首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
2.
The concentration of polyamines in red blood cells (RBCs) is considered to be an index of cell proliferation. This index has been demonstrated to be of clinical importance for the follow-up and treatment of some cancer patients. The concentration of polyamines in RBCs is usually determined by high-performance liquid chromatography (HPLC) with fluorescence detection. In the current work, we present a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of putrescine, spermidine, and spermine, the three major polyamines in RBCs. The polyamines were dansylated and analyzed by an LC gradient of 20-min duration on a C18 column on-line with a tandem mass spectrometer. An internal standard (1,8-diaminooctane) was used for quantification. This method exhibited excellent linearity for the three polyamines with regression coefficients higher than 0.99. The limits of detection for putrescine, spermidine, and spermine were 0.10, 0.75, and 0.50 pmol/ml, respectively. The intrarun precision values for putrescine, spermidine, and spermine all were better than 10%, and the interrun precision values were 13%, 9%, and 20%, respectively. The LC-MS/MS method is sufficiently simple and reliable enough to replace the currently used HPLC method with fluorescence detection in which putrescine is not always detectable.  相似文献   

3.
4.
Androgenic control of polyamine concentrations in rat epididymis.   总被引:1,自引:0,他引:1  
Unilateral orchidectomy resulted in a significant decrease in tissue content of putrescine and polyamines. However, no differences were detected when the results were expressed in terms of ng g-1 tissue. At 48 h after bilateral orchidectomy, a significant decrease in putrescine content was observed, but spermidine and spermine content were unaffected. The observed decrease in putrescine was prevented by treatment with testosterone propionate, but neither spermidine nor spermine were affected. Bilateral orchidectomy resulted in a significant decrease in the tissue content of putrescine, spermidine and spermine after 7 days. Treatment with testosterone propionate increased the content of putrescine, spermidine and spermine in the epididymis by about 200%, 92% and 34%, respectively. When results were expressed as nmol g-1, a significant decrease after castration in putrescine and spermidine, but not in spermine, was observed. Treatment with testosterone propionate restored putrescine concentration, but had no effect on spermidine and spermine concentrations. In castrated rats treated with testosterone propionate, the anti-androgen flutamide abolished the effect of the androgen on putrescine and spermidine content, but there was no effect on spermine. Acetylputrescine was not detected in the epididymis, while acetylpolyamines were detected at much lower concentrations than polyamines. After bilateral orchidectomy there was a decrease in the tissue content of all acetylpolyamines and an increase in their tissue concentration. The effect of castration on acetylpolyamine content was reversed by testosterone propionate treatment. We conclude that an active synthesis of polyamines occurs in the rat epididymis, and that this process depends upon the androgen environment. Regulation of ornithine decarboxylase activity appears to be the main step that is controlled by androgens.  相似文献   

5.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

6.
7.
The in vitro enzymatic acetylation of the polyamines, spermidine and spermine, is described. The reaction is catalyzed by chromatin preparations from rat liver and kidney and is dependent on acetyl-CoA. Spermidine, spermine, and putrescine are each converted to the corresponding monoacetyl derivatives. s0.5 values of 0.5 ± 0.1, 1.0 ± 0.1, and 2.6 ± 0.7 mm (mean ± standard deviation) were obtained for spermidine, spermine, and putrescine, respectively. These values for s0.5 are similar to the concentrations of polyamines reported for tissues, and therefore, suggest the occurrence of polyamine acetylation in vivo. Evidence is also presented for the metabolism of acetylated polyamines by the 100,000g supernatant fraction of rat liver. The physiological function of polyamine acetylation is unknown, but the possibility of an effect on the association of polyamines with nucleic acids is discussed.  相似文献   

8.
The responses of human umbilical-vein vascular endothelial cells in culture to the naturally occurring polyamines spermine, spermidine and putrescine, their acetyl derivatives and oxidation products were examined. In the absence of human polyamine oxidase, exposure of cells to polyamines (up to 160 microM) had no adverse effects. In the presence of polyamine oxidase, spermine and spermidine were cytotoxic, but putrescine was not. Acetylation of the aminopropyl group of spermidine or both aminopropyl groups of spermine prevented this cytotoxicity. The amino acids corresponding to the polyamines, representing a further stage of oxidation, were also without effect. The cytotoxic effects were irreversible. Use of bovine serum amine oxidase in place of the human enzyme gave qualitatively similar results.  相似文献   

9.
Polyamines (cadaverine, putrescine, spermidine, spermine) have been shown to be present in all prokaryotic and eukaryotic cells, and proposed to be important anti-inflammatory agents. Some polyamines at high concentrations are known to scavenge superoxide radicals in vitro. We have investigated the possible antioxidant properties of polyamines and found that polyamines, e.g., cadaverine, putrescine, spermidine and spermine do not scavenge superoxide radicals at 0.5, 1.0 and 2 mM concentrations. However, polyamines were found to be potent scavengers of hydroxyl radicals. Hydroxyl radicals were produced in a Fenton type reaction and detected as DMPO-OH adducts by electron paramagnetic resonance spectroscopic technique. Spermine, spermidine, putrescine and cadaverine inhibited DMPO-OH adduct formation in a dose dependent manner, and at 1.5 mM concentration virtually eliminated the adduct formation. The *OH-dependent TBA reactive product of deoxyribose was also inhibited by polyamines in a dose-dependent manner. Polyamines were also found to inhibit the 1O2-dependent 2,2,6,6-tetramethylpiperidine N-oxy 1 (TEMPO) formation. 1O2 was produced in a photosensitizing system using Rose Bengal or Methylene Blue as photosensitizers, and was detected as TEMP-1O2 adduct by EPR spectroscopy. Spermine or spermidine inhibited the 1O2-dependent TEMPO formation maximally to 50%, whereas putrescine or cadaverine inhibited this reaction only up to 15%, when used at 0.5 and 1 mM concentrations. These results suggest that polyamines are powerful. OH scavengers, and spermine or spermidine also can quench singlet oxygen at higher concentrations.  相似文献   

10.
Putrescine, spermidine and spermine were transported into the rat lens against a concentration gradient. This process appeared to be energy-dependent and involved a carrier system different from those for amino acids. Competition experiments suggested that the three polyamines were transported by the same system or very similar systems. Incorporated spermine was converted to spermidine and putrescine, and spermidine was converted to putrescine. In contrast, the conversion of putrescine to spermidine and spermine, or the conversion of spermidine to spermine was not observed. Furthermore, ornithine was not utilized for the synthesis of putrescine. These metabolic characteristics of the polyamines in the rat lens were correlated with the extremely low activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase. Other enzymes of polyamine metabolisms, however, were relatively active. In conclusion, the lens has a very low ability for the de novo synthesis of polyamines. The polyamines in the lens are considered to be supplied form the surrounding intraocular fluid by an active transport system specific for polyamines.  相似文献   

11.
Androgenesis of wheat genotypes was evaluated by pretreating anthers or embryo-like structures (ELS) with polyamines. Anthers of the genotype DH were pretreated with different concentrations of putrescine, spermidine, and spermine for 1, 3, and 6 h, and those of drought-tolerant International Center for Agricultural Research in the Dry Areas (ICARDA) wheat accessions were treated for 1 and 3 h. ELS of two genotypes were also treated for 30 and 60 min with the same polyamines and evaluated for green plant regeneration. The pretreatment of anthers with polyamines enhanced the development of ELS in all genotypes. The formation of ELS varied significantly with genotype. Pretreated anthers showed that four treatments improved significantly green plant regeneration with the genotype ICR 17. However, two treatments (1 mM putrescine or spermine for 1 h) significantly improved green plant regeneration per 100 ELS of only two ICARDA genotypes. ELS treated with polyamines for 30 min were greener and formed more adventitious roots. The chloroplasts of these greener ELS examined with a transmission electron microscope had agranal to grana thylakoids, while those of the control had plastids with mostly starch globules. Although exogenous application of polyamines to anthers improved the production of ELS and green plants, the effects of putrescine, spermidine, and spermine was dependent on genotype and the duration of pretreatment of anthers with the polyamines.  相似文献   

12.
Soybean plants (Glycine max L. Merr. cv. Tamahomare) accumulatesufficient putrescine and spermidine in their nodules to inhibitthe growth of bacteroids of Bradyrhizobium japonicum strain138NR. Gas-chromatographic analysis showed that the mature nodulesfrom 35-d-old plants contained approximately 1.5 µmoleseach of putrescine and spermidine per g fresh weight. Water-soluble(free) putrescine and spermidine were present at concentrationsof 0.39 and 0.13 µmoles per g fresh weight, respectively.Cadaverine and spermine were not detected in the nodules. Ina yeast-extract mannitol broth at a pH above 7.0, putrescine,cadaverine, spermidine, and spermine at more than 0.5, 0.2,0.05, and 0.05 mM, respectively, inhibited the growth of thebacteroids. The effect of the polyamines was bactericidal athigher concentrations. More than 95% of bacteroids were notable to form colonies on agar plates that contained 0.5 mM spermidineat pH 7.0. The high sensitivity to polyamines was a unique characteristicof the bacteroidform cells of this strain. The bacteroids losttheir sensitivity to the polyamines within 24 hours after theirisolation from nodules. The cultured cells of this strain multipliedin the presence of 2 mM spermidine or spermine. (Received January 28, 1993; Accepted June 14, 1993)  相似文献   

13.
—Putrescine, spermidine, spermine, RNA, DNA and protein concentrations were determined in 14 parts of the rat nervous system. If the concentrations are expressed in DNA units, putrescine and spermidine concentrations change concomitantly in the different brain parts, with the exception of hypothalamus, where relatively higher putrescine than spermidine concentrations are observed. The constancy of putrescine/spermidine ratios indicates the value of putrescine concentration as an index of spermidine biosynthesis. Spermidine correlates with RNA, except in medulla, spinal cord and peripheral nerves. It is assumed that the relative excess of spermidine in these structures indicates an additional functional role. Spermine/DNA ratios are remarkably constant in the diencephalic and telencephalic regions; they are also nearly constant, but significantly lower in midbrain, medulla, spinal cord and cerebellum. This observation gives additional support for the preferential interrelation of spermidine with RNA and spermine with DNA; i.e. for different functional roles of these two narrowly related polycations.  相似文献   

14.
Labelled putrescine is converted to spermidine and spermine in the retina of both the goldfish and of the rat, but the bulk remains as putrescine and spermidine in the goldfish retina whereas the bulk is present as spermine in the rat retina. Labelled spermidine is converted to spermine and to putrescine in the retina of both species, most remaining as spermidine in the goldfish retina whereas most is converted to spermine in the rat retina. Labelled spermine is converted to both spermidine and putrescine in the retina of both species with a greater conversion in the goldfish retina than in the rat retina. These results provide direct evidence of the interconversion of putrescine, spermidine and spermine in neural tissue from both fish and mammals and suggest that spermine should not be regarded solely as an end-product of putrescine metabolism but also as a source of spermidine and putrescine.The pattern of distribution of putrescine and the polyamines, spermidine and spermine, in goldfish retina is the reverse of that in rat retina: Putrescine is the most abundant in goldfish retina whereas spermine is most abundant in rat retina suggesting that the individual polyamines are of different importance in the two species.  相似文献   

15.
Theiss C  Bohley P  Voigt J 《Plant physiology》2002,128(4):1470-1479
Polyamines are required for cell growth and cell division in eukaryotic and prokaryotic organisms. In the unicellular green alga Chlamydomonas reinhardtii, biosynthesis of the commonly occurring polyamines (putrescine, spermidine, and spermine) is dependent on the activity of ornithine decarboxylase (ODC, EC 4.1.1.17) catalyzing the formation of putrescine, which is the precursor of the other two polyamines. In synchronized C. reinhardtii cultures, transition to the cell division phase was preceded by a 4-fold increase in ODC activity and a 10- and a 20-fold increase, respectively, in the putrescine and spermidine levels. Spermine, however, could not be detected in C. reinhardtii cells. Exogenous polyamines caused a decrease in ODC activity. Addition of spermine, but not of spermidine or putrescine, abolished the transition to the cell division phase when applied 7 to 8 h after beginning of the light (growth) phase. Most of the cells had already doubled their cell mass after this growth period. The spermine-induced cell cycle arrest could be overcome by subsequent addition of spermidine or putrescine. The conclusion that spermine affects cell division via a decreased spermidine level was corroborated by the findings that spermine caused a decrease in the putrescine and spermidine levels and that cell divisions also could be prevented by inhibitors of S-adenosyl-methionine decarboxylase and spermidine synthase, respectively, added 8 h after beginning of the growth period. Because protein synthesis was not decreased by addition of spermine under our experimental conditions, we conclude that spermidine affects the transition to the cell division phase directly rather than via protein biosynthesis.  相似文献   

16.
Molecular dynamics simulations with simulated annealing are performed on polyamine-DNA systems in order to determine the binding sites of putrescine, cadaverine, spermidine and spermine on A- and B-DNA. The simulations either contain no additional counterions or sufficient Na+ ions, together with the charge on the polyamine, to provide 73% neutralisation of the charges on the DNA phosphates. The stabilisation energies of the complexes indicate that all four polyamines should stabilise A-DNA in preference to B-DNA, which is in agreement with experiment in the case of spermine and spermidine, but not in the case of putrescine or cadaverine. The major groove is the preferred binding site on A-DNA of all the polyamines. Putrescine and cadaverine tend to bind to the sugar-phosphate backbone of B-DNA, whereas spermidine and spermine occupy more varied sites, including binding along the backbone and bridging both the major and minor grooves.  相似文献   

17.
A high-performance liquid chromatographic method for the determination of polyamines (spermine, spermidine and putrescine) in human saliva was developed. This method is based on pre-column derivatization with o-phthaldialdehyde (OPA). The derivatives were separated on a Nucleosil ODS column (250×4.6 mm I.D.; 5 μm). The gradient elution was performed with two mobile phases A (water) and B (methanol) at a flow rate of 0.8 ml/min. The column eluate was monitored by fluorescence detection (excitation, 360 nm; emission, 510 nm). The within- and between-assay coefficients of variation for all the compounds were below 5%. The detection limits for spermine, spermidine and putrescine were 0.04, 0.05 and 0.06 nmol/ml, respectively. The recovery was greater than 90%. Our analytical technique requires neither preliminary extraction with an organic solvent, nor long multi-step procedures. For saliva samples, this is a simple, rapid and highly reproducible method that can be easily applied to the routine determination of salivary polyamines, whose levels increase early in several pathological conditions.  相似文献   

18.
In the present study, we have examined the transport of polyamines in cultured cerebellar granule cells. Our results suggest the existence of two different transporters for polyamines in these neurons. Putrescine and spermidine uptake (K ap m = 2.17 and 1.39 microM, respectively), were affected when extracellular sodium was replaced with choline (about 30% inhibition over controls) or sucrose (about 2.5-fold potentiation over controls). By contrast, the substitution of sodium by choline or sucrose did not modify spermine uptake (K ap m = 13.53 microM) in cerebellar granule cells. Accordingly, alteration of membrane potential with ouabain was able to block putrescine (50% inhibition) and spermidine (60% inhibition) uptake but not spermine uptake. These results indicate that putrescine and spermidine transport in cerebellar granule cells is membrane potential dependent, whereas spermine uptake is not modulated by membrane potential.  相似文献   

19.
Following the intracerebroventricular injection into rabbits of spermidine or spermine the highest concentrations were initially found in the caudate nucleus, hypothalamus and medulla. Subsequently there was a rapid decline in the amounts present in the caudate nucleus and hypothalamus and, particularly in the case of spermidine, an increase in the conccntration in the lower brain stem and cervical cord. This pattern of changes is consistent with the amines being redistributed by passage in CSF. Intraventricularly injected putrescine followed the same initial distribution pattern but within 2 days it had been largely converted to spermidine and spermine. Synthesized polyamines accumulated in all the regions examined. The time course of synthesis indicated that spermidine was the precursor of spermine. Spermine was also formed from injected spermidine and vice-versa. These findings concur with the pharmacological and neurotoxic actions of putrescine, spermidine and spermine.  相似文献   

20.
毛细管电泳-激光诱导荧光分析血清多胺的研究   总被引:3,自引:0,他引:3  
为进一步探讨多胺的生物学作用,建立了毛细管电泳-激光诱导荧光(λex=488 nm,λem=513 nm)分析血清多胺方法.在碱性介质中,多胺与荧光素异硫氰酸酯进行衍生化反应,硼酸盐(pH 8.6)作为运行缓冲液,运行电压20 kV,腐胺、精胺、精脒和1,6-己二胺(内标)在8 min内达到基线分离.考察了方法的线性范围、稳定性、检测限和方法的回收率等,方法具有样品处理简单,灵敏度高,速度快等特点.用于正常对照大鼠和肿瘤大鼠血清多胺的测定.结果提示:实验组肿瘤大鼠血清精胺和精脒水平显著高于正常对照大鼠和实验组未出现肿瘤大鼠血清精胺和精脒水平(P<0.05),正常对照组大鼠和实验组未出现肿瘤大鼠血清精胺和精脒水平间无显著性差异(P>0.05),各组间血清腐胺水平均无显著性差异(P>0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号