首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malaisse-Lagae demonstrated in 1975 that peri-insular (PI) cells and tele-insular (TI) cells produce amylase (Am) and chymotrypsinogen (Ch) in a different ratio. These biochemical measurements are in contradiction with recent observations of Bendayan (1985), who found that the Am/Ch ratio measured with the protein A-gold technique applied to ultrathin Epon sections was the same in PI and TI cells. We have previously shown (Posthuma et al., 1984) that experimentally induced changes in Am and Ch content of rat pancreas are quantitatively reflected by immuno-gold labeling of zymogen granules in cryosections. Here we applied the same technique to compare the Am/Ch labeling density ratios in PI and TI pancreatic cells. To ascertain constancy of experimental conditions, we used ultrathin cryosections from tissue blocks consisting of TI and PI tissue elements. Consecutive sections of these blocks were alternatively immunolabeled for Am and Ch, using protein A-gold as marker. The density of gold particles over zymogen granules of both PI and TI cells was measured. It appeared that the Am/Ch labeling density ratio was significantly lower in PI than in TI cells. This difference resulted from a lower Am labeling as well as higher Ch labeling density over zymogen granules in PI cells.  相似文献   

2.
We used the immunogold method on ultrathin cryosections to measure intracellular amylase (Am) concentrations in subcellular compartments of rat exocrine pancreatic cells. Previously, the quantitation procedure was characterized in a model system consisting of Am dispersed at known concentration in a matrix of gelatin. Variations in labeling efficiency, due to differences in matrix density, were equalized by embedding in 30% polyacrylamide (PAA). Here we applied these model conditions to rat pancreas and established intracellular Am concentrations [Am]. Specimen blocks were composed of tissue and a reference layer of gelatin mixed with a known Am concentration ([Am]r), both fixed in glutaraldehyde. Cryosections of the PAA embedded blocks were immunogold labeled for Am. The labeling density was measured in the reference layer (LDr) and in structures in exocrine cells that were involved in Am synthesis and transport (LDs). In each of these structures the Am concentration ([Am]s) was calculated from: [Am]s = [Am]r. LDs/LDr In this way we measured average concentrations ranging from 63 mg/ml in rough endoplasmic reticulum to 261 mg/ml in secretory granules. Concentration of Am appeared to occur mainly in the most cis- and the most trans-Golgi cisternae. To check whether sterical hindrance was an inherent bias to the [Am] measurements in compartments that contained high concentrations of the enzyme, the labeling efficiency for Am in intact isolated secretory granules in gelatin and embedded in PAA, was compared with the efficiency when the granules were lysed and approximately 50 times diluted in gelatin before PAA embedment. It appeared that Am was detected with similar efficiency under both conditions. This demonstrated that sterical hindrance did not cause errors in the measurements of cellular Am concentrations.  相似文献   

3.
Baby hamster kidney cells infected with Semliki Forest virus were used as a model system for quantitative immunocytochemical labeling studies. In this system, a well-characterized membrane protein complex is present in different concentrations in three separate locations. Using immunogold labeling of cryosections, we compared the number of gold particles labeling the membranes of endoplasmic reticulum, Golgi stack, and fully formed virions at the plasma membrane to the biochemically determined concentrations. The efficiency of labeling was 40, 13, and 14% for the three structures, respectively. In a comparative study, Lowicryl K4M sections were found to give significantly lower levels of labeling.  相似文献   

4.
Gum arabic-chitosan complex coacervation   总被引:1,自引:0,他引:1  
The formation of electrostatic complexes of gum Arabic (GA) with chitosan (Ch), two oppositely charged polysaccharides, as a function of the biopolymers ratio (RGA/Ch), total biopolymers concentration (TBconc), pH, and ionic strength, was investigated. The conditions under which inter-biopolymer complexes form were determined by using turbidimetric and electrophoretic mobility measurements in the equilibrium phase and by quantifying mass in the precipitated phase. Results indicated that optimum coacervate yield was achieved at RGA/Ch = 5, independently of TBconc at the resulting pH of solutions under mixing conditions. High coacervate yields occurred in a pH range from 3.5 to 5.0 for RGA/Ch = 5. Coacervate yield was drastically diminished at pH values below 3.5 due to a low degree of ionization of GA molecules, and at pH values above 5 due to a low solubility of chitosan. Increasing ionic strength decreased coacervate yield due to shielding of ionized groups.  相似文献   

5.
No significant difference in larval mortality was observed when a sublethal dose of Bacillus thuringiensis (Bt) var. kurstaki HD-1 crystal was supplemented with soybean trypsin inhibitor (STI) in the artificial diet fed to Helicoverpa armigera in the laboratory, but supplementing a nonlethal dose of crystal with STI in the diet led to a pronounced reduction of larval growth. This concentration of crystal and two lower concentrations of STI alone had no significant effects on larval growth. The results of substrate-gel electrophoresis demonstrated that the proteases in the H. armigera midgut fluid responsible for the degradation of protoxin consisted of at least four proteases with molecular weights of 71, 49, 36, and 30 kDa. All four proteases could utilize casein also as the substrate. When larvae were fed with STI or Bt + STI, the proteolytic activities of the 49-kDa enzyme disappeared, and the activities of the other three enzymes were reduced. Enzyme assays also indicated that feeding larvae with diets containing Bt, STI, or Bt + STI significantly decreased the specific activities of larval general proteases and the trypsin-like enzyme. The protein concentration of midgut fluid was elevated, especially in the larvae fed on the diets containing STI and Bt + STI. Both in vitro and in vivo studies showed that the degradation of protoxin and toxin could be inhibited by soybean trypsin inhibitors, but when the incubation time was prolonged, the protoxin could be degraded completely, while the degradation of toxin was inhibited further. This suggested that the retention time of toxins in the larval midgut was extended and synergism between insecticidal crystal protein and soybean trypsin inhibitor occurred, which showed as the inhibition of H. armigera larval growth.  相似文献   

6.
Material was collected from the Weddell Sea and the Bransfield Strait in January/April 1989. Data on size-taxonomic composition and biomass of phytoplankton communities and Ch1 concentration were obtained to estimate the chlorophyll a (Ch1) cell content. Single cell fluorescence measured microscopically was used as a relative index of cellular Ch1 content of individual species. The relationship between the species composition of the algal communities and the ratio of phytoplankton carbonCh1 concentration (CCh1) was found. Due to changes in species composition the average CCh1 ratio in March/April (56) was half that in January/February (115). The CCh1 ratio ranged from 24 to 215 (mean=101) in the upper mixed layer and from 14 to 69 (mean=37) in the pycnocline region. The distribution of cellular Ch1 within individual species showed lower heterogeneity in the mixed layer in comparison with that in the pycnocline and below. Below the mixed layer, populations consisted partly of dead cells with very low pigment content, while other cells had greatly increased cellular Ch1. At several stations this cellular Ch1 increase led to the formation of a deep Ch1 maximum.  相似文献   

7.
The platelet-derived growth factor receptor (PDGFR) is a tyrosine kinase, implicated in the development and progression of different tumors, including gliomas. Chemoresistance is a common feature of malignant gliomas. Since receptor tyrosine kinases contribute to chemoresistance in tumors, we addressed whether PDGFR signaling might confer selective growth advantage to chemoresistant cells. The effects of the PDGFR inhibitor STI571 on proliferation and PDGFR signaling were compared in chemosensitive and cisplatin-selected, chemoresistant sublines derived from glioma and from two other PDGFR-expressing tumors (ovarian carcinoma and neuroblastoma). The chemoresistant glioma U87/Pt cells were twofold more sensitive to STI571 growth-inhibitory effects than the chemosensitive U87 cells, and two- to threefold more sensitive than five unrelated glioma cell lines. The other two paired cell lines were equally responsive. Sensitization of U87/Pt cells correlated with upregulation of the PDGF-B isoform and with PDGF-BB-induced Akt overactivation, which was prevented by STI571. STI571 specifically inhibited PDGF-BB-, but not PDGF-AA- or stem cell factor-mediated signaling. In serum-containing medium, STI571 decreased phospho-Akt in U87/Pt cells, but not in U87, while activating extracellular signal-regulated kinase (Erk) in both. STI571 antiproliferative effects were partially reverted by constitutively active Akt. Cotreatment with inhibitors of phosphatidylinositol 3'-kinase (PI3K) or mitogen-activated protein kinase kinase (MEK) resulted in enhanced growth inhibition in glioma cells. Our results suggest that increased PDGF-BB signaling may sensitize chemoresistant glioma cells to STI571, suggesting a therapeutic potential for STI571 in patients with malignant gliomas refractory to chemotherapy. Simultaneous blockade of PDGFR and PI3K or Erk pathway may enhance therapeutic targeting in gliomas.  相似文献   

8.
Chronic myeloid leukemia cells contain a constitutively active Bcr-Abl tyrosine kinase, the target protein of Gleevec (STI571) phenylaminopyrimidine class protein kinase inhibitor. Here we provide evidence for metabolic phenotypic changes in cultured K562 human myeloid blast cells after treatment with increasing doses of STI571 using [1,2-13C2]glucose as the single tracer and biological mass spectrometry. In response to 0.68 and 6.8 microm STI571, proliferation of Bcr-Abl-positive K562 cells showed a 57% and 74% decrease, respectively, whereas glucose label incorporation into RNA decreased by 13.4% and 30.1%, respectively, through direct glucose oxidation, as indicated by the decrease in the m1/Sigma(m)n ratio in RNA. Based on the in vitro proliferation data, the IC50 of STI571 in K562 cultures is 0.56 microm. The decrease in 13C label incorporation into RNA ribose was accompanied by a significant fall in hexokinase and glucose-6-phosphate 1-dehydrogenase activities. The activity of transketolase, the enzyme responsible for nonoxidative ribose synthesis in the pentose cycle, was less affected, and there was a relative increase in glucose carbon incorporation into RNA through nonoxidative synthesis as indicated by the increase in the m2/Sigma(m)n ratio in RNA. The restricted use of glucose carbons for de novo nucleic acid and fatty acid synthesis by altering metabolic enzyme activities and pathway carbon flux of the pentose cycle constitutes the underlying mechanism by which STI571 inhibits leukemia cell glucose substrate utilization and growth. The administration of specific hexokinase/glucose-6-phosphate 1-dehydrogenase inhibitor anti-metabolite substrates or competitive enzyme inhibitor compounds, alone or in combination, should be explored for the treatment of STI571-resistant advanced leukemias as well as that of Bcr-Abl-negative human malignancies.  相似文献   

9.
The lymphocyte surface membranes from normal and leukaemic or lymphomatous cells from man and mouse were isolated, characterized, and analyzed both biochemically and by diphenyl hexatriene fluorescence polarization. The cholesterol/phospholipid molar ratio for all the pure lymphocyte plasma membranes was 0.45–0.50, and the fluorescence polarization results showed that values much higher than this were not credible. The lipid composition of all the plasma membranes was remarkably similar, except for the concentration of free fatty acids and glycerides.The latter two were particularly high in the mouse lymphoma membrane and these, rather than a low cholesterol concentration, were responsible for the increased fluidity of the cells.The most prominent protein in most of the plasma membrane preparations was actin. This is found only by some authors, and its presence probably depends on the method of lymphocyte disruption.  相似文献   

10.
Encapsulation of hemoglobin (Hb) within a liposome is one of the strategies in the development of artificial oxygen carriers. In this study the effects of oxygen radical generating system (xantine/xantine oxidase) on the internal microviscosity and protein degradation of hemoglobin-containing liposomes ('hemosomes') prepared from dipalmitoylphosphatidylcholine (DPPC) and different amounts of cholesterol (Ch) (0-0.5 mol/mol) were investigated. The results demonstrated a direct relationship between increasing oxidant stress and microviscosity of Hb vesicles and also showed clearly that the increase in internal viscosity was caused mainly by globin degradation. It was shown that the higher content of Ch, the lower Hb degradation and smaller increase in internal viscosity were observed. The significant protection effect against oxygen radicals was observed only for liposomes with the addition of 0.3 mol/mol or more of Ch. It seems that Ch concentration in liposomes is of prime importance for stabilizing of Hb in 'hemosomes'.  相似文献   

11.
We developed equilibrium phase diagrams corresponding to aqueous lipid compositions of upper small intestinal contents during lipid digestion and absorption in adult human beings. Ternary lipid systems were composed of a physiological mixture of bile salts (BS), mixed intestinal lipids (MIL), principally partially ionized fatty (oleic) acid (FA) plus racemic monooleylglycerol (MG), and cholesterol (Ch), all at fixed aqueous-electrolyte concentrations, pH, temperature, and pressure. The condensed phase diagram for typical physiological conditions (1 g/dL total lipids, FA:MG molar ratio of 5:1, pH 6.5, 0.15 M Na+ at 37 degrees C) was similar to that of a dilute model bile [BS/lecithin (PL)/Ch] system [Carey, M. C., & Small, D. M. (1978) J. Clin. Invest. 61, 998-1026]. We identified two one-phase zones composed of mixed micelles and lamellar liquid crystals, respectively, and two two-phase zones, one composed of Ch monohydrate crystals and Ch-saturated micelles and the other of physiologic relevance composed of Ch- and MIL-saturated mixed micelles and unilamellar vesicles. A single large three-phase zone in the system was composed of Ch-saturated micelles, Ch monohydrate crystals, and liquid crystals. Micellar phase boundaries for otherwise typical physiological conditions were expanded by increases in total lipid concentration (0.25-5 g/dL), pH (5.5-7.5), and FA:MG molar ratio (5-20:1), resulting in a reduction of the size of the physiological two-phase zone. Mean particle hydrodynamic radii (Rh), measured by quasielastic light scattering (QLS), demonstrated an abrupt increase from micellar (less than 40 A) to micelle plus vesicle sizes (400-700 A) as this two-phase zone was entered. With relative lipid compositions within this zone, unilamellar vesicles formed spontaneously following coprecipitation, and their sizes changed markedly as functions of time, reaching equilibrium values only after 4 days. Further, vesicle Rh values were influenced appreciably by MIL:mixed bile salt (MBS) ratio, pH, total lipid concentration, and FA:MG ratio, but not by Ch content. In comparison, micellar systems equilibrated rapidly, and their Rh values only slightly influenced by physical-chemical variables of physiological importance. In contrast to the BS-PL-Ch system [Mazer, N. A., & Carey, M. C. (1983) Biochemistry 22, 426-442], no divergence in micellar sizes occurred as the micellar phase boundary was approached. The ionization state of FA at simulated "intestinal" pH values (5.5-7.5) in the micellar and physiologic two-phase zones was principally that of 1:1 sodium hydrogen dioleate, an insoluble swelling "acid soap" compound. By phase separation and analysis, tie-lines for the constituent phase in the two-phase zone demonstrated that the mixed micelles were saturated with MIL and Ch and the coexisting vesicles were saturated with MBS, but not with Ch.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The lymphocyte surface membranes from normal and leukaemic or lymphomatous cells from man and mouse were isolated, characterized, and analyzed both biochemically and by diphenyl hexatriene fluorescence polarization. The cholesterol/phospholipid molar ratio for all the pure lymphocyte plasma membranes was 0.45--0.50, and the fluorescence polarization results showed that values much higher than this were not credible. The lipid composition of all the plasma membranes was remarkably similar, except for the concentration of free fatty acids and glycerides. The latter two were particularily high in the mouse lymphoma membrane and these, rather than a low cholesterol concentration, were responsible for the increased fluidity of the cells. The most prominent protein in most of the plasma membrane preparations was actin. This is found only by some authors, and its presence probably depends on the method of lymphocyte disruption.  相似文献   

13.
The human mast cell line (HMC-1(560)) was used to study the effects of tyrosine kinase (TyrK) inhibition on histamine release in consequence of intracellular Ca2+ or pH changes. This is important since the TyrK inhibitor STI571 (Glivec) inhibits proliferation and induces apoptosis in HMC-1(560). HMC-1(560) cells have a mutation in c-kit, which leads to a permanent phosphorylation of the KIT protein and their ligand-independent proliferation. The TyrK inhibitors STI571, lavendustin A and genistein decrease spontaneous histamine release in 24-h pre-incubated cells. Results are compared with those of the mast cell stabiliser cromoglycic acid, which also drops spontaneous histamine release. When exocytosis is stimulated by alkalinisation, STI571 pre-incubated cells release more histamine than non-pre-incubated cells. Alkalinisation-induced histamine release reaches still higher levels in STI571 cells with activated protein kinase C (PKC) by PMA. We do not observe modifications on histamine release in cells, treated with PKC inhibitors (rottlerin, Gf109203 or G?6976). Lavendustin A- and genistein 24-h incubated cells behave similar to STI571 cells, whereas cromoglycic acid does not show effects after stimulation with alkalinisation. Stimulation of exocytosis with the Ca2+ ionophore ionomycin does not modify histamine response in TyrK inhibited cells. Ca2+ and pH changes are observed after long-time incubation with STI571. Results show that pH is still higher in STI571 pre-incubated cells after alkalinisation with NH4Cl, whereas intracellular Ca2+ concentration remains stable. This work further strength the importance of pHi as a cell signal and suggest that STI571 has transduction pathways in common with other TyrKs.  相似文献   

14.
The kinetics of porin incorporation into black lipid membranes (BLM) made of phosphatidylinositol (PI) or oxidized cholesterol (Ox Ch) were studied by means of alternating current; the set-up was able to acquire resistance and capacitance simultaneously by means of a mixed double-frequency approach at 1 Hz and 1 KHz, respectively. Conductance was dependent on the interaction between protein-forming pores and lipids. For PI membranes below a porin concentration of 12.54 ng/ml, there was no membrane conductivity, whereas at 200 ng/ml a steady-state value was reached. Different behavior was displayed by Ox Ch membranes, in which a concentration of 12.54 ng/ml was sufficient to reach a steady state. The incorporation kinetics when porin was added after membrane formation were sigmoidal. When porin was present in the medium before membrane formation, the kinetics were sigmoidal for PI membranes but became exponential for Ox Ch membranes. Furthermore, for BLM made of PI, the conductance-versus-porin concentration relationship is sigmoidal, with a Hill coefficient of 5.6 +/- 0.07, which is functional evidence corroborating the six-channel repeating units seen previously. For BLM made of Ox Ch, this relationship followed a binding isotherm curve with a Hill coefficient of 0.934 +/- 0.129.  相似文献   

15.
庄娟  尤永进  陈波  饶忠  潘洁 《遗传》2006,28(5):557-562
合成O型口蹄疫病毒VP1蛋白中与细胞免疫(21~40表位肽)及体液免疫(141~160表位肽)相关的基因序列2020VP1,运用基因工程技术构建了含有肠毒素大肠杆菌LTB、STI基因及双拷贝2020VP1的融合表达载体r2020-B-2020-STI,转化宿主菌BL21(DE3)RIL后的表达产物经SDS-PAGE分析,结果显示重组融合蛋白的分子量约为45kDa,表达量较高。ELISA实验结果显示,融合蛋白能与霍乱毒素(choleratoxin)CTB抗体特异结合。动物实验表明,融合蛋白能够诱发兔体产生较强的FMDV中和抗体,免疫豚鼠在低浓度FMDV刺激下能够产生特异性T淋巴细胞增殖反应,说明融合蛋白能诱导机体产生FMDV特异性细胞及体液免疫反应;同时,融合蛋白免疫雌鼠能够抵抗大肠杆菌强毒株攻击,免疫兔体能够产生STI中和抗体,且融合蛋白不具STI毒性,证明融合蛋白具有良好的LTB、STI免疫原性。实验结果表明,此融合蛋白具有开发成为口蹄疫及肠毒素腹泻联合疫苗的应用价值。  相似文献   

16.
Prion protein (PrPC) is a cell surface glycoprotein that is abundantly expressed in nervous system. The elucidation of the PrPC interactome network and its significance on neural physiology is crucial to understanding neurodegenerative events associated with prion and Alzheimer's diseases. PrPC co‐opts stress inducible protein 1/alpha7 nicotinic acetylcholine receptor (STI1/α7nAChR) or laminin/Type I metabotropic glutamate receptors (mGluR1/5) to modulate hippocampal neuronal survival and differentiation. However, potential cross‐talk between these protein complexes and their role in peripheral neurons has never been addressed. To explore this issue, we investigated PrPC‐mediated axonogenesis in peripheral neurons in response to STI1 and laminin‐γ1 chain‐derived peptide (Ln‐γ1). STI1 and Ln‐γ1 promoted robust axonogenesis in wild‐type neurons, whereas no effect was observed in neurons from PrPC‐null mice. PrPC binding to Ln‐γ1 or STI1 led to an increase in intracellular Ca2+ levels via distinct mechanisms: STI1 promoted extracellular Ca2+ influx, and Ln‐γ1 released calcium from intracellular stores. Both effects depend on phospholipase C activation, which is modulated by mGluR1/5 for Ln‐γ1, but depends on, C‐type transient receptor potential (TRPC) channels rather than α7nAChR for STI1. Treatment of neurons with suboptimal concentrations of both ligands led to synergistic actions on PrPC‐mediated calcium response and axonogenesis. This effect was likely mediated by simultaneous binding of the two ligands to PrPC. These results suggest a role for PrPC as an organizer of diverse multiprotein complexes, triggering specific signaling pathways and promoting axonogenesis in the peripheral nervous system.  相似文献   

17.
Cholesterol 7 alpha-hydroxylase (P-450 Ch7 alpha) catalyzes the first and rate-limiting step in the hepatic conversion of cholesterol to bile acids. P-450 Ch7 alpha activity in rat liver is regulated at three independent levels: (a) feedback inhibition by bile acids (long term regulation); (b) midterm regulation through the diurnal cycle; (c) short term modulation by hormones and dietary factors. P-450 Ch7 alpha was purified to apparent homogeneity and in active form (turnover number = 10-15 min-1 P-450(-1)) from cholestyramine-fed female rats, and rabbit anti-P-450 Ch7 alpha polyclonal antibodies were then prepared. Liver microsomes were isolated from rats fed normal diet or diet containing the bile acid sequestrant cholestyramine and were then killed at either the apex (midnight) or nadir (noon) of the diurnal rhythm of P-450 Ch7 alpha activity. Direct comparison of microsomal P-450 Ch7 alpha enzyme activity levels with P-450 Ch7 alpha protein (Western blotting) and mRNA levels (Northern and slot blots) revealed that the 2.5-3-fold induction of P-450 Ch7 alpha activity with cholestyramine feeding can be fully accounted for by an increase in P-450 Ch7 alpha protein and mRNA. Turnover numbers of 7-9 nmol of 7 alpha-hydroxycholesterol/min/nmol of microsomal P-450 Ch7 alpha were observed for both induced and uninduced animals. Similarly, the postmidnight decrease in enzyme activity could be generally accounted for by a decrease in P-450 Ch7 alpha protein and mRNA, suggesting that these species have relatively short half-lives. The short term regulation of P-450 Ch7 alpha was examined following treatment with the cholesterol precursor mevalonic acid. A 2.5-fold increase in hepatic microsomal P-450 Ch7 alpha activity occurred within 150 min and was accompanied by a significant elevation of P-450 Ch7 alpha mRNA (up to 3-6-fold increase). These findings establish that hepatic cholesterol 7 alpha-hydroxylase activity is regulated in response to long term, midterm, and short term control factors primarily at a pretranslational level and that this regulation is of greater importance than proposed mechanisms based on allosteric effects of bile acids on P-450 Ch7 alpha protein, changes in cholesterol availability, or reversible phosphorylation of a putative P-450 Ch7 alpha phosphoprotein.  相似文献   

18.
Lipases are well-known biocatalysts used in several industrial processes/applications. Thus, as with other enzymes, changes in their surrounding environment and/or their thermodynamic parameters can induce structural changes that can increase, decrease, or even inhibit their catalytic activity. The use of ionic compounds as solvents or additives is a common approach for adjusting reaction conditions and, consequently, for controlling the biocatalytic activity of enzymes. Herein, to elucidate the effects of ionic compounds on the structure of lipase, the stability and enzymatic activity of lipase from Aspergillus niger in aqueous solutions (at 0.05, 0.10, 0.50, and 1.00 M) of six cholinium-based ionic liquids (cholinium chloride [Ch]Cl; cholinium acetate ([Ch][Ac]); cholinium propanoate ([Ch][Prop]); cholinium butanoate ([Ch][But]); cholinium pentanoate ([Ch][Pent]); and cholinium hexanoate ([Ch][Hex])) were evaluated over 24 hr. The enzymatic activity of lipase was maintained or enhanced in the lower concentrations of all the [Ch]+-ILs (below 0.1 M). [Ch][Ac] maintained the biocatalytic behavior of lipase, independent of the IL concentration and incubation time. However, above 0.1 M, [Ch][Pent] and [Ch][Hex] caused complete inhibition of the catalytic activity of the enzyme, demonstrating that the increase in the anionic alkyl chain length strongly affected the conformation of the lipase. The hydrophobicity and concentration of the [Ch]+-ILs play an important role in the enzyme activity, and these parameters can be controlled by adjusting the anionic alkyl chain length. The inhibitory effects of [Ch][Pent] and [Ch][Hex] may be of great interest to the pharmaceutical industry to induce pharmacological inhibition of gastric and pancreatic lipases.  相似文献   

19.
Cerebral blood flow (CBF) and the arteriovenous (A-V) difference for choline (Ch) across brain, lung, splanchnic territory, liver, kidney, and lower limb were studied in anesthetized, mechanically ventilated rats subjected to 10-20-min periods of hypoxia induced by lowering the inspired O2 concentration to 13%. A large, time-dependent increase in arterial blood Ch concentration occurred during hypoxia. This phenomenon coincided with a net rate of uptake of Ch by the brain during hypoxia (0.81 +/- 0.24 nmol/min, n = 10; p less than 0.05), which contrasted with a net rate of loss of Ch by this organ during the control period that preceded hypoxia (-0.20 +/- 0.08 nmol/min, n = 10; p less than 0.05). During hypoxia, lungs and splanchnic territory showed negative A-V differences for Ch levels (net Ch loss), whereas brain, liver, kidney, and lower limb showed positive A-V differences for Ch levels (net Ch uptake). Ch output from lungs was already detected at 5 min within the period of hypoxia and reversed rapidly after restoration of normal oxygenation. On the other hand, Ch output from the splanchnic territory became evident only 10 min after commencement of hypoxia and outlasted this experimental condition. It is concluded that extracerebral production of Ch during hypocapnic hypoxia raises the arterial concentration of this molecule and, by reversing the gradient across cerebral capillaries, prevents the cerebral loss of Ch in this condition.  相似文献   

20.
The amount of cholesterol (Ch) crystals formed in supersaturated taurochenodeoxycholate (TCDC) - lecithin (L) solutions of the same Ch saturation index (CSI) but at different Ch thermodynamic activities (Ch AT) was quantified at different time intervals. The initial Ch nucleation rate (i.e., amount of Ch crystals formed with respect to time) in a Ch AT = 1.73 and TCDC to L molar ratio (TCDC:L) = 5.1 system was faster than that in a Ch AT = 1.42 and TCDC:L = 3.4 system. Shaking could enhance the early appearance of Ch crystals and cause the fast initial Ch nucleation rates for the TCDC:L = 5.1 and the TCDC:L = 3.4 systems. The final Ch nucleation rates were faster than the initial Ch nucleation rates for the TCDC:L = 5.1 and the TCDC:L = 3.4 systems. According to a light scattering analysis of vesicle concentration in supersaturated TCDC–L solutions, vesicles provide nucleation sites only in the Ch nucleation process and the vesicle concentration may not be an important factor for the Ch nucleation rate. A model of a mixed TCDC–L micelle releasing Ch molecules together with the surface area of Ch crystals formed was used in the interpretation of the Ch nucleation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号