首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between three genera considered basal in the Chromodorididae (Cadlina, Tyrinna, Cadlinella) has not yet been resolved by traditional morphological means. Here we examined the sperm ultrastructure of Tyrinna nobilis, Tyrinna evelinae, Cadlina flavomaculata and Cadlina cf. nigrobranchiata, with the expectation of finding phylogenetically informative characters. No Tyrinna or Cadlina species showed sperm similarities to Cadlinella. Both Cadlina species and Tyrinna nobilis (but not T. evelinae) exhibited coarse striations in the acrosomal pedestal. The putative fibers that occurred between the coarse striations of the pedestal are condensed into a layer in Cadlina and Tyrinna, but not in other species that also have coarse striations (Gymnodoris), and may constitute evidence for a close relationship. Tyrinna evelinae possessed fine acrosomal striations, which was shared with other Chromodorididae, Actinocyclidae and the cryptobranchs Rostanga and Aphelodoris. We also examined the sperm ultrastructure of ‘Chromodorisambiguus, an animal which has shown molecular affinities to species of Cadlina, and not Chromodoris. The sperm of ‘C.’ ambiguus did not exhibit the typical Cadlina characteristics, but also showed important differences to other investigated Chromodoris species.  相似文献   

2.
Ultrastructural observations on spermiogenesis and spermatozoa of selected pyramidellid gastropods (species ofTurbonilla, Pyrgulina, Cingulina andHinemoa) are presented. During spermatid developement, the condensing nucleus becomes initially anterio-posteriorly compressed or sometimes cup-shaped. Concurrently, the acrosomal complex attaches to an electrondense layer at the presumptive anterior pole of the nucleus, while at the opposite (posterior) pole of the nucleus a shallow invagination is formed to accommodate the centriolar derivative. Midpiece formation begins soon after these events have taken place, and involves the following processes: (1) the wrapping of individual mitochondria around the axoneme/coarse fibre complex; (2) later internal metamorphosis resulting in replacement of cristae by paracrystalline layers which envelope the matrix material; and (3) formation of a glycogen-filled helix within the mitochondrial derivative (via a secondary wrapping of mitochondria). Advanced stages of nuclear condensation (elongation, transformation of fibres into lamellae, subsequent compaction) and midpiece formation proceed within a microtubular sheath (‘manchette’). Pyramidellid spermatozoa consist of an acrosomal complex (round to ovoid apical vesicle; column-shaped acrosomal pedestal), helically-keeled nucleus (short, 7–10 μm long, shallow basal invagination for axoneme/coarse fibre attachment), elongate helical midpiece (composed of axoneme, coarse fibres, paracrystalline and matrix materials, glycogen-filled helix), glycogen piece (length variable, preceeded by a dense ring structure at junction with midpiece). The features of developing and mature spermatozoa observed in the Pyramidellidae are as observed in opisthobranch and pulmonate gastropods indicating that the Pyramidelloidea should be placed within the Euthyneura/Heterobranchia, most appropriately as a member group of the Opisthobranchia.  相似文献   

3.
B. Hosfeld 《Zoomorphology》1994,114(4):195-202
Summary The spermatophore, mature spermatozoon and spermiogenesis of Heterolaophonte minuta have been investigated by light and electron microscopy. The spermatophore contains three different secretions which are responsible for the discharge of the contents of the spermatophore, the formation of the fertilization tube and the storage of the spermatozoa. The spermatozoon represents a type new for the Copepoda. It is a filiform cell about 25 m in length, ellipsoid in transverse section and tapered at the posterior end. The elongated nucleus contains chromatin fibrils and does not possess a nuclear envelope. Posterior to the nucleus, six mitochondria are placed one after the other. The posterior part of the spermatozoon contains parallel pseudomembranes. The gamete is not helically twisted and is without a flagellum and centrioles. The most remarkable feature of the spermatozoon is an osmiophilic cap in front of the nucleus. This cap corresponds to the acrosome of the spermatozoon. Early stages of spermiogenesis take place in the testis, where the spermatids are incorporated into accessory cells. The origin of the chromatin fibrils and the glycocalyx, as well as the breakdown of the nuclear envelope and centrioles, represent the final steps of spermiogenesis which occur in the vas deferens.  相似文献   

4.
Summary

Comparative data on the ultrastructure of spermiogenesis and spermatozoa of the Polyplacophora Acanthochitona crinita, Chaetopleura angulata and Callochiton septemvalvis are presented in this study. In contrast to what has been described for this and other classes of Mollusca, no acrosome is present in the spermatozoa of these Polyplacophora. The nucleus is extended by a long, thin apical point. In A. crinita and C. angulata the mitochondria are situated at the basal and lateral regions of the nucleus. They do not present a typical middle piece. These species present a pericentriolar process. In C. septemvalvis the mitochondria are situated at the base of the nucleus, surrounding the centrioles, which are orthogonally positioned in all species. The ultrastructural development during spermiogenesis is similar. In middle spermatids of A. crinita, the chromatin is arranged in fine filaments. In C. septemvalvis and C. angulata the chromatin filaments are thicker, forming coarse bands. In late spermatids elongation of the nucleus continues, it becomes rather electron-dense and the chromatin filaments are more condensed. Finally, the nucleus has a uniformly electron-dense appearance, with no signs of filamentous organization. Considering the ultrastructural modifications observed, the Polyplacophora spermatozoa could be included in a modified type.  相似文献   

5.
In Nerita picea the proacrosomal granule is formed basally in the early spermatid from one large cisterna of the Golgi body, with which the other Golgi-derived vesicles fuse. After the proacrosomal granule has attached to the plasma membrane and invaginated to form a cup shape, one cisterna of endoplasmic reticulum inserts into the open end and deposits a granular secretion on the inner surface. Subsequently, the proacrosome migrates along the plasma membrane to the apex of the nucleus, but the Golgi body remains basal, as occurs in other archaeogastropods and also many polychaete annelids. However, the final shape and structure of the acrosome is similar to that of mesogastropods. The annulus attaches the distal centriole to the plasma membrane early in spermiogenesis. The production of the flagellum by the distal centriole not only expands the plasma membrane posteriorly but moves the centriolar complex to the nucleus, causing an invagination of the plasma membrane where it is bound by the annulus. During proacrosome migration, the Golgi body secretes a dense tube around the flagellum, and the mitochondria fuse into two spheres at the base of the nucleus. The nuclear plug that closes off the intranuclear canal until this stage rapidly reorganizes itself into two tubes of material inside the canal. The centrioles continue flagellar production, break away from the annulus, and move deep into the intranuclear canal where they fuse together to form the basal body of the sperm. In the maturing spermatid, the two mitochondria fuse into a single sheath that spirals around the flagellum. The annulus does not migrate posteriorly but remains anterior to the midpiece, which is unusual for a filiform sperm. Spermiogenesis in Nerita picea has features in common with both archaeogastropods and mesogastropods but also has some unique features. These observations lend credence to the idea that the Neritidae are a transitional group between Archaeogastropoda and Mesogastropoda.  相似文献   

6.
Abstract. The topic of tissue and organ regeneration has been of interest to life scientists ever since the phenomenon was noticed. The reason for this is obvious: if one can learn what drives and controls regeneration, i.e., how lost or damaged structures can be replaced, one not only has a better chance to understand an animal's embryogenesis and evolutionary relationship with other taxa, but one would also be in a better position to treat organ loss or tissue damage in humans. In this context, the possible restitution of individual sensory neurons or nerve projections has been of special interest to us. We identified central visual projections in several gastropod species and found that: (1) projections are very extensive across the brain and (2) they have connections with other systems and organs (including, most likely, non-ocular skin photoreceptors) that may be involved in the integration of signals from different sensors. Investigations of afferent and efferent visual elements at a morphological level should help reveal the neuronal basis of a gastropod's behavioral reactions.  相似文献   

7.
Previous work suggests that low-spired hermaphroditic snails mate face-to-face and have reciprocal sperm exchange, whereas high-spired snails mate by shell mounting and have unilateral sperm exchange. This dichotomy lead others to speculate on the evolution of enigmatic mating behaviours and whole-body enantiomorphy. In the present study, we review the current literature on mating behaviour in pulmonate snails and show that: (1) several pulmonate species show considerable intraspecific variation in mating behaviour; (2) mating position does not predict reciprocity of penis intromission and sperm exchange; (3) dart-shooting may be correlated with reciprocity of sperm exchange but other factors must explain the gain or loss of darts; (4) it is unlikely that the degree of reciprocity is the most important factor in explaining the relationship of whole-body enantiomorphy and shell shape; and (5) the reciprocal intromission of penises does not necessarily involve the reciprocal transfer of sperm. Hence, our survey shows that current ideas on the evolutionary relationship between shell shape and reciprocity with sexual selection (including dart-use) and whole-body enantiomorphy in hermaphroditic snails should be refined. The results obtained demonstrate that our current knowledge on gastropod mating behaviour is too limited to detect general evolutionary trajectories in gastropod mating behaviour and genital anatomy.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 306–321.  相似文献   

8.
Relationships of gymnomorph gastropods (Mollusca: gastropoda)   总被引:2,自引:0,他引:2  
The gastropod families Onchidiidae, Vaginulidae, Rathouisiidae and Rhodopidae have been classified in a subclass Gymnomorpha, in which the genus Smeagol has been more recently included, on the basis of characters related with limacization which should not be used for classification at suprafamilial levels. When only characters not related with limacization are taken into account, the onchidiids are very similar to the ellobiids; Smeagol may be considered an otinid slug; vaginulids and rathouisiids form a monophyletic group of pulmonates, the Rathouisioidea. It is proposed to reject the Rhodopidae from the Pulmonata, and to include the onchidiids and the Rathouisioidea in the order Archeopulmonata, together with the ellobiids, the otinids and the Amphiboloidea.  相似文献   

9.
The spermiogenesis and the sperm ultrastructure of several species of Coniopterygidae have been examined. The spermatozoa consist of a three-layered acrosome, an elongated elliptical nucleus, a long flagellum provided with a 9+9+3 axoneme and two mitochondrial derivatives. No accessory bodies were observed. The axoneme exhibits accessory microtubules provided with 13, rather than 16, protofilaments in their tubular wall; the intertubular material is reduced and distributed differently from that observed in other Neuropterida. Sperm axoneme organization supports the isolated position of the family previously proposed on the basis of morphological data.  相似文献   

10.
Abstract. The external epithelial cilia and other surface structures of the nuculoid protobranchs Nuculana pernula and Nucula nitidosa were studied. The gill lamellae and labial palps are partly covered with very long cilia. These have a modified slender distal portion, an ordinary metazoan-type basal body, a basal foot. and a single, long cross-striated rootlet. In cilia on the gills of N. nitidosa , the basal foot is thick and attaches to the next basal body directly behind. Unciliated surface areas on the gills, labial palps, and foot are covered with a dense brushborder of microvilli. We observed no specific homologies between the cilia of the protobranchs studied and the epidermal cilia of the enigmatic Xenoturbella bocki , hence the recent hypothesis of a close connection of the latter to the protobranch bivalves is questioned.  相似文献   

11.
Although the monophyly of Nemertea is strongly supported by unique morphological characters and results of molecular phylogenetic studies, their ingroup relationships are largely unresolved. To contribute solving this problem we studied sperm ultrastructure of 12 nemertean species that belong to different subtaxa representing the commonly recognized major monophyletic groups. The study yielded a set of 26 characters with an unexpected variation among species of the same genus (Tubulanus and Procephalothrix species), whereas other species varied in metric values or only one character state (Ramphogordius). In some species, the sperm nucleus has grooves (Zygonemertes virescens, Amphiporus imparispinosus) that may be twisted and give a spiral shape to the sperm head (Paranemertes peregrina, Emplectonema gracile). To make the characters from sperm ultrastructure accessible for further phylogenetic analyses, they were coded in a character matrix. Published data for eight species turned out to be sufficiently detailed to be included. Comparative evaluation of available information on the sperm ultrastructure suggests that subtaxa of Heteronemertea and Hoplonemertea are supported as monophyletic by sperm morphology. However, the data do not provide information on the existing contradictions regarding the internal relationships of “Palaeonemertea.” Nevertheless, our study provides evidence that sperm ultrastructure yields numerous potentially informative characters that will be included in upcoming phylogenetic analyses. J. Morphol. 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Global diversity of gastropods (Gastropoda; Mollusca) in freshwater   总被引:1,自引:0,他引:1  
The world’s gastropod fauna from continental waters comprises ∼4,000 valid described species and a minimum of 33–38 independent lineages of Recent Neritimorpha, Caenogastropoda and Heterobranchia (including the Pulmonata). The caenogastropod component dominates in terms of species richness and diversity of morphology, physiology, life and reproductive modes and has produced several highly speciose endemic radiations. Ancient oligotrophic lakes (e.g., Baikal, Ohrid, Tanganyika) are key hotspots of gastropod diversity; also noteworthy are a number of lower river basins (e.g., Congo, Mekong, Mobile Bay). But unlike many other invertebrates, small streams, springs and groundwater systems have produced the most speciose associations of freshwater gastropods. Despite their ecological importance in many aquatic ecosystems, understanding of even their systematics is discouragingly incomplete. The world’s freshwater gastropod fauna faces unprecedented threats from habitat loss and degradation and introduced fishes and other pests. Unsustainable use of ground water, landscape modification and stock damage are destroying many streams and springs in rural/pastoral areas, and pose the most significant threats to the large diversity of narrow range endemics in springs and ground water. Despite comprising only ∼5% of the world’s gastropod fauna, freshwater gastropods account for ∼20% of recorded mollusc extinctions. However, the status of the great majority of taxa is unknown, a situation that is exacerbated by a lack of experts and critical baseline data relating to distribution, abundance, basic life history, physiology, morphology and diet. Thus, the already considerable magnitude of extinction and high levels of threat indicated by the IUCN Red List of Threatened Species is certainly a significant underestimate. Guest editors: E. V. Balian, C. Lévêque, H. Segers and K. Martens Freshwater Animal Diversity Assessment  相似文献   

13.
14.
Summary Spermatozoa of Provortex tubiferus are thread-shaped, totally enclosed by peripheral microtubules and devoid of cilia or flagella. A peripheral layer of dense bodies underlies the cortical microtubules. Roundish mitochondria are arranged in a single row in the middle region of the sperm body. A special feature is documented in the appearance of a perinuclear condensation consisting of leaflet-like compartments. Such a perinuclear condensation is not known for any other species of the Plathelminthes. This characteristic may have functional roles in the locomotion and stabilization of the filiform aciliary spermatozoon. During spermiogenesis, two centrioles in a diplosome configuration differentiate near each nucleus of an early spermatid. With proceeding sperm maturation, a structure resembling an intercentriolar body is formed as typical for the taxon Trepaxonemata. However, axonemes are not differentiated and the intercentriolar body becomes disorganized. It is hypothesized that the Provorticinae (with Provortex) and the Graffillinae (with Paravortex) constitute a new monophylum with the autapomorphy special type of aciliary spermatozoon. The Provorticidae and the Graffillidae, respectively, are non-monophyletic groupings; the Kirgisellinae, Pseudograffillinae and Bresslauillinae do not belong to the monophylum Provorticinae + Graffillinae.Abbreviations ccp cone-shaped cell process - cm cortical microtubules - ct centriole - cy cytophore - db dense bodies - mi mitochondrion - n nucleus - pn perinuclear condensation  相似文献   

15.
Abstract. The spermatozoa of Exogone naidina and E. dispar are characterized by a prominent bell-shaped acrosome, a spheroidal nucleus, and a conventional flagellum. During spermiogenesis, the acrosomal vesicle undergoes conspicuous modifications leading to its final bell shape with a posterior opening. The subacrosomal material initially shows radiating filaments but in mature sperms it appears as a meshwork of electron-opaque material. The acrosomal axis is oblique with respect to the main longitudinal sperm axis. The chromatin is arranged in electron-opaque strands in the early spermatids, then becomes amorphous, and is finally organized in filaments in mature sperms. Centrioles are orthogonally arranged beneath the nucleus and fibers radiate from the distal centriole to contact the plasma membrane and the single mitochondrion. The latter is located eccentrically on the side of the nucleus opposite the acrosome. A disk-shaped structure is evident beneath the distal centriole. The flagellar axoneme has a 9+2 microtubule pattern. A conspicuous glycocalyx surrounds the flagellar plasma membrane, and an electron-lucent space is present between these two structures at the distal tip of the flagellum. We compare the sperm morphology of these two species of Exogone with that described in other members of the subfamily Exogoninae. The fine structure of these two species supports the occurrence of an ent-aquasperm type within Exogoninae, in accordance with the brood strategy present within this subfamily. The mode of reproduction is of taxonomic importance for defining subfamilies within Syllidae, and is likely also of phylogenetic significance. Because epitoky is probably plesiomorphic, the ent-aquasperm type found in Exogoninae can be considered a derived feature within Syllidae.  相似文献   

16.
E. R. Sakker 《Zoomorphology》1984,104(2):111-121
Summary Mature sperm of the three species, Onithochiton quercinus, Chiton pelliserpentis and Plaxiphora paeteliana are eupyrene and basically of the primitive type. The sperm are small, with a distinct head, midpiece with a few spherical to oval mitochondria and a long tail with a (2×9)+2 axoneme. They are unusual among primitive sperm in being bilaterally symmetrical, with a long anterior filament containing an extension of the nucleus and lacking an acrosome. Spermatogenesis occurs synchronously throughout the testis in inwardly folded tissue plates. Spermatogonia arise adjacent to the central blood sinus in each tissue plate. Cells in successive stages of spermatogenesis are displaced towards the luminal surface. The cytoplasm of all stages contains ribosomes, rough endoplasmic reticulum, lysosomes and mitochondria. A Golgi complex is present in secondary spermatocytes and spermatids but does not form an acrosome. During spermiogenesis Golgi complexes are confined to the posterior region of developing sperm and are eventually shed in the residual cytoplasm behind the midpiece. Preacrosomal vesicles are not formed. The long anterior filament of the sperm and lack of an acrosome are features associated with the fertilization of eggs surrounded by a chorion which may have pores or a micropyle. The exact method of fertilization in chitons remains to be elucidated.Abbreviations af anterior filament - bh body of the head - bn body of the nucleus - bs blood sinus - c collar - dc distal centriole - esg early spermatogonium - fc fibrous chromatin - gc granular chromatin - if implantation fossa - lsg later spermatogonium - m mitochondrion - mc muscle cell in blood sinus - mm midpiece mitochondrion - mt microtubule - mI primary spermatocyte undergoing first meiotic division - mII secondary spermatocyte undergoing second meiotic division - n nucleus - ncc nuclear condensing chromatin - ne nuclear envelope - pc proximal centriole - rc resorbing cell - s spermatozoon - 1°sc primary spermatocyte - 2°sc secondary spermatocyte - st spermatid - t tail - tc thinning cytoplasm - tf tail flagellum - tpec tissue plate epithelial cell  相似文献   

17.
During spermiogenesis, the spermatids of the pimelodid species Pimelodus maculatus and Pseudoplatystoma fasciatum show a central flagellum development, no rotation of the nucleus, and no nuclear fossa formation, in contrast to all previously described spermatids of Teleostei. These characteristics are interpreted as belonging to a new type of spermiogenesis, named here type III, which is peculiar to the family Pimelodidae. In P. maculatus and P. fasciatum, spermatozoa possess a spherical head and no acrosome; their nucleus contains highly condensed, homogeneous chromatin with small electron-lucent areas; and a nuclear fossa is not present. The centriolar complex lies close to the nucleus. The midpiece is small, has no true cytoplasmic channel, and contains many elongate and interconnected vesicles. Several spherical to oblong mitochondria are located around the centriolar complex. The flagellum displays the classical axoneme (9+2) and no lateral fins. Only minor differences were observed among the pimelodid species and genera. Otherwise, spermiogenesis and spermatozoa in the two species of Pimelodidae studied exhibit many characteristics that are not found in other siluriform families, mainly the type III spermiogenesis.  相似文献   

18.
We describe chromatin condensation and acrosome development during spermiogenesis of Ensis ensis. The overall shape of the mature spermatozoon corresponds to the primitive type. The nucleus is oval and on its superior pole there is an elongated acrosome; the middle piece contains four mitochondria around the centriolar complex. The condensation of the nuclei seems to occur in three steps: first the diameter of chromatin fibers increases slightly from 17 to 20 nm; second, in midspermatids fiber pairs coalesce; and third, the coalescence continues by addition of other fibers until the nuclei become highly compacted. Chromatin changes are related with nuclear protein composition. Small proacrosomal vesicles show two regions of different electron density. At a later stage they fuse to give a single, spherical vesicle in round spermatids, which migrates to the upper pole and transforms into a tapered acrosome (18 μm long) with a central channel filled with finely fibrous material. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Abstract. The ultrastructure of the ciliary apparatus of multiciliated epidermal cells of the trochophore of Epimenia babai and the adult of Strophomenia scandens was studied. The trochal cirri of E. babai consists of long cilia with unspecialized tips. The surfaces between the trochs are sparsely covered with shorter cilia of similar structure except for length. In the adult of S. scandens , the foot is covered by a dense mat of cilia with blunt electron-dense tips. In both E. babai and S. scandens , all cilia have two perpendicularly orientated rootlets. This condition is similar to that of the Chaetodermomorpha (=Caudofoveata) and Polyplacophora. In other molluscs studied to date, the cilia of multiciliated epidermal cells have a single rootlet or a derivative thereof. The presence of two ciliary rootlets likely represents the basal plesiomorphic state for the Bilateria. The existence of this character in the Neomeniomorpha, Chaetodermomorpha, and Polyplacophora is congruent with the hypothesis of a basal position of these taxa within the Mollusca.  相似文献   

20.
With about 800 Recent species, ‘miters’ are a widely distributed group of tropical and subtropical gastropods that are most diverse in the Indo‐West Pacific. They include the two families Mitridae and Costellariidae, similar in shell morphology and traditionally treated as close relatives. Some genera of deep‐water Ptychatractidae and Volutomitridae are close to miters in shell morphology, and the term ‘mitriform gastropods’ has been introduced to refer to Mitridae, Costellariidae, and this assortment of convergent forms. The present study aimed at the reconstruction of phylogenetic relationships of mitriform gastropods based on representative taxon sampling. Four genetic markers [cytochrome c oxidase subunit I (COI), 16S and 12S rRNA mitochondrial genes, and H3 (Histone 3) nuclear gene] were sequenced for over 90 species in 20 genera, and the molecular data set was supplemented by studies of radula morphology. Our analysis recovered Mitridae as a monophyletic group, whereas the genus Mitra was found to be polyphyletic. Of 42 mitrid species included in the analysis, 37 formed a well‐supported ‘core Mitridae’ consisting of four major clades, three of them consistent with the subfamilies Cylindromitrinae, Imbricariinae, and Mitrinae, and Strigatella paupercula standing out by itself. Basal to the ‘core Mitridae’ are four minor lineages, with the genus Charitodoron recognized as sister group to all other Mitridae. The deep‐water family Pyramimitridae shows a sister relationship to the Mitridae, with high support for a Pyramimitridae + Mitridae clade. Our results recover the monophyly of the Costellariidae, which form a well‐supported clade that also includes Ptychatractidae, Columbariinae, and Volutomitridae, but not Mitridae. Most derived and diverse amongst Costellariidae are species of Vexillum, characterized by a bow‐shaped, multicuspidate rachidian tooth. Several previously unrecognized deep‐water costellariid lineages are revealed. Their members retain some plesiomorphies – in particular a tricuspidate rachidian tooth – that makes them morphologically intermediate between ptychatractids and Vexillum. The taxa of Ptychatractidae included in the analysis are not monophyletic, but form three well‐supported, unrelated groupings, corresponding respectively to Ceratoxancus + Latiromitra, Exilia, and Exiliodea. None of them shows an affinity to Pseudolividae. © 2015 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号