首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used microelectrodes to determine whether the K/HCO3 cotransporter tentatively identified in the accompanying paper (Hogan, E. M., M. A. Cohen, and W. F. Boron. 1995. Journal of General Physiology. 106:821- 844) can mediate an increase in the intracellular pH (pHi) of squid giant axons. An 80-min period of internal dialysis increased pHi to 7.7, 8.0, or 8.3; the dialysis fluid was free of K+, Na+, and Cl-. Our standard artificial seawater (ASW), which also lacked Na+, K+, and Cl-, had a pH of 8.0. Halting dialysis unmasked a slow pHi decrease. Subsequently introducing an ASW containing 437 mM K+ and 0.5% CO2/12 mM HCO3- had two effects: (a) it caused membrane potential (Vm) to become very positive, and (b) it caused a rapid pHi decrease, because of CO2 influx, followed by a slower plateau-phase pHi increase, presumably because of inward cotransport of K+ and HCO3- ("base influx"). Only extracellular Rb+ substituted for K+ in producing the plateau-phase pHi increase in the presence of CO2/HCO3-. Mean fluxes with Na+, Li+, and Cs+ were not significantly different from zero, even though Vm shifts were comparable for all monovalent cations tested. Thus, unless K+ or Rb+ (but not Na+, Li+, or Cs+) somehow activates a conductive pathway for H+, HCO3-, or both, it is unlikely that passive transport of H+, HCO3-, or both makes the major contribution to the pHi increase in the presence of K+ (or Rb+) and CO2/HCO3-. Because exposing axons to an ASW containing 437 mM K+, but no CO2/HCO3-, produced at most a slow pHi increase, K-H exchange could not make a major contribution to base influx. Introducing an ASW containing CO2/HCO3-, but no K+ also failed to elicit base influx. Because we observed base influx when the ASW and DF were free of Na+ and Cl-, and because the disulfonic stilbene derivatives SITS and DIDS failed to block base influx, Na(+)-dependent Cl-HCO3 exchange also cannot account for the results. Rather, we suggest that the most straightforward explanation for the pHi increase we observed in the simultaneous presence of K+ and CO2/HCO3- is the coupled uptake of K+ and HCO3-.  相似文献   

2.
The course of intracellular pH (pHi) was followed in superfused (36 degrees C) single glomus (type I) cells of the freshly dissociated adult rat carotid body. The cells had been loaded with the pH-sensitive fluorescent dye 2',7'-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein. The high K(+)-nigericin method was used for calibration. The pHi of the glomus cell at pHo 7.40, without CO2, was 7.23 +/- 0.02 (n = 70); in 5% CO2/25 mM HCO3-, pHi was 7.18 +/- 0.08 (n = 9). The pHi was very sensitive to changes in pHo. Without CO2, delta pHi/delta pHo was 0.85 (pHo 6.20-8.00; 32 cells), while in CO2/HCO3- this ratio was 0.82 irrespective of whether pHo (6.80-7.40; 14 cells) was changed at constant PCO2 or at constant [HCO3-]o. The great pHi sensitivity of the glomus cell to pHo is matched only by that of the human red cell. An active Na+/H+ exchanger (apparent Km = 58 +/- 6 mM) is present in glomus cells: Na+ removal or addition of the amiloride derivative 5-(N,N-hexamethylene)-amiloride induced pHi to fall by as much as 0.9. The membrane of these cells also contains a K+/H+ exchanger. Raising [K+]o from 4.7 to 25, 50, or 140 mM reversibly raised pHi by 0.2, 0.3, and 0.6, respectively. Rb+ had no effect, but in corresponding concentrations of Tl+ alkalinization was much faster than in K+. Reducing [K+]o to 1.5 mM lowered pHi by 0.1. These pHi changes were shown not to be due to changes in membrane voltage, and were even more striking in the absence of Na+. Intrinsic buffering power (amount of strong base required to produce, in the nominal absence of CO2, a small pHi rise) increased from 3 to approximately 21 mM as pHi was lowered, but remained nearly unchanged below pHi 6.60. The fitted expression assumed the presence of one "equivalent" intracellular buffer (pK 6.41, 41 mM). The exceptional pHi sensitivity to pHo suggests that the pHi of the glomus cell is a link in the chemoreceptor's response to external acidity.  相似文献   

3.
Intracellular pH (pHi) in squid giant axons recovers from acid loads by means of a Na(+)-dependent Cl-HCO3 exchanger, the actual mechanism of which might be exchange of: (i) external Na+ and HCO3- for internal Cl- and H+, (ii) Na+ plus two HCO3- for Cl-, (iii) Na+ and CO3= for Cl-, or (iv) the NaCO3- ion pair for Cl-. Here we examine sensitivity of transport to changes of extracellular pH (pHo) in the range 7.1-8.6. We altered pHo in four ways, using: (i) classical "metabolic" disturbances in which we varied [HCO3-]o, [NaCO3-]o, and [CO3=]o at a fixed [CO2]o; (ii) classical "respiratory" disturbances in which we varied [CO2]o, [NaCO3-]o, and [CO3=]o at a fixed [HCO3-]o; (iii) novel mixed-type acid-base disturbances in which we varied [HCO3-]o and [CO2]o at a fixed [CO3=]o and [NaCO3-]o; and (iv) a second series of novel mixed-type disturbances in which we varied [CO2]o, [CO3=]o, and [Na+]o at a fixed [HCO3-]o and [NaCO3-]o. Axons (initial pHi approximately 7.4) were internally dialyzed with a pH 6.5 solution containing 400 mM Cl- but no Na+. After pHi, measured with a glass microelectrode, had fallen to approximately 6.6, dialysis was halted. The equivalent acid extrusion rate (JH) was computed from the rate of pHi recovery (i.e., increase) in the presence of Na+ and HCO3-. When pHo was varied by method (i), which produced the greatest range of [CO3=]o and [NaCO3-]o values, JH increased with pHo in a sigmoidal fashion; the relation was fitted by a pH titration curve with a pK of approximately 7.7 and a Hill coefficient of approximately 3.0. With method (ii), which produced smaller changes in [CO3=]o and [NaCO3-]o, JH also increased with pHo, though less steeply. With method (iii), which involved changes in neither [CO3=]o nor [NaCO3-]o, JH was insensitive to pHo changes. Finally, with method (iv), which involved changes in neither [HCO3-] nor [NaCO3-]o, but reciprocal changes in [CO3=]o and [Na+]o, JH also was insensitive to pHo changes. We found that decreasing pHo from 8.6 to 7.1 caused the apparent Km for external HCO3- ([Na+]o = 425 mM) to increase from 1.0 to 26.7 mM, whereas Jmax was relatively stable. Decreasing pHo from 8.6 to 7.4 caused the apparent Km values for external Na+ ([HCO3-]o = 48 mM) to increase from 8.6 to 81 mM, whereas Jmax was relatively stable.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Rat pancreatic acini loaded with the pH sensitive fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein were used to characterize intracellular pH (pHi) regulatory mechanisms in these cells. The acini were attached to cover slips and continuously perfused. In 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered solutions recovery from acid load (H+ efflux) required extracellular Na+ (Na+out) and was blocked by amiloride. Likewise, H+ influx initiated by removal of Na+out was blocked by amiloride. Hence, in HEPES-buffered medium the major operative pHi regulatory mechanism is a Na+/H+ exchange. In HCO3(-)-buffered medium, amiloride only partially blocked recovery from acid load and acidification due to Na+out removal. The remaining fraction required Na+out, was inhibited by H2-4,4'-diisothiocyanostilbene-2,2'-disulfunic acid (H2DIDS) and was independent of C1-. Hence, a transporter with characteristics of a Na(+)-HCO3- cotransport exists in pancreatic acini. Measurement of pHi changes due to Na(+)-HCO3- cotransport, suggests that the transporter contributes to HCO3- efflux under physiological conditions. Changing the Cl- gradient across the plasma membrane of acini maintained in HCO3(-)-buffered solutions reveals the presence of an H2DIDS-sensitive, Na(+)-independent, Cl(-)-dependent, HCO3- transporter with characteristics of a Cl-/HCO3- exchanger. In pancreatic acini the exchanger transports HCO3- but not OH- and under physiological conditions functions to remove HCO3- from the cytosol. In summary, only the Na+/H+ exchanger is functional in HEPES-buffered medium to maintain pHi at 7.28 +/- 0.03. In the presence of 25 mM HCO3- at pHo of 7.4, all the transporters operate simultaneously to maintain a steady-state pHi of 7.13 +/- 0.04.  相似文献   

5.
Using the pH-sensitive absorbance of 5 (and 6)-carboxy-4',5'- dimethylfluorescein, we investigated the regulation of cytoplasmic pH (pHi) in monkey kidney epithelial cells (BSC-1). In the absence of HCO3-, pHi is 7.15 +/- 0.1, which is not significantly different from pHi in 28 mM HCO3-, 5% CO2 (7.21 +/- 0.07). After an acid load, the cells regulate pHi in the absence of HCO3- by a Na+ (or Li+)-dependent, amiloride-inhibitable mechanism (indicative of Na+/H+ antiport). In 28 mM HCO3-, while still dependent on Na+, this regulation is only blocked in part by 1 mM amiloride. A partial block is also observed with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) (1 mM). With cells pretreated with DIDS, 1 mM amiloride nearly totally inhibits this regulation. Cl- had no effect on pHi regulation in the acidic range. In HCO3(-)-free saline, Na+ removal leads to an amiloride-insensitive acidification, which is dependent on Ca2+. In 28 mM HCO3-, Na+ (and Ca2+) removal led to a pronounced reversible and DIDS-sensitive acidification. When HCO3- was lowered from 46 to 10 mM at constant pCO2 (5%), pHi dropped by a DIDS-sensitive mechanism. Identical changes in pHo (7.6 to 6.9) in the nominal absence of HCO3- led to smaller changes of pHi. In the presence but not in the absence of HCO3-, removal of Cl- led to a DIDS-sensitive alkalinization. This was also observed in the nominal absence of Na+, which leads to a sustained acidification. It is concluded that in nominally bicarbonate-free saline, the amiloride-sensitive Na+/H+ antiport is the predominant mechanism of pHi regulation at acidic pHi, while being relatively inactive at physiological values of pHi. In bicarbonate saline, two other mechanisms effect pHi regulation: a DIDS-sensitive Na+-HCO3- symport, which contributes to cytoplasmic alkalinization, and a DIDS-sensitive Cl-/HCO3- exchange, which is apparently independent of Na+.  相似文献   

6.
Intracellular pH (pHi) of the squid axon is regulated by a stilbenesensitive transporter that couples the influx of Na+ and HCO3- (or the equivalent) to the efflux of Cl-. According to one model, the extracellular ion pair NaCO3- exchanges for intracellular Cl-. In the present study, the ion-pair model was tested by examining the interaction of the reversible stilbene derivative 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) with extracellular Na+ and HCO3-. Axons (initial pHi approximately 7.4) were internally dialyzed with a pH 6.5 solution containing 400 mM Cl- but no Na+. After pHi, as measured with a glass microelectrode, had fallen to approximately 6.6, dialysis was halted. In the presence of both external Na+ and HCO3- (pHo = 8.0, 22 degrees C), pHi increased due to the pHi-regulating mechanism. At a fixed [Na+]o of 425 mM and [HCO3-]o of 12 mM, DNDS reversibly reduced the equivalent acid-extrusion rate (JH) calculated from the rate of pHi recovery. The best-fit value for maximal inhibition was 104%, and for the [DNDS]o at half-maximal inhibition, 0.3 mM. At a [Na+]o of 425 mM, the [HCO3-]o dependence of JH was examined at 0, 0.1, and 0.25 mM DNDS. Although Jmax was always approximately 20 pmol cm-2 s-1, Km(HCO3-) was 2.6, 5.7, and 12.7 mM, respectively. Thus, DNDS is competitive with HCO3-. At a [HCO3-]o of 12 mM, the [Na+]o dependence of JH was examined at 0 and 0.1 mM DNDS. Although Jmax was approximately 20 pmol cm-2 s-1 in both cases, Km(Na+) was 71 and 179 mM, respectively. At a [HCO3-]o of 48 mM, Jmax was approximately 20 pmol cm-2 s-1 at [DNDS]o levels of 0, 0.1, and 0.25 mM. However, Km(Na+) was 22, 45, and 90 mM, respectively. Thus, DNDS (an anion) is also competitive with Na+. The results are consistent with simple competition between DNDS and NaCO3-, and place severe restrictions on other kinetic models.  相似文献   

7.
Neutral carrier pH-sensitive double-barrelled microelectrodes were used to investigate intracellular pH (pHi) in leech neuropile glial cells and in Retzius neurones. The mean pHi of the glial cells was 6.87 +/- 0.13 (+/- SD, n = 27) in HEPES-buffered saline (pHo 7.4) and 7.18 +/- 0.19 (n = 13) in solutions buffered with 2% CO2- 11 mM HCO3-. The distribution of H+ ions in both the glia and neurones was found not to be in electrochemical equilibrium. To investigate pHi regulation, the pHi was decreased by exposure to CO2 or by adding and then removing NH4Cl. Acidification by any method was followed by a recovery to normal pHi values within minutes. The pHi recovery from acidification in neuropile glial cells in HEPES-buffered saline and CO2-HCO3- buffered saline was, however, blocked by removing external Na. In HCO3(-)-free solutions the diuretic amiloride (2 mM) reduced the rate of pHi recovery. In the presence of HCO3-, the rate of acid efflux was stimulated; the stilbene 4-acetamido-4'-isothiocyanatostilbene-2,3'-disulfonic acid (SITS; 0.5 mM) slowed pHi recovery. In HEPES buffered and CO2-HCO3- buffered solutions pHi regulation in neurones was inhibited by removing external Na. In HCO3(-)-free solutions amiloride reduced the rate of pHi recovery considerably. In the presence of HCO3-, SITS or amiloride slowed but did not completely block pHi recovery. We conclude that leech glial cells and neurones have two mechanisms of pHi regulation, one being Na+-H+ exchange and the other Na+ and HCO3- dependent.  相似文献   

8.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

9.
The intracellular pH-regulating mechanism of the squid axon was examined for its dependence on the concentrations of external Na+ and HCO3-, always at an external pH (pHo) of 8.0. Axons having an initial intracellular pH (pHi) of approximately 7.4 were internally dialyzed with a solution of pH 6.5 that contained 400 mM Cl- and no Na+. After pHi had fallen to approximately 6.6, dialysis was halted, thereby returning control of pHi to the axon. With external Na+ and HCO-3 present, intracellular pH (pHi) increased because of the activity of the pHi-regulating system. The acid extrusion rate (i.e., equivalent efflux of H+, JH) is the product of the pHi recovery rate, intracellular buffering power, and the volume-to-surface ratio. The [HCO3-]o dependence of JH was examined at three fixed levels of [Na+]o: 425, 212, and 106 mM. In all three cases, the apparent Jmax was approximately 19 pmol X cm-2 X s-1. However, the apparent Km (HCO3-) was approximately inversely proportional to [Na+]o, rising from 2.6 to 5.4 to 9.7 mM as [Na+]o was lowered from 425 to 212 to 106 mM, respectively. The [Na+]o dependence of JH was similarly examined at three fixed levels of [HCO3-]o: 12, 6, and 3 mM. The Jmax values did not vary significantly from those in the first series of experiments. The apparent Km (Na+), however, was approximately inversely related to [HCO3-]o, rising from 71 to 174 to 261 mM as [HCO3-]o was lowered from 12 to 6 to 3 mM, respectively. These results agree with the predictions of the ion-pair model of acid extrusion, which has external Na+ and CO3= combining to form the ion pair NaCO3-, which then exchanges for internal Cl-. When the JH data are replotted as a function of [NaCO3-]o, data from all six groups of experiments fall along the same Michaelis-Menten curve, with an apparent Km (NaCO3-) of 80 microM. The ordered and random binding of Na+ and CO3= cannot be ruled out as possible models, but are restricted in allowable combinations of rate constants.  相似文献   

10.
The ability to move acid/base equivalents across the membrane of identified glial cells was investigated in isolated segmental ganglia of the leech Hirudo medicinalis. The intracellular pH (pHi) of the glial cells was measured with double-barreled, neutral-ligand, ion-sensitive microelectrodes during step changes of the external pH (pHo 7.4-7.0). The rate of intracellular acidification after the decrease in extracellular pH (pHo) was taken as a measure of the rate of acid/base transport across the glial membrane. Taking into account the total intracellular buffering power, the maximum rate of acid/base flux was 0.4 mM/min in CO2/HCO3-free saline, and 3.92 mM/min in the presence of 5% CO2/10 mM HCO-3, suggesting that the acid/base flux was dependent upon HCO3-. The rate of acid influx/base efflux increased both with the external HCO3- concentration and with increasing pHi (and hence HCO3-i). This suggested that the decrease in pHi was due to HCO3- efflux. The rapid decrease of pHi was accompanied by a HCO3--dependent depolarization of the glial membrane from -74 +/- 5 mV (n = 20) to -54 +/- 7 mV (n = 13). Both this depolarization and the rate of intracellular acidification were greatly reduced by the anion exchange inhibitor 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS; 0.3-0.5 mM), but were not affected by the removal of external Cl-. Reduction of the external Na+ concentration to one-tenth normal affected the rate of intracellular acidification only in the presence of CO2/HCO3-: the rate increased within the first 3-5 min after lowering external Na+; after longer exposures in low external Na+ the rate decreased, presumably due to depletion of intracellular Na+. Amiloride (1 mM), which inhibits the Na+-H+ exchange in these cells, had no effect on the rate of intracellular acidification. The intracellular Na activity (aNai) of the glial cells was measured to be 5.2 +/- 1.0 mM (n = 8) in CO2/HCO3-free saline; aNai increased to 7.3 +/- 2.2 mM (n = 8) after the addition of 5% CO2/24 mM HCO3-. Upon a change in pHo to 7.0 in the presence of CO2/HCO3-, aNai decreased by an average of 2 +/- 1.1 mM (n = 5); in CO2/HCO3--free saline external acidification produced a transient increase in aNai. It is concluded that, in the presence of CO2/HCO3-, the rate of intracellular acidification in glial cells is dominated by an outwardly directed, electrogenic Na+-HCO3-cotransport. Neurons, which do not possess this cotransporter, acidify at much lower rates under similar conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The role of an anion exchange pathway in modulating intracellular pH (pHi) under steady-state and alkaline load conditions was investigated in confluent monolayers of rat type II alveolar epithelial cells using the pH-sensitive fluorescent probe 2'-7'-biscarboxy-ethyl-5,6-carboxylfluorescein. Under steady-state conditions in the presence of 25 mM HCO3-, 5% CO2 at pHo 7.4, pHi was 7.32 in a Na+-replete medium and 7.33 in the absence of Na+. Steady-state pHi was 7.19 in a nominally HCO3(-)-free medium at pHo 7.4, and 7.52 in a Cl(-)-free medium, with both values significantly different from that obtained in the presence of both HCO3- and Cl-. Monolayers in which pHi was rapidly elevated by removal of HCO3-/CO2 from the bathing medium demonstrated an absolute requirement for Cl- to recover toward base-line pHi. The Km of Cl- for the external site of the exchange pathway was 11 +/- 1 mM. Recovery of pHi from the alkaline load in the presence of Cl- was inhibited 60% by the stilbene derivative 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Removal of Cl- from the medium of cells bathed in HCO3-/CO2 resulted in a rapid increment in pHi which returned to base line when Cl- was reintroduced into the bathing medium. In contrast, pHi was not perturbed by removal or addition of Cl- to monolayers bathed in a 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-buffered medium, indicating that HCO3- was the preferred species for transport. Recovery of pHi from an alkaline load was not affected by the presence or absence of Na+. These findings define the transport pathway as Na+-independent Cl-/HCO3- exchange. This pathway contributes importantly to determining resting pHi of pneumocytes and enables the cell to recover from an alkaline load.  相似文献   

12.
Studies of intracellular pH (pHi) in nervous tissue are summarized and recent investigation of intracellular and extracellular pH (pHo) in the isolated brain stem of the lamprey is reviewed. In the lamprey, pHi regulation was studied in single reticulospinal neurons using double-barrel ion-selective microelectrodes (ISMs). In nominally HCO3(-)-free HEPES-buffered media, acute acid loading was followed by a spontaneous recovery of pHi requiring 10-20 min and was associated with a prolonged rise in intracellular Na+. The recovery of pHi was blocked by 1-2 mM amiloride. Amiloride also caused a small rise in pHo. Substitution of external Na+ caused a slow intracellular acidification and extracellular alkalinization. Return of external Na+ reversed these effects. Transition from HEPES to HCO3(-)-buffered media increased the rate of acid extrusion during recovery of pHi. Recovery in HCO3(-)-buffered media was inhibited by 4,4'-diisothio-cyanostilbene-2,2'-disulfonic acid and was slowed after exposure to Cl(-)-free media. Following inhibition of acid extrusion by amiloride, transition to HCO3- media restored pHi recovery. These data indicate that lamprey neurons recover from acute acid loads by both Na+-H+ exchange and an independent HCO3(-)-dependent mechanism. Evidence for HCO3(-)-dependent acid extrusion in other vertebrate cells and the protocols of pHi studies using ISMs are discussed.  相似文献   

13.
The mechanisms underlying cytoplasmic pH (pHi) regulation in rat thymic lymphocytes were studied using trapped fluorescein derivatives as pHi indicators. Cells that were acid-loaded with nigericin in choline+ media recovered normal pHi upon addition of extracellular Na+ (Nao+). The cytoplasmic alkalinization was accompanied by medium acidification and an increase in cellular Na+ content and was probably mediated by a Nao+/Hi+ antiport. At normal [Na+]i, Nao+/Hi+ exchange was undetectable at pHi greater than or equal to 6.9 but was markedly stimulated by internal acidification. Absolute rates of H+ efflux could be calculated from the Nao+-induced delta pHi using a buffering capacity of 25 mmol X liter-1 X pH-1, measured by titration of intact cells with NH4+. At pHi = 6.3, pHo = 7.2, and [Na+]o = 140 mM, H+ extrusion reached 10 mmol X liter-1 X min-1. Nao+/Hi+ exchange was stimulated by internal Na+ depletion and inhibited by lowering pHo and by addition of amiloride (apparent Ki = 2.5 microM). Inhibition by amiloride was competitive with respect to Nao+. Hi+ could also exchange for Lio+, but not for K+, Rb+, Cs+, or choline+. Nao+/Hi+ countertransport has an apparent 1:1 stoichiometry and is electrically silent. However, a small secondary hyperpolarization follows recovery from acid-loading in Na+ media. This hyperpolarization is amiloride- and ouabain-sensitive and probably reflects activation of the electrogenic Na+-K+ pump. At normal Nai+ values, the Nao+/Hi+ antiport of thymocytes is ideally suited for the regulation of pHi. The system can also restore [Na+]i in Na+-depleted cells. In this instance the exchanger, in combination with the considerable cytoplasmic buffering power, will operate as a [Na+]i- regulatory mechanism.  相似文献   

14.
The technique for the simultaneous recording of cell volume changes and pHi in single cells was used to study the role of HCO3- in regulatory volume decrease (RVD) by the osteosarcoma cells UMR-106-01. In the presence of HCO3-, steady state pHi is regulated by Na+/H+ exchange, Na+ (HCO3-)3 cotransport and Na(+)-independent Cl-/HCO3- exchange. Following swelling in hypotonic medium, pHi was reduced from 7.16 +/- 0.02 to 6.48 +/- 0.02 within 3.4 +/- 0.28 min. During this period of time, the cells performed RVD until cell volume was decreased by 31 +/- 5% beyond that of control cells (RVD overshoot). Subsequently, while the cells were still in hypotonic medium, pHi slowly increased from 6.48 +/- 0.02 to 6.75 +/- 0.02. This increase in pHi coincided with an increase in cell volume back to normal (recovery from RVD overshoot or hypotonic regulatory volume increase (RVI)). The same profound changes in cell volume and pHi after cell swelling were observed in the complete absence of Cl- or Na+, providing HCO3- was present. On the other hand, depolarizing the cells by increasing external K+ or by inhibition of K+ channels with quinidine, Ba2+ or tetraethylammonium prevented the changes in pHi and RVD. These findings suggest that in the presence of HCO3-, RVD in UMR-106-01 cells is largely mediated by the conductive efflux of K+ and HCO3-. Removal of external Na+ but not Cl- prevented the hypotonic RVI that occurred after the overshoot in RVD. Amiloride had no effect, whereas pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) strongly inhibited hypotonic RVI. Thus, hypotonic RVI is mediated by a Na+(out)-dependent, Cl(-)-independent and DIDS-inhibitable mechanism, which is indicative of a Na+(HCO3-)3 cotransporter. This is the first evidence for the involvement of this transporter in cell volume regulation. The present results also stress the power of the new technique used in delineating complicated cell volume regulatory mechanisms in attached single cells.  相似文献   

15.
Passive (ouabain-insensitive) Na+ and K+ effluxes from human red blood cells were measured over the range pHo 6.2-8.5. On raising pHo, Na+ efflux increased and this was mainly attributable to the piretanide-sensitive component: K+ efflux likewise but attributable to both piretanide-sensitive and piretanide-insensitive components. On replacing Cl- with non-penetrating anions (mainly gluconate), Na+ and K+ effluxes increased, mostly attributable to the piretanide-insensitive components. On restoring pHi either by reducing pHo or by applying DIDS, the influence of pHo on Na+ and K+ effluxes was diminished. These results suggest that pHi rather than Em is the dominant influence. Passive Na+ and K+ effluxes and influxes in the presence of bumetanide were tested fro conformity to the Ussing independence relationship. For K+, the calculated and observed ratios agreed, indicating that the sodium pump, 'cotransport' and leak wholly account for K+ fluxes in human red blood cells. For Na+, the ratios did not agree and a 1:1 Na+/Na+ exchange did not account for the discrepancy. Pathways for Na+ appear to be more numerous than for K+.  相似文献   

16.
Pretreatment of isolated human neutrophils (resting pHi congruent to 7.25 at pHo 7.40) with 30 mM NH4Cl for 30 min leads to an intracellular acidification (pHi congruen to 6.60) when the NH4Cl prepulse is removed. Thereafter, in 140 mM Na+ medium, pHi recovers exponentially with time (initial rate, approximately 0.12 pH/min) to reach the normal resting pHi by approximately 20 min, a process that is accomplished mainly, if not exclusively, though an exchange of internal H+ for external Na+. This Na+/H+ countertransport is stimulated by external Na+ (Km congruent to 21 mM) and by external Li+ (Km congruent to 14 mM), though the maximal transport rate for Na+ is about twice that for Li+. Both Na+ and Li+ compete as substrates for the same translocation sites on the exchange carrier. Other alkali metal cations, such as K+, Rb+, or Cs+, do not promote pHi recovery, owing to an apparent lack of affinity for the carrier. The exchange system is unaffected by ouabain or furosemide, but can be competitively inhibited by the diuretic amiloride (Ki congruent to 8 microM). The influx of Na+ or Li+ is accompanied by an equivalent counter-reflux of H+, indicating a 1:1 stoichiometry for the exchange reaction, a finding consistent with the lack of voltage sensitivity (i.e., electroneutrality) of pHi recovery. These studies indicate that the predominant mechanism in human neutrophils for pHi regulation after intracellular acidification is an amiloride-sensitive alkali metal cation/H+ exchange that shares a number of important features with similar recovery processes in a variety of other mammalian cell types.  相似文献   

17.
Primary cultures of rat renal inner medullary collecting duct cells were grown to confluence on glass coverslips and treated permeant supports, and the pH-sensitive fluorescent probe 2,7-biscarboxyethyl-5,6-carboxyfluorescein was employed to delineate the nature of the transport pathways that allowed for recovery from an imposed acid load in a HCO3-/CO2-buffered solution. The H+ efflux rate of acid-loaded cells was 13.44 +/- 0.94 mM/min. Addition of amiloride, 10(-4) M, to the recovery solution reduced the H+ efflux rate to 4.06 +/- 0.63 mM/min. The amiloride-resistant pHi recovery mechanism displayed an absolute requirement for Na+ but was Cl(-)-independent. Studies performed on permeable supports demonstrated that the latter pathway was located primarily on the basolateral-equivalent (BE) cell surface and was inhibited by 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). In a Na(+)-replete solution containing DIDS (50 microM) and amiloride (10(-4) M), acid-loaded cells failed to return to basal pHi. To delineate further the amiloride-inhibitable component of pHi recovery, monolayers were studied in the nominal absence of HCO3-/CO2. In 70% of monolayers studied, Na(+)-dependent, amiloride-inhibitable H+ efflux was the sole mechanism whereby acid-loaded cells returned to basal pHi. A Na(+)-independent pathway was observed in 30% of monolayers examined and represented only a minor component of the pHi recovery process. In studies performed on permeable supports, the Na(+)-dependent amiloride-inhibitable pathway was found to be confined exclusively to the BE cell surface. In summary, confluent monolayers of rat renal inner medullary collecting duct cells in primary culture possess two major mechanisms that contribute toward recovery from an imposed acid load, namely, Na+/H+ antiport and Na+/HCO3- cotransport. Na(+)-independent pHi recovery mechanisms represent a minor component of the pHi recovery process in the cultured cell. Both the Na+/H+ antiporter and Na+/HCO3- cotransporter are located primarily on the BE cell surface.  相似文献   

18.
The ion transport system responsible for intracellular pH (pHi) regulation in squid giant axons was examined in experiments with pH- sensitive microelectrodes and isotopic fluxes of Na+ and Cl-. In one study, axons were acid-loaded and the rate of the subsequent pHi recovery was used to calculate the acid extrusion rate. There was an absolute dependence of acid extrusion on external Na+, external HCO-3 (at constant pH), and internal Cl-. Furthermore, the dependence of the acid extrusion rate on each of these three parameters was described by Michaelis-Menten kinetics. Acid extrusion was stimulated by an acid pHi, required internal ATP, and was blocked by external 4-acetamido-4'- isothiocyanostilbene-2,2'-disulfonate (SITS). Under a standard set of conditions (i.e., [HCO-3]o = 12 mM, pHo = 8.00, [Na+]o = 425 mM, [Cl-]i = 150 mM, [ATP]i = 4 mM, pHi = 6.5, and 16 degrees C), the mean acid extrusion rate was 7.5 pmol X cm-2 X s-1. In a second study under the above standard conditions, the unidirectional Na+ efflux (measured with 22Na) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean influx was about 3.4 pmol X cm-2 X s- 1. This net influx required external HCO-3, internal Cl-, and acid pHi, internal ATP, and was blocked by SITS. In the final series of experiments under the above standard conditions, the unidirectional Cl- influx (measured with 36Cl) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean efflux was approximately 3.9 pmol X cm-2 X s-1. This net efflux required external HCO-3, external Na+, an acid pHi, internal ATP, and was blocked by SITS. We conclude that the pHi-regulating system mediates the obligate net influx of HCO-3 (or equivalent species) and Na+ and the net efflux of Cl- in the stoichiometry of 2:1:1. The transport system is stimulated by intracellular acid loads, requires ATP, and is blocked by SITS.  相似文献   

19.
31P-NMR spectroscopy was used to monitor intracellular pH (pHi) in a suspension of LLC-PK1 cells, a renal epithelial cell line. The regulation of intracellular pH (pHi) was studied during intracellular acidification with 20% CO2 or intracellular alkalinization with 30 mM NH4Cl. The steady-state pHi in bicarbonate-containing Ringer's solution (pHo 7.40) was 7.14 +/- 0.04 and in bicarbonate-free Ringer's solution (pHo 7.40) 7.24 +/- 0.04. When pHo was altered in nominally HCO3(-)-free Ringer's, the intracellular pHi changed to only a small extent between pHo 6.6 and pHo 7.6; beyond this range pHi was linearly related to pHo. Below pHo 6.6 the cell was capable of maintaining a delta pH of 0.2 pH unit (inside more alkaline), above pH 7.6 a delta pH of 0.4 unit could be generated (inside more acid). During exposure to 20% CO2 in HCO3(-)-free Ringer's solution, pHi dropped initially to 6.9 +/- 0.05, the rate of realkalinisation was found to be 0.071 pH unit X min-1. After removal of CO2 the pHi increased by 0.65 and the rate of reacidification was 0.056 pH unit X min-1. Exposure to 30 mM NH4Cl caused a raise of pHi by 0.48 pH unit and an initial rate of re-acidification of 0.063 pH unit X min-1, after removal of NH4Cl the pHi fell by 0.58 pH unit below the steady-state pHi, followed by a subsequent re-alkalinization of 0.083 pH unit X min-1. Under both experimental conditions, the pHi recovery after an intracellular acidification, introduced by exposure to 20% CO2 and by removal of NH4+, was found to be inhibited by 53% and 63%, respectively, in the absence of sodium and 60% and 72%, respectively, by 1 mM amiloride. These studies indicate that 31P-NMR can be used to monitor steady-state intracellular pH as well a pHi transients in suspensions of epithelial cells. The results support the view that LLC-PK1 cells use an Na+-H+ exchange system to readjust their internal pH after acid loading of the cell.  相似文献   

20.
We previously reported that, in a HCO3(-)-free medium, cytoplasmic pH (pHi) of hamster fibroblasts (CCL39) is primarily regulated by an amiloride-sensitive Na+/H+ antiport (L'Allemain, G., Paris, S., and Pouysségur, J. (1984) J. Biol. Chem. 259, 5809-5815). Here we demonstrate the existence of an additional pHi-regulating mechanism in CCL39 cells, namely a Na+-dependent HCO3-/Cl- exchange. Evidence for this system is based on 36Cl- influx studies and on pHi measurements in PS120, a CCL39-derived mutant lacking the Na+/H+ antiport activity. 36Cl- influx rate is a saturable function of external [Cl-] (apparent Km approximately equal to 7 mM), is competitively inhibited by external HCO3- (KI approximately equal to 3 mM), and by stilbene derivatives (KI approximately equal to 20 microM for 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid). Measurements of pHi recovery after an acute acid load indicate that PS120 cells possess an acid-extruding mechanism dependent on external HCO3-, which is inhibited by stilbene derivatives and requires external Na+. Since 22Na+ influx is stimulated upon addition of HCO3- to acid-loaded cells and this effect is completely abolished by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, we conclude that Na+ is co-transported with HCO3-, in exchange for intracellular Cl-. In a HCO3(-)-containing medium, this pHi-regulating mechanism appears to have two essential physiological functions for the Na+/H+ antiport-deficient mutant: protection of the cells against excessive cytoplasmic acidification and establishment of a steady-state pHi permissive for growth, at neutral or slightly acidic pHo values (6.6-7.2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号