首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-seven wheat cultivars originating from seven European countries were examined by using sequence tagged site (STS) markers for seven Lr (leaf rust = brown rust) resistance genes against the fungal pathogen of wheat Puccinia recondita f. sp. tritici (Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37). Additionally, 22 accessions with various Lr genes from two germplasm collections were tested. A Scar (sequence-characterized amplified region) marker for Lr24 and a CAPS (Cleaved Amplified Polymorphic Sequence) marker for Lr47 were also used to identify those genes in the wheat accessions. Each marker amplified one specific DNA fragment. Three Lr gene markers were identified in wheat cultivars (Lr10, Lr26 and Lr37). Another four markers (Lr9, Lr19, Lr24 and Lr47) were found in breeding lines carrying leaf rust resistance genes. The results were compared with leaf rust resistance gene postulations made in previous studies, based on multipathotype testing. Markers for Lr10, Lr26 and Lr37 may be useful in marker-assisted breeding.  相似文献   

2.
A collection of 68 cultivars of common wheat has been screened for leaf rust resistance genes with the use of molecular markers. Markers of genes Lr1, Lr9, Lr10, Lr19, Lr20, Lr21, Lr24, and Lr26 have been used. It has been suggested that allele Xgwm295 be used as a marker for identifying the Lr34 gene. The genes originating from Triticum aestivum L., as well as the Lr26 gene contained in rye translocation 1RS, are the most frequent. Genes originating from wild wheats were rarer in the cultivars studied.  相似文献   

3.
Sequence tagged site (STS) markers for eight resistance genes against Puccinia recondita f. sp. tritici were used to screen a set of near-isogenic lines of wheat cv. Thatcher containing in total 40 different Lr genes and their alleles. Polymerase chain reaction (PCR) analysis was carried out by using STS, SCAR and CAPS primers specific for the leaf rust resistance genes Lr1, Lr9, Lr10, Lr19, Lr24, Lr28, Lr37 and Lr47. The STS, CAPS and SCAR markers linked to resistance genes Lr9, Lr10, Lr19, Lr24, Lr37 and Lr47 were found to be reliable in diverse genetic backgrounds. The amplification product of the Lr1 gene marker was detected in the susceptible cv. Thatcher and in all of the near-isogenic lines examined except Lr2a, Lr2b, Lr2c and Lr19. The sequence analysis of PCR products amplified in lines Lr1, Lr10, Lr28 and in cv. Thatcher indicated that the near-isogenic lines and cv. Thatcher contained in the targeted chromosome region an allele that differed from the original alleles corresponding to Lr1/6*Thatcher (TLR621) and susceptible Thatcher (TH621). The amplification product specific to the STS marker of the Lr1 gene was amplified in almost all Thatcher near-isogenic lines and in cv. Thatcher because their alleles possessed primer sequences identical to the original allele TLR621. The marker for the Lr28 resistance gene was identified in line Lr28, carrying gene Lr28, and in 21 other near-isogenic lines. The sequencing of PCR products specific to Lr28 and generated in lines Lr1, Lr10 and Lr28 indicated that the lines Lr1, Lr10 and Lr28 are heterozygous in this region.  相似文献   

4.
本研究旨在明确小麦农家品种中可能含有的抗叶锈病基因,为抗源的选择和利用提供理论依据。以15个小麦农家品种、感病对照品种郑州5389和36个含有已知抗叶锈病基因的载体品种为材料,苗期接种19个具有鉴别力的叶锈菌生理小种进行基因推导,同时利用12个与抗叶锈病基因紧密连锁的分子标记进行分析。为明确其成株期抗性,分别于2016-2017年和2017-2018年在河北保定对小麦农家品种、感病对照品种郑州5389与慢锈品种SAAR进行田间接种,调查并记录田间严重度及普遍率。基因推导和分子标记检测结果显示,在15个小麦农家品种中共检测到7个抗叶锈病基因,其中部分品种还有多个抗性基因,如红狗豆含有Lr1和Lr46;黄花麦含有Lr13和Lr34;大白麦含有Lr14b和Lr26;洋麦含有Lr37和Lr46;成都光头含有Lr34和Lr46;墨脱麦和西山扁穗含有Lr26和Lr46。部分品种含有1个成株期慢叶锈病抗性基因,如同家坝小麦、武都白茧儿、边巴春麦-6、白花麦含有Lr34;红抢麦、白扁穗和白火麦含有Lr46。这些携带有效抗叶锈病基因的农家品种,可为小麦抗叶锈病育种提供抗源。  相似文献   

5.
Host resistance is the most sustainable method of controlling leaf rust which can be achieved through exploring resistance genes by gene postulation and/or molecular markers. The experiment was conducted to postulate leaf rust resistance genes in 20 Iranian wheat cultivars using 10 Puccinia triticina pathotypes. Six sequence-tagged site and sequence-characterised amplified region markers were also used to detect the genes Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37. The genes Lr3a, Lr3Ka, Lr10, Lr15, Lr19, Lr26, Lr28, Lr30 and Lr27 + Lr31 genes were postulated to be present either singly or in combination. The cultivars Toos and Dabira were found to have no effective seedling resistance gene(s); The former was shown to carry none of the genes, while the latter carried Lr10, Lr24 and Lr37 based on molecular markers. It was not possible to postulate resistance genes in Sirvan, Backcross Roshan, Zagross and Chamran cultivars. However, molecular association indicated the presence of Lr19, Lr10 and Lr24 in Sirvan, Backcross Roshan, and Chamran, respectively while none in Zagross.  相似文献   

6.
An Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, was tagged with 3 random amplified polymorphic DNA (RAPD) markers, which mapped within 1.8 cM of gene Lr9 located on chromosome 6BL of wheat. The markers were identified in an F2 population segregating for leaf-rust resistance, which was generated from a cross between 2 near-isogenic lines that differed in the alien gene Lr9 in a widely adopted agronomic background of cultivar 'HD 2329'. Disease phenotyping was done in controlled environmental conditions by inoculating the population with the most virulent pathotype, 121 R63-1 of Puccinia triticina. One RAPD marker, S5550, located at a distance of 0.8+/-0.008 cM from the Lr9 locus, was converted to sequence-characterized amplified region (SCAR) marker SCS5550. The SCAR marker was validated for its specificity to gene Lr9 against 44 of the 50 known Lr genes and 10 wheat cultivars possessing the gene Lr9. Marker SCS5550 was used with another SCAR marker, SCS73719, previously identified as being linked to gene Lr24 on a segregating F2 population to select for genes Lr9 and Lr24, respectively, demonstrating the utility of the 2 markers in marker-assisted gene pyramiding for leaf-rust resistance in wheat.  相似文献   

7.
Sequence tagged site (STS) markers have been developed recently to identify resistance genes in wheat. A number of wild relatives have been used to transfer resistance genes into wheat cultivars. Accessions of wild species of Triticeae: Aegilops longissima (4), Ae. speltoides (6), Ae. tauschii (8), Ae. umbellulata (3), Ae. ventricosa (3), Triticum spelta (2), T. timopheevi (3), T. boeoticum (4) and T. monococcum (1), 34 in total, were examined using PCR-STS markers for resistance genes against Puccinia recondita f.sp. tritici (Lr) and Erysiphe graminis (Pm). Additionally, a set of cv. Thatcher near-isogenic lines conferring resistance genes Lr 1, Lr 9, Lr 10, Lr 24, Lr 28, Lr 35 and Lr 37 were examined with the same procedure. Twenty-two accessions were tested using the inoculation test for resistance to Erysiphe graminis, Puccinia recondita, P. striiformis and P. graminis. The most resistant entries were those of Aegilops speltoides and Triticum timopheevi and among T. boeoticum accession #5353. Markers of all mentioned Lr resistance genes were identified in all corresponding cv. Thatcher near-isogenic lines (except Lr 35 gene marker). The following resistance gene markers were identified in wild Triticeae accessions: Lr 1 in two accessions of Ae. tauschii and one accession of Ae. umbellulata, Lr 9 in one accession of Ae. umbellulata, Lr 10 in one accession of T. spelta, Lr 28 in 11 accessions: Ae. speltoides (4), Ae. umbellulata (2), T. spelta (2) and T. timopheevi (3), Lr 37 in 3 accessions of Ae. ventricosa, Pm 1 in all 34 accessions, Pm 2 in 28 accessions, Pm 3 in all 4 accessions of T. boeoticum, 1 accession of T. spelta and 1 of T. timopheevi, and Pm 13 in 5 out of 6 accessions of Ae. speltoides. Reliability and usefulness of STS markers is discussed.  相似文献   

8.
A collection of 68 cultivars of common wheat has been screened for leaf rust resistance genes with the use of molecular markers. Markers of genes Lr1, Lr9, Lr10, Lr19, Lr20, Lr21, Lr24, and Lr26 have been used. It has been suggested that allele Xgwm295 be used as a marker for identifying the Lr34 gene. The genes originating from Triticum aestivum L., as well as the Lr26 gene contained in rye translocation 1RS, are the most frequent. Genes originating from wild wheats were rarer in the cultivars studied.  相似文献   

9.
This study was conducted to identify microsatellite markers (SSR) linked to the adult-plant leaf rust resistance gene Lr22a and examine their cross-applicability for marker-assisted selection in different genetic backgrounds. Lr22a was previously introgressed from Aegilops tauschii Coss. to wheat (Triticum aestivum L.) and located to chromosome 2DS. Comparing SSR alleles from the donor of Lr22a to two backcross lines and their recurrent parents showed that between two and five SSR markers were co-introgressed with Lr22a and the size range of the Ae. tauschii introgression was 9-20 cM. An F(2) population from the cross of 98B34-T4B x 98B26-N1C01 confirmed linkage between the introgressed markers and Lr22a on chromosome 2DS. The closest marker, GWM296, was 2.9 cM from Lr22a. One hundred and eighteen cultivars and breeding lines of different geographical origins were tested with GWM296. In total 14 alleles were amplified, however, only those lines predicted or known to carry Lr22a had the unique Ae. tauschii allele at GWM296 with fragments of 121 and 131 bp. Thus, GWM296 is useful for selecting Lr22a in diverse genetic backgrounds. Genotypes carrying Lr22a showed strong resistance to leaf rust in the field from 2002 to 2006. Lr22a is an ideal candidate to be included in a stack of leaf rust resistance genes because of its strong adult-plant resistance, low frequency of commercial deployment, and the availability of a unique marker.  相似文献   

10.
Spring wheat nursery accessions, including 18 spring wheat lines derived in CIMMYT, Mexico, and 12 spring wheat cultivars bred in Poland, along with cultivars Frontana and Sumai 3 as resistant controls, were examined for resistance to leaf rust under field conditions. Multipathotype tests with 16 different pathogen isolates were performed for postulation of Lr genes in Polish cultivars. Besides, STS markers for resistance genes Lr1, Lr9, Lr10, Lr24, Lr28, Lr37 were analysed in the studied cultivars and lines with Thatcher near-isogenic lines as positive controls. All Polish cultivars appeared to be susceptible to leaf rust. Ten of the CIMMYT nursery lines (IPG-SW: #7, 11, 14, 21, 22, 23, 27, 29, 30, 32) and cv. Frontana were resistant in the same environment and can be sources of resistance genes. Marker for the Lr10 gene was identified in 6 accessions (IPG-SW #14, 22, 23, 29, 30, 32) exhibiting resistance to leaf rust, whereas markers for Lr1 and Lr28 genes were observed in all the examined accessions. STS markers for Lr9, Lr24 and Lr37 genes were not identified in the investigated accessions.  相似文献   

11.
The Yr17 gene, which is present in many European wheat cultivars, displays yellow rust resistance at the seedling stage. The gene introduced into chromosome 2A from Aegilops ventricosa was previously found to be closely linked (0.5 cM) to leaf and stem rust resistance genes Lr37 and Sr38, respectively. The objective of this study was to identify molecular markers linked to the Yr17 gene. We screened with RAPD primers, for polymorphism, the DNAs of cv. Thatcher and the leaf rust-resistant near-isogenic line (NIL) RL 6081 of cv. Thatcher carrying the Lr37 gene. Using a F2 progeny of the cross between VPM1 (resistant) and Thésée (susceptible), the RAPD marker OP-Y15580 was found to be closely linked to the Yr17 gene. We converted the OP- Y15580 RAPD marker into a sequence characterized amplified region (SCAR). This SCAR marker (SC-Y15) was linked at 0.8 ± 0.7 cM to the Yr17 resistance gene. We tested the SC-Y15 marker over a survey of 37 wheat cultivars in order to verify its consistency in different genetic backgrounds and to explain the resistance of some cultivars against yellow rust. Moreover, we showed that the Xpsr150-2Mv locus marker of Lr gene described by Bonhomme et al. [6] which possesses A. ventricosa introgression on the 2A chromosome was also closely linked to the Yr17 gene. Both the SCAR SC-Y15 and Xpsr150-2Mv markers should be used in breeding programmes in order to detect the cluster of the three genes Yr17, Lr37 and Sr38 in cross progenies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

13.
为了明确河南省小麦品种的抗叶锈性及抗叶锈基因的分布,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据,本研究利用2015年采自河南省的5个小麦叶锈菌流行小种混合菌株,对近几年河南省16个主栽小麦品种进行了苗期抗性鉴定,然后选用12个小麦叶锈菌生理小种对这些品种进行苗期基因推导,同时利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对该16个品种进行了抗叶锈基因分子检测。结果显示,供试品种苗期对小麦叶锈菌混合流行小种均表现高度感病;基因推导与分子检测结果表明,供试品种可能含有Lr1、Lr16、Lr26和Lr30这4个抗叶锈基因,其中先麦8号含有Lr1和Lr26;郑麦366和郑麦9023含有Lr1;西农979和怀川916含有Lr16;中麦895、偃展4110、郑麦7698、平安8号、众麦1号、周麦16、衡观35和矮抗58含有Lr26;周麦22中含有Lr26,还可能含有Lr1和Lr30;豫麦49-198和洛麦23可能含有本研究中检测以外的其他抗叶锈基因。因此,河南省主栽小麦品种的抗叶锈基因丰富度较低,今后育种工作应注重引入其他抗叶锈性基因,提高抗叶锈性,有效控制小麦叶锈病。  相似文献   

14.
Near-isolines carrying four different genes for resistance to leaf rust were used to find linked molecular markers for these genes. Clones used to detect polymorphism were selected on the basis of the reported chromosomal location of the resistance genes. Both Lophopyron-derived resistance genes, Lr19 and Lr24, cosegregated with eight molecular markers assigned to chromosomes 7DL and 3DL, respectively. One clone cosegregated with Lr9 and two closely linked RFLP markers were found for Lr32, mapping at 3.3 +/- 2.6 and 6.9 +/- 3.6 cM from the resistance gene. The Lophopyron-chromatin segment in isolines carrying chromosomes 7E (Lr19) and 3E (Lr24) replaced a large portion of chromosome 7D and the distal portion of chromosome 3D, respectively. Clones assigned to these chromosomes on the basis of aneuploid analysis hybridized to 7E and 3E segments, thus confirming cytological results that these introgressed segments represent homoeologous chromosomes. The linked RFLP markers could be used to identify the resistance genes and generate new combinations in breeding populations, especially in the absence of disease in the environment or when virulence is lacking.  相似文献   

15.
Molecular STS markers J13, Gb, and J09 were used for screening wheat (Triticum aestivum L.) accessions previously found to possess leaf-rust resistance genes according to test crosses or phytopathological tests. Specific amplicons were detected in all accessions assumed to possess the Lr9 gene, in nine of ten accessions with the conjectured Lr19 gene, and in 13 of 29 accessions with the conjectured Lr24 gene. Application of STS markers to identification of accessions possessing efficient leaf-rust resistance genes is discussed.  相似文献   

16.
Leaf rust caused by Puccinia recondita f.sp. tritici is a wheat disease of worldwide importance. Wheat genotypes known to carry specific rust resistance genes and segregating lines that originated from various cross combinations and derived from distinct F2 lineage, so as to represent a diverse genetic background, were included in the present study for validation of molecular markers for Lr19 and Lr24. STS markers detected the presence of the leaf rust resistance gene Lr19 in a Thatcher NIL (Tc*Lrl9) and Inia66//CMH81A575 and of the gene Lr24 in the genotypes Arkan, Blue Boy II, Agent and CI 17907. Validation of molecular markers for Lr19 and Lr24 in parental lines, followed by successful detection of these genes in F3 lines from various cross combinations, was carried out. The molecular test corresponded well with the host-pathogen interaction test response of these lines.  相似文献   

17.
We recently showed that the Lr10 wheat leaf rust resistance gene cosegregated with the candidate resistance gene Lrk10 which encodes a putative receptor-like kinase. The aim of this study was to develop Lrk10-derived molecular markers for the detection of the Lr10 gene in breeding material. Different subfragments of Lrk10 were tested as RFLP markers for the Lr10 resistance gene. The most specific fragment (Lrk10-6) was converted into the PCR-based STS marker STSLrk10-6. Both the RFLP and the STS marker did not give a signal with near isogenic lines containing a different Lr gene. The applicability of these markers for the detection of Lr10 in genetically diverse material was tested with 62 wheat and spelt breeding lines, mostly from European breeding programmes. Twelve varieties known to have Lr10 showed the same alleles as the originally characterized line ThatcherLr10. Most of the lines with unknown composition at the Lr10 locus had a null allele with both the RFLP marker Lrk10-6 and the marker STSLrk10-6 whereas 20% of the lines had a different allele. For six lines, including a traditional spelt variety derived from a landrace, both markers showed the same allele as Thatcher Lr10. Artificial infections of these lines with an isolate avirulent on Lr10 resulted in a hypersensitive reaction of all these lines, indicating also the presence of the Lr10 resistance gene. These data demonstrate that the markers derived from sequences of Lrk10 are highly specific for the Lr10 gene in breeding material of very diverse genetic origin. The markers will allow the defined deployment of Lr10 in wheat breeding programmes and will contribute to the elucidation of the role of Lr10 in polygenic resistances against leaf rust.  相似文献   

18.
The stem, leaf and stripe rust resistance genes Sr31, Lr26 and Yr9, located on the short arm of rye chromosome 1, have been widely used in wheat by means of wheat-rye translocation chromosomes. Previous studies have suggested that these resistance specificities are encoded by either closely-linked genes, or by a single gene capable of recognizing all three rust species. To investigate these issues, two 1BL·1RS wheat lines, one with and one without Sr31, Lr26 and Yr9, were used as parents for a high-resolution F2 mapping family. Thirty-six recombinants were identified between two PCR markers 2.3 cM apart that flanked the resistance locus. In one recombinant, Lr26 was separated from Sr31 and Yr9. Mutation studies recovered mutants that separated all three rust resistance genes. Thus, together, the recombination and mutation studies suggest that Sr31, Lr26 and Yr9 are separate closely-linked genes. An additional 16 DNA markers were mapped in this region. Multiple RFLP markers, identified using part of the barley Mla powdery mildew resistance gene as probe, co-segregated with Sr31 and Yr9. One deletion mutant that had lost Sr31, Lr26 and Yr9 retained all Mla markers, suggesting that the family of genes on 1RS identified by the Mla probe does not contain the Sr31, Lr26 or Yr9 genes. The genetic stocks and DNA markers generated from this study should facilitate the future cloning of Sr31, Lr26 and Yr9.  相似文献   

19.
The objective of this study was to identify molecular markers linked to the wheat leaf rust resistance gene Lr24 derived from Agropyron elongatum (3DL/3Ag translocation). Two near isogenic lines (NILs), ‘Arina’ and Lr24/7 * “Arina”, were screened for polymorphism at the DNA level with 115 RFLP probes. Twenty-one of these probes map to the homoeologous group 3. In addition, 360 RAPD primers were tested on the NILs. Six RFLP probes showed polymorphism between the NILs, and 11 RAPD primers detected one additional band in the resistant NIL. The genetic linkage of the polymorphic markers with Lr24 was tested on a segregating F2 population (150 plants) derived from a cross between the leaf rust resistant Lr24/7 * “Arina” and the susceptible spelt (Triticum spelta) variety ‘Oberkulmer’. All 6 RFLP markers were completely linked to Lr24: one was inherited as a codominant marker (PSR1205), one was in coupling phase (PSR1203) and 4 were in repulsion phase (PSR388, PSR904, PSR931, PSR1067) with Lr24. The localization of these probes on chromosome 3D was confirmed by nulli-tetrasomic analysis. Distorted genotypic segregation was found for the Codominant RFLP marker PSR1205. This distortion can be explained by the occurrence of hemizygous plants. One of the 11 RAPD markers (OPJ-09) also showed complete linkage to theLr24 resistance gene. The polymorphic RAPD fragment was cloned and sequenced. Specific primers were synthesized, and they produced an amplification product only in the resistant plants. This specific marker allows a reliable and rapid screening of a large number of genotypes in practical breeding. Analysis of 6 additional lines containing Lr24 revealed that 3 lines have a smaller chromosomal segment of A. elongatum than lines derived from ‘Agent’, a commonly used gene donor for the Lr24 resistance gene.  相似文献   

20.
Hypersensitive adult plant resistance genes Lr48 and Lr49 were named based on their genetic independence of the known adult plant resistance genes. This study was planned to determine genomic locations of these genes. Recombinant inbred line populations derived from crosses involving CSP44 and VL404, sources of Lr48 and Lr49, respectively, and the susceptible parent WL711, were used to determine the genomic locations of these genes. Bulked segregant analyses were performed using multiplex-ready PCR technology. Lr48 in genotype CSP44 was mapped on chromosome arm 2BS flanked by marker loci Xgwm429b (6.1 cM) and Xbarc7 (7.3 cM) distally and proximally, respectively. Leaf rust resistance gene Lr13, carried by the alternate parent WL711, was proximal to Lr48 and was flanked by Xksm58 (5.1 cM) and Xstm773-2 (8.7 cM). Lr49 was flanked by Xbarc163 (8.1 cM) and Xwmc349 (10.1 cM) on chromosome arm 4BL. The likely presence of the durable leaf rust resistance gene Lr34 in both CSP44 and VL404 was confirmed using the tightly linked marker csLV34. Near-isogenic lines for Lr48 and Lr49 were developed in cultivar Lal Bahadur. Genotypes combining Lr13 and/or Lr34 with Lr48 or Lr49 were identified as potential donor sources for cultivar development programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号