphorylated heavy meromyosins (HMMs) saturated with Ca2+ or Mg2+ on the binding of tropomyosin to F-actin and on the conformational changes of tropomyosin on actin was investigated. The experimental data were analysed on the basis of th emodel of cooperative binding of tropomyosin to F-actin with overlapping binding sites. In general, attachment of both HMMs to F-actin increased around 100-fold the tropomyosin-binding affinity but concomittantly reduced the cooperatively of binding. In the presence of Ca2+ and in the absence of ATP the binding of tropomyosin to F-actin in a "doubly contiguous" manner was three-fold stronger for F-actin saturated with dephosphorylated HMM as compared to phosphorylated HMM. Under the same rigor conditions but in the absence of Ca2+ the reverse was true but the difference was about 1.5-fold. The binding stoichiometry of tropomyosin to actin was 7:1 in the presence of dephosphorylated HMM saturated with Ca2+ or phosphorylated-saturated with Mg2+ and tended to be about 6:1 for both after the exchange of the cation bound to myosin heads. Bound HMM was also found to influence the fluorescence polarization of 1,5-IAEDANS-labelled tropomyosin complexed with F-actin in muscle ghost fibres. In the presence of Ca2+, the amount of randomly arranged tropomyosin fluorophores decreased when dephosphorylated HMM was bound to ghost fibres, in contrast to an observed increase in the case of bound phosphorylated HMM. Thus HMM induced conformational changes of tropomyosin in the actin-tropomyosin complex that was reflected in an alteration of the geometrical arrangement between tropomyosin and actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Tropomyosin is present in virtually all eucaryotic cells, where it functions to modulate actin-myosin interaction and to stabilize actin filament structure. In striated muscle, tropomyosin regulates contractility by sterically blocking myosin-binding sites on actin in the relaxed state. On activation, tropomyosin moves away from these sites in two steps, one induced by Ca(2+) binding to troponin and a second by the binding of myosin to actin. In smooth muscle and non-muscle cells, where troponin is absent, the precise role and structural dynamics of tropomyosin on actin are poorly understood. Here, the location of tropomyosin on F-actin filaments free of troponin and other actin-binding proteins was determined to better understand the structural basis of its functioning in muscle and non-muscle cells. Using electron microscopy and three-dimensional image reconstruction, the association of a diverse set of wild-type and mutant actin and tropomyosin isoforms, from both muscle and non-muscle sources, was investigated. Tropomyosin position on actin appeared to be defined by two sets of binding interactions and tropomyosin localized on either the inner or the outer domain of actin, depending on the specific actin or tropomyosin isoform examined. Since these equilibrium positions depended on minor amino acid sequence differences among isoforms, we conclude that the energy barrier between thin filament states is small. Our results imply that, in striated muscles, troponin and myosin serve to stabilize tropomyosin in inhibitory and activating states, respectively. In addition, they are consistent with tropomyosin-dependent cooperative switching on and off of actomyosin-based motility. Finally, the locations of tropomyosin that we have determined suggest the possibility of significant competition between tropomyosin and other cellular actin-binding proteins. Based on these results, we present a general framework for tropomyosin modulation of motility and cytoskeletal modelling.  相似文献   

15.
The effects of ethanol at concentrations below 10% on the conformation of tropomyosin, its end-to-end polymerization, its binding to F-actin, and its effects on actomyosin ATPase activity were studied. Ethanol stabilized the tropomyosin conformation by shifting the helix thermal unfolding profile to higher temperatures, and increased the end-to-end polymerization of tropomyosin. Ethanol-induced changes in the excimer fluorescence of pyrene-tropomyosin indicated that its conformation was stabilized by ethanol both free and bound to F-actin. Effects of tropomyosin and tropomyosin-troponin on actomyosin ATPase activity were measured under conditions for which tropomyosin binding to F-actin increases the activity. Under conditions for which the binding of tropomyosin to F-actin is optimum, in the presence of tropomyosin, the actomyosin ATPase activity decreased as the ethanol concentration increased, further indicating that ethanol induces a structural change in the tropomyosin-F-actin complex. Under conditions for which the binding of tropomyosin to F-actin is weak (low salt or high temperature), addition of ethanol increased the ATPase activity due to increased binding of tropomyosin to F-actin. Thus, ethanol appears to modify actomyosin ATPase activity by increasing the binding of tropomyosin to F-actin and affecting the structure of tropomyosin in the tropomyosin-F-actin filament.  相似文献   

16.
《Biophysical journal》2019,116(12):2275-2284
The initial binding of tropomyosin onto actin filaments and then its polymerization into continuous cables on the filament surface must be precisely tuned to overall thin-filament structure, function, and performance. Low-affinity interaction of tropomyosin with actin has to be sufficiently strong to localize the tropomyosin on actin, yet not so tight that regulatory movement on filaments is curtailed. Likewise, head-to-tail association of tropomyosin molecules must be favorable enough to promote tropomyosin cable formation but not so tenacious that polymerization precedes filament binding. Arguably, little molecular detail on early tropomyosin binding steps has been revealed since Wegner’s seminal studies on filament assembly almost 40 years ago. Thus, interpretation of mutation-based actin-tropomyosin binding anomalies leading to cardiomyopathies cannot be described fully. In vitro, tropomyosin binding is masked by explosive tropomyosin polymerization once cable formation is initiated on actin filaments. In contrast, in silico analysis, characterizing molecular dynamics simulations of single wild-type and mutant tropomyosin molecules on F-actin, is not complicated by tropomyosin polymerization at all. In fact, molecular dynamics performed here demonstrates that a midpiece tropomyosin domain is essential for normal actin-tropomyosin interaction and that this interaction is strictly conserved in a number of tropomyosin mutant species. Elsewhere along these mutant molecules, twisting and bending corrupts the tropomyosin superhelices as they “lose their grip” on F-actin. We propose that residual interactions displayed by these mutant tropomyosin structures with actin mimic ones that occur in early stages of thin-filament generation, as if the mutants are recapitulating the assembly process but in reverse. We conclude therefore that an initial binding step in tropomyosin assembly onto actin involves interaction of the essential centrally located domain.  相似文献   

17.
Bacterially expressed alpha-tropomyosin lacks the amino-terminal acetylation present in muscle tropomyosin and binds poorly to actin (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). Using a linear lattice model, we determined the affinity (Ko) of unacetylated tropomyosin or troponin-unacetylated tropomyosin for an isolated site on the actin filament and the fold increase in affinity (y) when binding is to an adjacent site. The absence of tropomyosin acetylation decreased Ko 2 orders of magnitude in the absence of troponin. Tropomyosin acetylation also enhanced troponin-tropomyosin binding to actin, not by increasing cooperativity (y), but rather by increasing Ko. These results suggest that the amino-terminal region of tropomyosin is a crucial actin binding site. Troponin promoted unacetylated tropomyosin binding to actin, increasing Ko more than 1,000-fold. Troponin70-259, which lacks the troponin T peptide (1-69) spanning the overlap between adjacent tropomyosins, behaved similarly to intact troponin. Cooperative interactions between adjacent troponin-tropomyosin complexes remained strong despite the use of a nonpolymerizable tropomyosin and a troponin unable to bridge neighboring tropomyosins physically. The Ko for troponin70-259-unacetylated tropomyosin was 500-fold greater than for troponin159-259-unacetylated tropomyosin, indicating that troponin T residues 70-158 are critical for anchoring troponin-tropomyosin to F-actin. The mechanism of cooperative thin filament assembly is discussed.  相似文献   

18.
Peptides corresponding to the N-terminus of skeletal myosin light chain 1 (rsMLC1 1-37) and the short loop of human cardiac beta-myosin (hcM398-414) have been shown to interact with skeletal F-actin by NMR and fluorescence measurements. Skeletal tropomyosin strengthens the binding of the myosin peptides to actin but does not interact with the peptides. The binding of peptides corresponding to the inhibitory region of cardiac troponin I (e.g. hcTnI128-153) to F-actin to form a 1 : 1 molar complex is also strengthened in the presence of tropomyosin. In the presence of inhibitory peptide at relatively lower concentrations the myosin peptides and a troponin I peptide C-terminal to the inhibitory region, rcTnI161-181, all dissociate from F-actin. Structural and fluorescence evidence indicate that the troponin I inhibitory region and the myosin peptides do not bind in an identical manner to F-actin. It is concluded that the binding of the inhibitory region of troponin I to F-actin produces a conformational change in the actin monomer with the result that interaction at different locations of F-actin is impeded. These observations are interpreted to indicate that a major conformational change occurs in actin on binding to troponin I that is fundamental to the regulatory process in muscle. The data are discussed in the context of tropomyosin's ability to stabilize the actin filament and facilitate the transmission of the conformational change to actin monomers not in direct contact with troponin I.  相似文献   

19.
There is no consensus on the mechanism of inhibition of actin-myosin ATPase activity by caldesmon. Various models are based on different assumptions for the number of actin monomers that constitute a caldesmon binding site. Differences in binding behavior may be due to variations in the assay, the range of caldesmon concentrations, the type of caldesmon, and the method of data analysis used. We have evaluated these factors by measuring binding in the presence and absence of tropomyosin with both intact caldesmon and a recombinant 35 kDa actin binding fragment and with actin initially in the polymerized state or monomeric state. In all cases caldesmon binding could be simulated with a model having one class of binding sites. However, the number of actin monomers constituting a site was variable. Binding to F-actin at 165 mM ionic strength was best described with 7 actin monomers per site. When caldesmon bound to actin during the polymerization of G-actin, the size of the binding site was 3. Binding of the expressed truncated fragment, Cad35, could be described with 3 monomers per site. A simple interpretation of the data is that caldesmon binds tightly to 2-3 actin monomers. Additional parts of caldesmon bind less tightly to actin, causing caldesmon to cover approximately 7 actin monomers. The appendix contains an analysis of several binding curves with multiple binding site models. There is no compelling evidence for two classes of binding sites.  相似文献   

20.
Using polyclonal antibodies against paratropomyosin, which is believed to modify the actin-myosin interaction in postrigor skeletal muscles, we studied the localization of paratropomyosin in chicken breast muscle myofibrils. Intact myofibrils stained with fluorescent antibodies showed that paratropomyosin was exclusively located at the A-I junction region of sarcomeres. In stretched myofibrils (3.7 micron in sarcomere length), the approximate width of the fluorescent stripes and their relation to the A band remained constant. Removal of the A band from myofibrils led to loss of stainability. During postmortem storage of muscles, on the other hand, paratropomyosin was translocated from its original position at the A-I junction region onto thin filaments. The translocation of paratropomyosin was successfully induced with a calcium ion concentration of 10(-4) M in the presence of protease inhibitors. We therefore conclude that in postrigor muscles, paratropomyosin is released from the A-I junction region following the increase in the sarcoplasmic calcium ion concentration to 10(-4) M, and then binds to thin filaments, which results in weakening of rigor linkages formed between actin and myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号