首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Building blocks for plant gene assembly   总被引:1,自引:1,他引:0       下载免费PDF全文
The MultiSite Gateway cloning system, based on site-specific recombination, enables the assembly of multiple DNA fragments in predefined order, orientation, and frame register. To streamline the construction of recombinant genes for functional analysis in plants, we have built a collection of 36 reference Gateway entry clones carrying promoters, terminators, and reporter genes, as well as elements of the LhG4/LhGR two-component system. This collection obeys simple engineering rules. The genetic elements (parts) are designed in a standard format. They are interchangeable, fully documented, and can be combined at will according to the desired output. We also took advantage of the MultiSite Gateway recombination sites to create vectors in which two or three genes can be cloned simultaneously in separate expression cassettes. To illustrate the flexibility of these core resources for the construction of a wide variety of plant transformation vectors, we generated various transgenes encoding fluorescent proteins and tested their activity in plant cells. The structure and sequence of all described plasmids are accessible online at http://www.psb.ugent.be/gateway/. All accessions can be requested via the same Web site.  相似文献   

2.
From Gateway to MultiSite Gateway in one recombination event   总被引:1,自引:0,他引:1  

Background  

Invitrogen Gateway technology exploits the integrase/att site-specific recombination system for directional cloning of PCR products and the subsequent subcloning into destination vectors. One or three DNA segments can be cloned using Gateway or MultiSite Gateway respectively. A vast number of single-site Gateway destination vectors have been created while MultiSite Gateway is limited to few destination vectors and therefore to few applications. The aim of this work was to make the MultiSite Gateway technology available for multiple biological purposes.  相似文献   

3.
The generation of DNA constructs is often a rate-limiting step in conducting biological experiments. Recombination cloning of single DNA fragments using the Gateway system provided an advance over traditional restriction enzyme cloning due to increases in efficiency and reliability. Here we introduce a series of entry clones and a destination vector for use in two, three, and four fragment Gateway MultiSite recombination cloning whose advantages include increased flexibility and versatility. In contrast to Gateway single-fragment cloning approaches where variations are typically incorporated into model system-specific destination vectors, our Gateway MultiSite cloning strategy incorporates variations in easily generated entry clones that are model system-independent. In particular, we present entry clones containing insertions of GAL4, QF, UAS, QUAS, eGFP, and mCherry, among others, and demonstrate their in vivo functionality in Drosophila by using them to generate expression clones including GAL4 and QF drivers for various trp ion channel family members, UAS and QUAS excitatory and inhibitory light-gated ion channels, and QUAS red and green fluorescent synaptic vesicle markers. We thus establish a starter toolkit of modular Gateway MultiSite entry clones potentially adaptable to any model system. An inventory of entry clones and destination vectors for Gateway MultiSite cloning has also been established (www.gatewaymultisite.org).  相似文献   

4.
Parr RD  Ball JM 《Plasmid》2003,49(2):179-183
An optimized donor/shuttle vector, pENTR-His-ccdB, was generated that readily produces a histidine-tagged recombinant protein in multiple expression systems using Gateway Technology. In the current Gateway System, six histidines and the tobacco etch virus protease cleavage site are encoded upstream of the attR1 recombination site such that the histidine-tagged destination/expression vector adds 15 residues to the amino-terminus of recombinant proteins. Our new vector introduces the histidine tag at the donor level and places the multiple cloning sites within the attL recombination sites producing cleavable histidine-tagged proteins with a short, neutral linker of five residues. Two histidine-tagged clones were produced and fusion proteins expressed using the newly engineered vector.  相似文献   

5.
The genome information is offering opportunities to manipulate genes, polygenic characters and multiple traits in plants. Although a number of approaches have been developed to manipulate traits in plants, technical hurdles make the process difficult. Gene cloning vectors that facilitate the fusion, overexpression or down regulation of genes in plant cells are being used with various degree of success. In this study, we modified gateway MultiSite cloning vectors and developed a hybrid cloning strategy which combines advantages of both traditional cloning and gateway recombination cloning. We developed Gateway entry (pGATE) vectors containing attL sites flanking multiple cloning sites and plant expression vector (pKM12GW) with specific recombination sites carrying different plant and bacterial selection markers. We constructed a plant expression vector carrying a reporter gene (GUS), two Bt cry genes in a predetermined pattern by a single round of LR recombination reaction after restriction endonuclease-mediated cloning of target genes into pGATE vectors. All the three transgenes were co-expressed in Arabidopsis as evidenced by gene expression, histochemical assay and insect bioassay. The pGATE vectors can be used as simple cloning vectors as there are rare restriction endonuclease sites inserted in the vector. The modified multisite vector system developed is ideal for stacking genes and pathway engineering in plants.  相似文献   

6.
7.
Insulator elements can be classified as enhancer-blocking or barrier insulators depending on whether they interfere with enhancer-promoter interactions or act as barriers against the spreading of heterochromatin. The former class may exert its function at least in part by attaching the chromatin fiber to a nuclear substrate such as the nuclear matrix, resulting in the formation of chromatin loops. The latter class functions by recruiting histone-modifying enzymes, although some barrier insulators have also been shown to create chromatin loops. These loops may correspond to functional nuclear domains containing clusters of co-expressed genes. Thus, insulators may determine specific patterns of nuclear organization that are important in establishing specific programs of gene expression during cell differentiation and development.  相似文献   

8.
9.
We report here a development of the MultiSite Gateway(TM)-based versatile plasmid construction system applicable for the rapid and efficient preparation of Aspergillus oryzae expression plasmids. This system allows the simultaneous connection of the three DNA fragments inserted in entry clones along with a destination vector in a defined order and orientation. We prepared a variety of entry clones and destination vectors containing promoters, genes encoding carrier-proteins and fusion tags, and selectable markers, which makes it possible to generate 80 expression plasmids for each target protein. Using this system, plasmids for expression of the EGFP fused with the mitochondrial-targeting signal of citrate synthase (AoCit1) were generated. Tubular structures of mitochondria were visualized in the transformants expressing the AoCit1-EGFP fusion protein. This plasmid construction system allows us to prepare a large number of expression plasmids without laborious DNA manipulations, which would facilitate molecular biological studies on A. oryzae.  相似文献   

10.
Protein insolubility is a major problem when producing recombinant proteins (e.g., to be used as antigens) from large cDNAs in Escherichia coli. Here, we describe a system using three convertible plasmid vectors to screen for soluble proteins produced in E. coli. This system experimentally identified any random cDNA fragments producing soluble protein domains. Shotgun fragments introduced into any of our three plasmids, which contain Gateway recombination sites, fused in-frame to the ORF of the protein tag. These plasmids produced N-terminal GST- and C-terminal three-frame-adaptive FLAG-tagged proteins, kanamycin-resistant gene-tagged proteins (which were pre-selected for in-frame fused cDNAs), or GFP-tagged fusion proteins. The latter is useful as a fluorescence indicator of protein folding. The Gateway recombination sites promote smooth conversion for enrichment of in-frame clones and facilitate both protein solubility assays and final production of proteins without the C-terminal tag. This high-throughput screening method is particularly useful for procedures that require the handling of many cDNAs in parallel.  相似文献   

11.
12.
Li  Ning  Yuan  Deyi  Huang  Li-Jun 《Transgenic research》2019,28(5-6):561-572

Genetic transformation of plants offers the possibility of functional characterization of individual genes and the improvement of plant traits. Development of novel transformation vectors is essential to improve plant genetic transformation technologies for various applications. Here, we present the development of a Gateway-compatible two-component expression vector system for Agrobacterium-mediated plant transformation. The expression system contains two independent plasmid vector sets, the activator vector and the reporter vector, based on the concept of the GAL4/UAS trans-activation system. The activator vector expresses a modified GAL4 protein (GAL4-VP16) under the control of specific promoter. The GAL4-VP16 protein targets the UAS in the reporter vector and subsequently activates reporter gene expression. Both the activator and reporter vectors contain the Gateway recombination cassette, which can be rapidly and efficiently replaced by any specific promoter and reporter gene of interest, to facilitate gene cloning procedures. The efficiency of the activator–reporter expression system has been assessed using agroinfiltration mediated transient expression assay in Nicotiana benthamiana and stable transgenic expression in Arabidopsis thaliana. The reporter genes were highly expressed with precise tissue-specific and subcellular localization. This Gateway-compatible two-component expression vector system will be a useful tool for advancing plant gene engineering.

  相似文献   

13.
Human tRNA genes function as chromatin insulators   总被引:1,自引:0,他引:1  
Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes.  相似文献   

14.
15.
Increasing availability of genomic data and sophistication of analytical methodology in fungi has elevated the need for functional genomics tools in these organisms. Previously we reported a method called DelsGate for rapid preparation of deletion constructs for protoplast-mediated fungal transformation systems, which is based on Gateway? technology. However, over the past several years Agrobacteriumtumefaciens-mediated transformation (ATMT) has become the preferred genetic transformation method for an increasing number of fungi. Therefore, we developed a method for One Step Construction of Agrobacterium-Recombination-ready-plasmids (OSCAR), to rapidly create deletion constructs for ATMT systems. The OSCAR methodology involves PCR amplification of the upstream and downstream flanks of the gene of interest, using gene specific primers each with a 5' extension containing one of four different attB recombination sites, modified from the Invitrogen MultiSite Gateway? system. Amplified gene flanks are then mixed with specifically designed marker and binary vectors and treated with BP clonase, generating the deletion construct in a single cloning step. The entire process of deletion construct preparation can be accomplished in just 2days. Using OSCAR we generated eight targeted deletion constructs and used two of them to generate deletion mutants in Verticillium dahliae by ATMT. In summary, OSCAR methodology combines PCR and Gateway? technology to rapidly and robustly generate precise deletion constructs for fungal ATMT and homologous gene replacement.  相似文献   

16.
为了提高腺病毒载体用于基因治疗的靶向性,采用PCR和体外连接的方法构建了柯萨奇病毒-腺病毒受体(Coxsackievirus-AdenovirusReceptor)胞外段sCAR和表皮生长因子(Epidermalgrowthfactor)EGF融合基因,然后将此融合基因插入穿梭质粒pDC315。利用Ad-MAX腺病毒系统,将重组质粒pDC315-sCAR-EGF与腺病毒骨架质粒pBHGloxΔE13cre共同转染AD-293细胞,成功包装出一种复制缺陷型腺病毒Ad5-CMV-sCAR-EGF。经PCR鉴定该病毒含有sCAR-EGF融合基因片段,Westernblotting证实该病毒能表达sCAR-EGF融合蛋白。体外试验证实该病毒感染细胞所产生的融合蛋白能够引导携带报告基因的腺病毒Ad5-CMV-luc高水平感染肿瘤细胞,为高水平表达EGFR的肿瘤的靶向性基因治疗提供了新的手段。  相似文献   

17.
利用基因工程技术手段研究基因功能过程中,构建基因表达载体处于转基因植物的主导地位,采用合适的构建方法会使实验效果事半功倍。植物基因表达载体的构建方法除了传统构建法、Gateway技术、三段T-DNA法、一步克隆法等,还有近年来出现的几种新型的载体构建方法:基于竞争性连接原理快速构建小片段基因表达载体;MicroRNA前体PCR置换法适用于构建小分子RNA表达载体;重组融合PCR法特别适用于插入片段中含有较多限制性酶切位点的载体构建;利用In-Fusion试剂盒可以将任何目的片段插入一个线性化载体的某个区域;构建多片段复杂载体可采用不依赖序列和连接的克隆方法(Sequence and ligation-independent cloning,SLIC)法;Gibson等温拼接法;Golden Gate拼接法。本文将在总结分析前人工作的基础上,结合自己工作的体会和经验分析这7种新方法的特点,期望通过这几种新的方法给植物基因工程表达载体的构建提供新的思路。  相似文献   

18.
Here we report an efficient, site-specific system of genetic integration into Plasmodium falciparum malaria parasite chromosomes. This is mediated by mycobacteriophage Bxb1 integrase, which catalyzes recombination between an incoming attP and a chromosomal attB site. We developed P. falciparum lines with the attB site integrated into the glutaredoxin-like cg6 gene. Transfection of these attB(+) lines with a dual-plasmid system, expressing a transgene on an attP-containing plasmid together with a drug resistance gene and the integrase on a separate plasmid, produced recombinant parasites within 2 to 4 weeks that were genetically uniform for single-copy plasmid integration. Integrase-mediated recombination resulted in proper targeting of parasite proteins to intra-erythrocytic compartments, including the apicoplast, a plastid-like organelle. Recombinant attB x attP parasites were genetically stable in the absence of drug and were phenotypically homogeneous. This system can be exploited for rapid genetic integration and complementation analyses at any stage of the P. falciparum life cycle, and it illustrates the utility of Bxb1-based integrative recombination for genetic studies of intracellular eukaryotic organisms.  相似文献   

19.
Gateway-compatible vectors for plant functional genomics and proteomics   总被引:12,自引:0,他引:12  
Gateway cloning technology facilitates high-throughput cloning of target sequences by making use of the bacteriophage lambda site-specific recombination system. Target sequences are first captured in a commercially available "entry vector" and are then recombined into various "destination vectors" for expression in different experimental organisms. Gateway technology has been embraced by a number of plant laboratories that have engineered destination vectors for promoter specificity analyses, protein localization studies, protein/protein interaction studies, constitutive or inducible protein expression studies, gene knockdown by RNA interference, or affinity purification experiments. We review the various types of Gateway destination vectors that are currently available to the plant research community and provide links and references to enable additional information to be obtained concerning these vectors. We also describe a set of "pEarleyGate" plasmid vectors for Agrobacterium-mediated plant transformation that translationally fuse FLAG, HA, cMyc, AcV5 or tandem affinity purification epitope tags onto target proteins, with or without an adjacent fluorescent protein. The oligopeptide epitope tags allow the affinity purification, immunolocalization or immunoprecipitation of recombinant proteins expressed in vivo. We demonstrate the utility of pEarleyGate destination vectors for the expression of epitope-tagged proteins that can be affinity captured or localized by immunofluorescence microscopy. Antibodies detecting the FLAG, HA, cMyc and AcV5 tags show relatively little cross-reaction with endogenous proteins in a variety of monocotyledonous and dicotyledonous plants, suggesting broad utility for the tags and vectors.  相似文献   

20.
Certain pBR322-related plasmids containing direct repeats of the insertion element IS50 appear to be unstable in recA Escherichia coli because smaller recombinant derivatives accumulate rapidly in plasmid DNA populations. We show here that (i) this instability is plasmid specific, but not IS50 specific; (ii) it is due to a detrimental effect exerted by these plasmids on bacterial growth; and (iii) the growth impairment is alleviated in cells harboring the smaller recombinant plasmids. Although a recent report had concluded that accumulation of recombinants reflected an IS50-specific recombination function, when correction is made for the relative growth rates of cells containing the parental and recombinant plasmids the evidence for such a recombination function disappears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号