首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental autoimmune uveoretinitis (EAU) is a T cell-mediated autoimmune disease of posterior uvea that closely resembles a human disease. The uveitogenic effector T cell has a Th1-like phenotype [high interferon-gamma (IFN-gamma), low interleukin-4 (IL-4)], and genetic susceptibility to EAU that is associated with an elevated Th1 response. Suppression of CD4+ Th1 cells for the treatment of autoimmune disease is an attractive potential therapeutic approach. Nitric oxide (NO) has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. In this study, we investigated the potential role of NO as an immunoregulator to alter Th1/Th2 cytokine production, as well as to inhibit the interphotoreceptor retinoid binding protein (IRBP)-induced EAU, a CD4+ Th1 cell-mediated autoimmune disease. Injection of IRBP (100 microg) into two footpads resulted in severe EAU. The beginning peak of the disease was days 12 to 15 after immunization. Oral treatment with molsidomine (MSDM), a NO donor, began 24 h before IRBP immunization to the end of the experiments, which resulted in a significant inhibition of the disease by clinical and histopathological criteria. When MSDM was administered until day 21, a complete reduction of incidence and severity of EAU was observed. To investigate the cytokine alterations from Th1 to Th2 cytokines by MSDM, the cytokines were assayed in a culture medium of IRBP-stimulated inguinal lymphocytes. IRBP-immunized rats secreted a high concentration of IFN-gamma and a low concentration of IL-10. In contrast, MSDM treatment enhanced IL-10 secretion and tended to decrease IFN-gamma secretion. In conclusion, we show that the administration of NO suppresses EAU by altering the Th1/Th2 balance of inflammatory immune responses. We suggest that NO may be useful in the therapeutic control of autoimmune uveitis.  相似文献   

2.
Experimental autoimmune uveitis (EAU) induced by immunization of animals with retinal Ags is a model for human uveitis. The immunosuppressive cytokine IL-10 regulates EAU susceptibility and may be a factor in genetic resistance to EAU. To further elucidate the regulatory role of endogenous IL-10 in the mouse model of EAU, we examined transgenic (Tg) mice expressing IL-10 either in activated T cells (inducible) or in macrophages (constitutive). These IL-10-Tg mice and non-Tg wild-type controls were immunized with a uveitogenic regimen of the retinal Ag interphotoreceptor retinoid-binding protein. Constitutive expression of IL-10 in macrophages abrogated disease and reduced Ag-specific immunological responses. These mice had detectable levels of IL-10 in sera and in ocular extracts. In contrast, expression of IL-10 in activated T cells only partially protected from EAU and marginally reduced Ag-specific responses. All IL-10-Tg lines showed suppression of Ag-specific effector cytokines. APC from Tg mice constitutively expressing IL-10 in macrophages exhibited decreased ability to prime naive T cells, however, Ag presentation to already primed T cells was not compromised. Importantly, IL-10-Tg mice that received interphotoreceptor retinoid-binding protein-specific uveitogenic T cells from wild-type donors were protected from EAU. We suggest that constitutively produced endogenous IL-10 ameliorates the development of EAU by suppressing de novo priming of Ag-specific T cells and inhibiting the recruitment and/or function of inflammatory leukocytes, rather than by inhibiting local Ag presentation within the eye.  相似文献   

3.
Th17 cells are implicated in CNS autoimmune diseases. We show that mice with targeted-deletion of Stat3 in CD4(+) T cells (CD4(Stat3)(-/-)) do not develop experimental autoimmune uveoretinitis (EAU) or experimental autoimmune encephalomyelitis. Defective Th17 differentiation noted in CD4(Stat3)(-/-) mice is compensated by exaggerated increases in Foxp3-, IL-10-, IL-4-, and IFN-gamma-expressing T cells, suggesting critical roles of STAT3 in shaping Ag-specific CD4(+) T cell repertoire. In mice with EAU, a high percentage of IL-17-expressing T cells in their peripheral lymphoid organs also secrete IFN-gamma while these double-expressors are absent in CD4(Stat3)(-/-) and wild-type mice without EAU, raising the intriguing possibility that uveitis maybe mediated by Th17 and IL-17-expressing Th1 cells. Resistance of Stat3-deficient mice to EAU derives in part from an inability of uveitogenic Th17 and Th1 cells to enter eyes or brain of the CD4(Stat3)(-/-) mouse because of the reduction in the expression of activated alpha4/beta1 integrins on CD4(Stat3)(-/-) T cells. Adoptive transfer of activated interphotoreceptor retinoid-binding protein-specific uveitogenic T cells induced in CD4(Stat3)(-/-) mice a severe EAU characterized by development of retinal folds, infiltration of inflammatory cells into the retina, and destruction of retinal architecture, underscoring our contention that the loss of STAT3 in CD4(+) T cells results in an intrinsic developmental defect that renders CD4(Stat3)(-/-) resistant to CNS inflammatory diseases. STAT3 requirement for IL-17 production by Th17, generation of double positive T cells expressing IL-17 and IFN-gamma, and for T cell trafficking into CNS tissues suggests that STAT3 may be a therapeutic target for modulating uveitis, sceritis, or multiple sclerosis.  相似文献   

4.
IL-12 family cytokines are important in host immunity. Whereas some members (IL-12, IL-23) play crucial roles in pathogenesis of organ-specific autoimmune diseases by inducing the differentiation of Th1 and Th17 lymphocytes, others (IL-27 and IL-35) suppress inflammatory responses and limit tissue injury induced by these T cell subsets. In this study, we have genetically engineered a novel IL27p28/IL12p40 heterodimeric cytokine (p28/p40) that antagonizes signaling downstream of the gp130 receptor. We investigated whether p28/p40 can be used to ameliorate uveitis, a CNS inflammatory disease. Experimental autoimmune uveitis (EAU) is the mouse model of human uveitis and is mediated by Th1 and Th17 cells. We show here that p28/p40 suppressed EAU by inhibiting the differentiation and inflammatory responses of Th1 and Th17 cells while promoting expansion of IL-10+- and Foxp3+-expressing regulatory T cells. Lymph node cells from mice treated with p28/p40 blocked adoptive transfer of EAU to naïve syngeneic mice by immunopathogenic T cells and suppressive effects of p28/p40 derived in part from antagonizing STAT1 and STAT3 pathways induced by IL-27 and IL-6. Interestingly, IL27p28 also suppressed EAU, but to a lesser extent than p28/p40. The inhibition of uveitogenic lymphocyte proliferation and suppression of EAU by p28/p40 and IL27p28 establish efficacy of single chain and heterodimeric IL-12 family cytokines in treatment of a CNS autoimmune disease. Creation of the biologically active p28/p40 heterodimeric cytokine represents an important proof-of-concept experiment, suggesting that cytokines comprising unique IL-12 α- and β-subunit pairing may exist in nature and may constitute a new class of therapeutic cytokines.  相似文献   

5.
Experimental autoimmune uveitis (EAU) and experimental autoimmune pinealitis (EAP) are CD4+ T cell-mediated inflammatory diseases of the uveal tract and retina of the eye and of the pineal gland. EAU and EAP can be induced by several retinal autoantigens including S-antigen (S-Ag) and interphotoreceptor retinoid binding protein (IRBP). In this study we investigated the effect of intravenous administration of S-Ag and IRBP coupled to syngeneic spleen cells on the development of EAU and EAP. Injection of S-Ag or IRBP coupled to spleen cells 5 days prior to immunization with native S-Ag or IRBP, respectively, was effective in preventing the induction of EAU and EAP in LEW rats. Conversely, LEW rats receiving S-Ag-coupled spleen cells and challenged with IRBP or LEW rats receiving IRBP-coupled spleen cells and challenged with S-Ag developed a severe EAU within 10 days to 2 weeks following immunization, as did all control animals receiving sham-coupled spleen cells and challenged with the two retinal antigens. The results show that the administration of retinal autoantigens coupled to spleen cells effectively protects against the development of EAU when animals are subsequently challenged with the tolerizing antigen but not when challenged with another unrelated pathogenic retinal autoantigen.  相似文献   

6.
Osteopontin aggravates experimental autoimmune uveoretinitis in mice   总被引:1,自引:0,他引:1  
Human endogenous uveitis is a common sight-threatening intraocular inflammatory disease and has been studied extensively using a murine model of experimental autoimmune uveoretinitis (EAU). It is possibly mediated by Th1 immune responses. In the present study, we investigated the role of osteopontin (OPN), a protein with pleiotropic functions that contributes to the development of Th1 cell-mediated immunity. Accompanying EAU progression, OPN was elevated in wild-type (WT) mice that had been immunized with human interphotoreceptor retinoid-binding protein (hIRBP) peptide 1-20. OPN-deficient (OPN-/-) mice showed milder EAU progression in clinical and histopathological scores compared with those of WT mice. The T cells from hIRBP-immunized OPN-/- mice exhibited reduced Ag-specific proliferation and proinflammatory cytokine (TNF-alpha and IFN-gamma) production compared with those of WT T cells. When hIRBP-immunized WT mice were administered M5 Ab reacting to SLAYGLR sequence, a cryptic binding site to integrins within OPN, EAU development was significantly ameliorated. T cells from hIRBP-immunized WT mice showed significantly reduced proliferative responses and proinflammatory cytokine production upon stimulation with hIRBP peptide in the presence of M5 Ab in the culture. Our present results demonstrate that OPN may represent a novel therapeutic target to control uveoretinitis.  相似文献   

7.
Experimental autoimmune uveoretinitis (EAU) is a predominantly CD4+ T cell-mediated autoimmune inflammatory disease of the retina and uveal tract of the eye and the pineal gland. S-antigen, a protein found in retinal photoreceptor cells and pinealocytes, is a potent agent for the induction of EAU in susceptible species and strains. In order to identify the T cell recognition sites of S-antigen responsible for its uveitogenicity and proliferative responses, cyanogen bromide (CB) fragments as well as synthetic peptides were used to test the proliferative responses of two uveitogenic T cell lines, R9 and R17, prepared against native bovine and human S-antigen, respectively. Two nonoverlapping synthetic peptides which are known to actively induce EAU, amino acid residues 286-297 and 303-314 of the bovine sequence, were unable to induce proliferative responses in either S-antigen-specific T cell line. However, both of these sites were adjacent to synthetic peptides, residues 273-292 and 317-328, respectively, which were unable to actively induce EAU, but elicited strong proliferative responses from T cell lines raised to bovine and human S-antigen. Repeated in vitro selection of the R9 T cell line with a synthetic peptide containing one of these proliferative sites, residues 317-328, gave rise to a transiently uveitogenic T cell line. Several species-specific T cell epitopes were identified, but none of these were found to be involved in a uveitogenic response. Our results indicate that spatially separated and distinct T cell epitopes are present in S-antigen which are responsible for the active induction of EAU, lymphocyte proliferation, and the ability to adoptively transfer EAU.  相似文献   

8.
Murine experimental autoimmune uveitis (EAU) is a model of human uveitis. Ocular-infiltrating macrophages play a crucial role in the generation of tissue damage in EAU. In fact, several chemokines are actually produced in the inflamed eye. The aim of this study was to elucidate the role of ocular macrophage-derived chemokines in EAU. C57BL/6 mice were immunized with human interphotoreceptor retinoid binding protein peptide 1-20, and the EAU severity was scored at multiple time points based on microscopic fundus observations (retinal vascular dilatation and exudates) and histological examinations. The peak inflammatory response was observed 1 wk (day 16) after the beginning of macrophage infiltration to the eye (day 9). Ocular-infiltrating cells were enriched or depleted of macrophages by magnetic beads and analyzed by real-time RT-PCR for chemokine mRNA production. We found that only the macrophage-enriched cells from the eye produced RANTES, and thus proposed that macrophage-derived RANTES facilitated the ocular inflammations. In contrast to our postulate, neutralization of RANTES by specific Ab in vivo on days 9 and 13 exacerbated EAU. We also found that the ratio of ocular CD4/CD8 T cells was markedly increased after treatment. As a result, RANTES neutralization might exacerbate EAU by modulating the type of T cell subsets recruited to the eye. In conclusion, our data provide insight into the immunoregulatory role of macrophages and RANTES in the pathogenesis of ocular inflammation. Not all macrophage-derived chemokines cause local inflammation, since RANTES produced by ocular macrophages appears to suppress EAU.  相似文献   

9.
Choi BK  Asai T  Vinay DS  Kim YH  Kwon BS 《Cytokine》2006,34(5-6):233-242
Interphotoreceptor retinoid binding protein (IRBP)-induced experimental autoimmune uveoretinitis (EAU) is a CD4+ T cell-mediated autoimmune disease. Development of EAU is inhibited by treatment with an agonistic anti-4-1BB mAb. Even established EAU was alleviated by anti-4-1BB mAb. However, inhibition of 4-1BB/4-1BB ligand (4-1BBL) interaction does not suppress the development of EAU. It appears that cross-linking of 4-1BB evokes an active antigen-specific suppression mechanism rather than merely blocking 4-1BB/4-1BBL interaction. We found that administration of anti-4-1BB mAb induced massive clonal expansion of CD11c+CD8+ T cells that produced IFN-gamma, resulting in accumulation of a high level of indoleamine 2,3-dioxygenase (IDO) in CD11c+ dendritic cells. 4-1BB-mediated suppression of EAU was reversed by the pharmacological IDO inhibitor, 1-methyl-tryptophan (1-MT). These studies demonstrate that suppression of EAU results from antigen-driven, 4-1BB-mediated expansion of novel CD11c+CD8+ T cells that suppress antigen-specific CD4+ T cells via an IDO-dependent mechanism.  相似文献   

10.
A major limitation of most animal models of autoimmune diseases is that they do not reproduce the chronic or relapsing-remitting pattern characteristic of many human autoimmune diseases. This problem has been overcome in our rat models of experimentally induced monophasic or relapsing-remitting autoimmune uveitis (EAU), which depend on the inducing antigen peptides from retinal S-Antigen (monophasic EAU) or interphotoreceptor retinoid-binding protein (relapsing EAU). These models enable us to compare autoreactive and regulatory T cell populations. Intraocular, but not peripheral T cells differ in their cytokine profiles (IFN-γ, IL-17 and IL-10) at distinct time points during monophasic or relapsing EAU. Only intraocular T cells concomitantly produced IFN-γ, IL-17 and/or IL-10. Monophasic EAU presented rising numbers of cells expressing IFN-γ and IL-17 (Th1/Th17) and cells expressing IL-10 or Foxp3. During relapsing uveitis an increase of intraocular IFN-γ+ cells and a concomitant decrease of IL-17+ cells was detected, while IL-10+ populations remained stable. Foxp3+ cells and cells expressing IL-10, even in combination with IFN-γ or IL-17, increased during the resolution of monophasic EAU, suggesting a regulatory role for these T cells. In general, cells producing multiple cytokines increased in monophasic and decreased in relapsing EAU. The distinct appearance of certain intraocular populations with characteristics of regulatory cells points to a differential influence of the ocular environment on T cells that induce acute and monophasic or relapsing disease. Here we provide evidence that different autoantigens can elicit distinct and differently regulated immune responses. IFN-γ, but not IL-17 seems to be the key player in relapsing-remitting uveitis, as shown by increased, synchronized relapses after intraocular application of IFN-γ. We demonstrated dynamic changes of the cytokine pattern during monophasic and relapsing-remitting disease with strongly increasing IL-10 expression in intraocular T cells during monophasic uveitis.  相似文献   

11.
葡萄膜炎是一种反复发作的炎症性疾病,可导致免疫系统功能障碍和多器官损伤.然而,葡萄膜炎是否导致肝功能损害尚不十分清楚.本文通过运用流式分析技术和激光共聚焦成像技术,研究了实验性自身免疫葡萄膜炎模型的肝脏病理和功能变化.结果显示肝损伤可出现在葡萄膜炎的炎症后期并与眼损伤程度相关.并且CD3+ CD4+ T细胞、CD3- NK1.1+ DX5- NK细胞、和CD11b+ F4/80- ly6c+ 细胞在感染的眼睛和肝脏中增加.将CD3+ CD4+ T细胞回输给炎症的小鼠后,眼睛和肝脏的病理损伤加重.此外,在炎症的小鼠中可见血管扩张,大量淋巴细胞浸润到炎症的眼和肝脏的血管周围.总之,我们的研究结果提示,肝损伤可以发生在小鼠葡萄膜炎模型中,这种损伤可能与通过外周循环浸润到肝脏的CD3+ CD4+ T细胞有关.  相似文献   

12.
13.
Intraocular inflammatory diseases are a common cause of severe visual impairment and blindness. In this study, we investigated the immunoregulatory role of galectin-1 (Gal-1), an endogenous lectin found at sites of T cell activation and immune privilege, in experimental autoimmune uveitis (EAU), a Th1-mediated model of retinal disease. Treatment with rGal-1 either early or late during the course of interphotoreceptor retinoid-binding protein-induced EAU was sufficient to suppress ocular pathology, inhibit leukocyte infiltration, and counteract pathogenic Th1 cells. Administration of rGal-1 at the early or late phases of EAU ameliorated disease by skewing the uveitogenic response toward nonpathogenic Th2 or T regulatory-mediated anti-inflammatory responses. Consistently, adoptive transfer of CD4(+) regulatory T cells obtained from rGal-1-treated mice prevented the development of active EAU in syngeneic recipients. In addition, increased levels of apoptosis were detected in lymph nodes from mice treated with rGal-1 during the efferent phase of the disease. Our results underscore the ability of Gal-1 to counteract Th1-mediated responses through different, but potentially overlapping anti-inflammatory mechanisms and suggest a possible therapeutic use of this protein for the treatment of human uveitic diseases of autoimmune etiology.  相似文献   

14.
Pertussis toxin (PTX) has been used for many years as an adjuvant that promotes development of tissue-specific experimental autoimmune diseases such as experimental autoimmune encephalomyelitis, experimental autoimmune uveitis (EAU), and others. Enhancement of vascular permeability and of Th1 responses have been implicated in this effect. Here we report a surprising observation that, in a primed system, PTX can completely block the development of EAU. Disease was induced in B10.RIII mice by adoptive transfer of uveitogenic T cells, or by immunization with a uveitogenic peptide. A single injection of PTX concurrently with infusion of the uveitogenic T cells, or two injections 7 and 10 days after active immunization, completely blocked development of EAU. EAU also was prevented by a 1-h incubation in vitro of the uveitogenic T cells with PTX before infusing them into recipients. Uveitogenic T cells treated with PTX in vitro and lymphoid cells from mice treated with PTX in vivo failed to migrate to chemokines in a standard chemotaxis assay. Neither the isolated B-oligomer subunit of PTX that lacks ADP ribosyltransferase activity nor the related cholera toxin that ADP-ribosylates G(s) (but not G(i)) proteins blocked EAU induction or migration to chemokines. We conclude that PTX present at the time of cell migration to the target organ prevents EAU, and propose that it does so at least in part by disrupting signaling through G(i) protein-coupled receptors. Thus, the net effect of PTX on autoimmune disease would represent an integration of enhancing and inhibitory effects.  相似文献   

15.

Purpose

It has been shown that IL-9 plays a proinflammatory role in the pathogenesis of certain autoimmune diseases. This study was designed to investigate the possible role of IL-9 in the development of experimental autoimmune uveoretinitis (EAU) and the effect of IFN-β on its expression.

Methods

EAU was induced in B10RIII mice by immunization with interphotoreceptor retinoid-binding protein peptide 161–180 (IRBP161–180). IFN-β was administered subcutaneously to IRBP161–180 immunized mice every other day from day one before immunization to the end of the study. Splenocytes and draining lymph node (DLN) cells from EAU mice or control mice or EAU mice treated with IFN-β or PBS were stimulated with anti-CD3/CD28 or IRBP161–180 for 3 days. Naïve T cells cultured under Th1 or Th17 polarizing conditions were incubated in the presence or absence of IFN-β for 4 days. Effector/memory T cells were activated by anti-CD3/CD28 in the presence or absence of IFN-β for 3 days. IFN-β-treated monocytes were cocultured with naïve T cells or effector/memory T cells for 3 days. Culture supernatants were collected and IL-9 was detected by ELISA.

Results

IL-9 expression in splenocytes and DLN cells was increased in EAU mice during the inflammatory phase and returned back to lower levels during the recovery phase. IFN-β in vivo treatment significantly inhibited EAU activity in association with a down-regulated expression of IL-9. In vitro polarized Th1 and Th17 cells both secreted IL-9 and the addition of IFN-β suppressed production of IL-9 by both Th subsets. Beside its effect on polarized Th cells, IFN-β also suppressed the secretion of IL-9 by effector/memory T cells. However, IFN-β-treated monocytes had no effect on the production of IL-9 when cocultured with naïve or effector/memory T cells.

Conclusion

IL-9 expression is increased during EAU which could be suppressed by IFN-β.  相似文献   

16.
Antigen-directed retention of an autoimmune T-cell line   总被引:1,自引:0,他引:1  
We have used the T-cell-mediated, organ-specific autoimmune disease model of experimental autoimmune uveoretinitis (EAU) in the Lewis rat to study antigen-directed retention of autoimmune T helper cells in the target organ. We have compared the migration into the eye of two T-helper-cell lines: ThS, specific for retinal S antigen (S-Ag), that is uveitogenic to normal syngenic recipients, and ThP, specific to purified protein derivative of tuberculin (PPD), that is non-uveitogenic. The retention of adoptively transferred 51Cr-labeled ThS and ThP was studied up to the stage of disease induction in unprimed animals, during the acute stage of EAU induced by active immunization with S-Ag, and during the acute stage of a uveitis induced by a nonocular antigen (bovine serum albumin, BSA). Low numbers of cells from the two lymphocyte lines were detected in the eyes of unprimed animals, with no obvious increase of ThS over ThP, despite induction of EAU in the recipient animals by the injected ThS cells. In S-Ag-induced EAU many more ThS accumulated in the eye than ThP. In BSA uveitis both T-cell lines accumulated in the eye to the same extent, but more than in control noninflamed eyes. These results demonstrate the presence of increased antigen-specific retention of circulating autoimmune T helper lymphocytes during the acute stage of an ocular antigen-specific, but not ocular antigen nonspecific, inflammation. Since detectable accumulation of ThS cells in the eye was not a prerequisite for the induction of EAU, this phenomenon appears to be the result, rather than the cause, of the autoimmune process.  相似文献   

17.
Experimental autoimmune uveitis (EAU) is a Th1-cell-mediated autoimmune disease. In this study, the correlation between IRBP-specific Th1 cells in PBLs and the histological grading in the eyes was evaluated kinetically during EAU induction. EAU was induced in B10.A mice with IRBP immunization and the eyes were enucleated for histological examination on days 0, 3, 7, 15, and 21 after immunization. To determine the Th1-cell-mediated immune response, Th1 cytokines (IL-12p40 and IFN-gamma) were measured by RT-PCR in inflamed eyes. At mean time, CD4(+) and IFN-gamma(+) double positive T cells (Th1 cells) from PBLs were analyzed by flow cytometry. The level of the IRBP-specific Th1 cells was significantly increased and kinetically changed during EAU induction, but the cells reached peak time early before the disease was onset. Those IRBP-specific Th1 cells in the PBLs were evidence for EAU disease, but its peak time was different from EAU disease in the eyes. Our data suggested that it is very important to collect blood from patients at a suitable time point and the Th1 cells measured by flow cytometry are good marker for disease diagnosis.  相似文献   

18.
Experimental autoimmune uveoretinitis (EAU) was induced in naive Lewis rats by intravitreal adoptive transfer of 10(6) long-term S-antigen (S-Ag)-specific syngeneic T-lymphocyte lines of helper/inducer phenotype (ThS). These cells were stimulated with the T-cell mitogen concanavalin A (Con A) in culture for 48 hr and subsequently labeled with tritiated thymidine. Lymph node cells (LNC) cultured in parallel were used as controls. Histopathology and light microscopic autoradiography of the ocular tissue was performed at several time points to analyze the cell migration in relation to the development of EAU. The disappearance of both types of lymphocytes from the vitreous was similar and large numbers of host leukocytes were attracted into the vitreous. However, significantly more S-Ag-specific cells penetrated the retina and induced EAU (P less than 0.008). These results suggest that the development of EAU by intravitreal injection of S-Ag-specific T lymphocytes occurs by the migration of antigen-specific cells into the retina and recognition of the specific antigen, with subsequent release of soluble mediators that interact with the host effector cells, ultimately leading to specific photoreceptor damage.  相似文献   

19.
20.
Experimental autoimmune uveitis (EAU) serves as an animal model of ocular inflammation. The disease is caused by the immunization of microgram amounts of a soluble retinal protein, designated S-antigen, in susceptible animal strains, including primates. We induced EAU and experimental autoimmune pinealitis (EAP) in Lewis rats with a small synthetic peptide corresponding to amino acid positions 106-121 in yeast histone H3. This peptide contains five consecutive amino acids identical to a uveitopathogenic site (peptide M) in human S-antigen. Lymph node or mononuclear cells from different species of animals immunized either with histone H3 or with peptide M showed significant cross-reaction as measured by in vitro lymphocyte mitogenesis assay using [3H]thymidine. Also, we adoptively transferred the EAU and EAP in naive rats by immune lymph node cells. These findings support the fact that selected bacterial, viral, or fungal proteins with amino acid sequence homologies to normal retinal proteins are uveitopathogenic and, as such, provide a basis for autoimmune inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号