首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Leukocyte infiltration into the liver is paramount to the development of liver injury in hepatitis. Hepatitis occurring after the administration of Con A in mice is felt to be a T lymphocyte-mediated disease. In this study, we report that neutrophils are the key initiators of lymphocyte recruitment and liver injury caused by Con A. The objectives of this study were to investigate the involvement of neutrophils in Con A-induced hepatitis in vivo via intravital microscopy. After Con A administration, we observed a significant increase in leukocyte rolling flux, a decrease in rolling velocity, and an increase in leukocyte adhesion to the hepatic microvasculature. Fluorescence microscopy identified that within 4 h of Con A administration only a minority of the recruited leukocytes were T lymphocytes. Furthermore, immunohistochemistry showed a significant increase in neutrophils recruited to the liver post-Con A treatment in association with liver cell damage, as reflected by elevated serum alanine aminotransferase levels. Using flow cytometry, we observed that Con A could bind directly to neutrophils, which resulted in a shedding of L-selectin, an increase in beta(2)-integrin expression, and the production of reactive oxidants. Following neutrophil depletion, a significant inhibition of Con A-induced CD4+ T lymphocyte recruitment to the liver resulted and complete reduction in hepatic injury, as assessed by serum alanine aminotransferase levels. In summary, the present data support the concept that neutrophils play an important and previously unrecognized role in governing Con A-induced CD4+ T cell recruitment to the liver and the subsequent development of hepatitis.  相似文献   

3.
4.
Regulation of iron homeostasis and the inflammatory response are tightly linked to protect the host from infection. Here we investigate how imbalanced systemic iron homeostasis in a murine disease model of hereditary hemochromatosis (Hfe(-/-) mice) affects the inflammatory responses of the lung. We induced acute pulmonary inflammation in Hfe(-/-) and wild-type mice by intratracheal instillation of 20 μg of lipopolysaccharide (LPS) and analyzed local and systemic inflammatory responses and iron-related parameters. We show that in Hfe(-/-) mice neutrophil recruitment to the bronchoalveolar space is attenuated compared to wild-type mice although circulating neutrophil numbers in the bloodstream were elevated to similar levels in Hfe(-/-) and wild-type mice. The underlying molecular mechanisms are likely multifactorial and include elevated systemic iron levels, alveolar macrophage iron deficiency and/or hitherto unexplored functions of Hfe in resident pulmonary cell types. As a consequence, pulmonary cytokine expression is out of balance and neutrophils fail to be recruited efficiently to the bronchoalveolar compartment, a process required to protect the host from infections. In conclusion, our findings suggest a novel role for Hfe and/or imbalanced iron homeostasis in the regulation of the inflammatory response in the lung and hereditary hemochromatosis.  相似文献   

5.
Toxoplasma gondii (Me49 strain) infection into Swiss Webster mice is followed by hypermetabolism and weight loss in the acute phase lasting 14 days. In the subsequent chronic phase of infection, mice showed either a resolution of hypermetabolism and partial weight recovery (Gainers) or persistent hypermetabolism, with stable weight loss (Non-Gainers). The hypermetabolic response was not associated with an augmentation in the thermogenic uncoupling protein 1 (UCP1) mRNA expression in interscapular brown adipose tissue (BAT), but rather UCP1 expression was reduced. Hypermetabolism is associated with high lipid oxidation as attested by a low respiratory quotient (RQ). Neither BAT nor sympathetic nervous system appear to be involved in the increased lipid utilization, since propranolol did not increase the lower RQ in infected mice. The mitochondrial lipid oxidation blocker mercaptoacetate did not reestablish the respiratory quotient RQ in acute infection (on day 4) and in chronically infected Non-Gainer mice. This suggests an important extra-mitochondrial mechanism of lipid oxidation. Increased lipid peroxidation was detected especially in serum, lung, spleen and liver, which are rich in macrophage-type cells. Following infection peritoneal macrophages exhibited an enhanced capacity to produce reactive oxygen species (ROS). Using IFN-gamma knockout mice we observed that not only the hypermetabolic response was ablated in these mice but there was not a marked increase in ROS production or preferential oxidation/peroxidation of lipids in the acute phase of infection prior to the cachectic phase. The present study described a novel hypermetabolic mechanism involving enhanced lipid peroxidation dependent on IFN-gamma, especially associated with tissues rich in macrophages.  相似文献   

6.
The most effective immediate cure for coronary stenosis is stent-supported angioplasty. Restenosis due to neointima proliferation represents a major limitation. We investigated the expression of 2435 genes in atherectomy specimens and blood cells of patients with restenosis, normal coronary artery specimens, and cultured human smooth muscle cells (SMCs). Of the 223 differentially expressed genes, 37 genes indicated activation of interferon-gamma (IFN-gamma) signaling in neointimal SMCs. In cultured SMCs, IFN-gamma inhibited apoptosis. Genetic disruption of IFN-gamma signaling in a mouse model of restenosis significantly reduced the vascular proliferative response. Our data suggest an important role of IFN-gamma in the control of neointima proliferation.  相似文献   

7.

Background

Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury.

Methods

Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation and expression of inflammatory mediators were determined. To further analyze in vivo observations, in vitro experiments with alveolar epithelial cells and alveolar macrophages were performed.

Results

A 320% increase of polymorphonuclear leukocytes in bronchoalveolar lavage fluid was observed in macrophage-depleted compared to macrophage-competent lipopolysaccharide-animals. This neutrophil recruitment was also confirmed in the interstitial space. Monocyte chemoattractant protein-1 concentration in bronchoalveolar lavage fluid was significantly increased in the absence of alveolar macrophages. This phenomenon was underlined by in vitro experiments with alveolar epithelial cells and alveolar macrophages. Neutralizing monocyte chemoattractant protein-1 in the airways diminished neutrophil accumulation.

Conclusion

These data suggest that alveolar macorphages play an important role in early endotoxin-induced lung injury. They prevent neutrophil influx by controlling monocyte chemoattractant protein-1 production through alveolar epithelial cells. Alveolar macrophages might therefore possess robust anti-inflammatory effects.  相似文献   

8.
To study the mechanisms involved in leukocyte recruitment induced by local bacterial infection within the CNS, we used intravital microscopy to visualize the interaction between leukocytes and the microvasculature in the brain. First, we showed that intracerebroventricular injection of LPS could cause significant rolling and adhesion of leukocytes in the brain postcapillary venules of wild-type mice, while negligible recruitment was observed in TLR4-deficient C57BL/10ScCr mice and CD14 knockout mice, suggesting recruitment is mediated by TLR4/CD14-bearing cells. Moreover, we observed reduced but not complete inhibition of recruitment in MyD88 knockout mice, indicating both MyD88-dependent and -independent pathways are involved. The leukocyte recruitment responses in chimeric mice with TLR4-positive microglia and endothelium, but TLR4-negative leukocytes, were comparable to normal wild-type mice, suggesting either endothelium or microglia play a crucial role in the induction of leukocyte recruitment. LPS injection induced both microglial and endothelial activation in the CNS. Furthermore, minocycline, an effective inhibitor of microglial activation, completely blocked the rolling and adhesion of leukocytes in the brain and blocked TNF-alpha production in response to LPS in vivo. Minocycline did not affect activation of endothelium by LPS in vitro. TNFR p55/p75 double knockout mice also exhibited significant reductions in both rolling and adhesion in response to LPS, indicating TNF-alpha signaling is critical for the leukocyte recruitment. Our results identify a TLR4 detection system within the blood-brain barrier. The microglia play the role of sentinel cells detecting LPS thereby inducing endothelial activation and leading to efficient leukocyte recruitment to the CNS.  相似文献   

9.
10.
《Cell》2022,185(5):815-830.e19
  1. Download : Download high-res image (187KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
The CXC chemokines cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) are potent neutrophil chemoattractants in rats. We have previously shown that CINC, unlike MIP-2 and most other proinflammatory cytokines, is elevated in the systemic circulation in response to an intratracheal (IT) challenge. Therefore, we hypothesized that CINC generated within the lung selectively enters the vascular compartment to facilitate pulmonary neutrophil recruitment. Rats were administered IT LPS, and plasma CINC and MIP-2 levels were measured 90 min and 4 h after injection, along with mRNA expression in lung, spleen, liver, and kidney. Ninety minutes and 4 h after IT LPS, CINC and MIP-2 mRNA expression were largely confined to lung homogenate, but of the two chemokines, only CINC was present in plasma. In separate experiments, rats received IT injections of recombinant CINC and/or MIP-2. Here, plasma levels of CINC, but not MIP-2, were significantly increased throughout the 4-h observation period. This finding was verified by individually administering (125)I-labeled forms of each chemokine. Instillation of recombinant MIP-2 or CINC into the lung increased the number of neutrophils recovered in bronchoalveolar lavage fluid at 4 h, and this effect was enhanced when both chemokines were administered together. In addition, intravenous (IV) CINC, but not IV MIP-2, increased pulmonary neutrophil recruitment in response to IT MIP-2. Our results show that CINC, in contrast to MIP-2, is selectively transported from the lung to the systemic circulation, where it promotes neutrophil migration into the lung in response to a chemotactic stimulus.  相似文献   

13.
14.
The addition of excess glucose to the diet drives a coordinated response of lipid metabolism pathways to tune the membrane composition to the altered diet. Here, we have employed targeted lipidomic approaches to quantify the specific changes in the phospholipid and sphingolipid populations that occur in elevated glucose conditions. The lipids within wild-type Caenorhabditis elegans are strikingly stable with no significant changes identified in our global mass spectrometry–based analysis. Previous work has identified ELO-5, an elongase that is critical for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs), as essential for surviving elevated glucose conditions. Therefore, we performed targeted lipidomics on elo-5 RNAi-fed animals and identified several significant changes in these animals in lipid species that contain mmBCFAs as well as in species that do not contain mmBCFAs. Of particular note, we identified a specific glucosylceramide (GlcCer 17:1;O2/22:0;O) that is also significantly upregulated with glucose in wild-type animals. Furthermore, compromising the production of the glucosylceramide pool with elo-3 or cgt-3 RNAi leads to premature death in glucose-fed animals. Taken together, our lipid analysis has expanded the mechanistic understanding of metabolic rewiring with glucose feeding and has identified a new role for the GlcCer 17:1;O2/22:0;O.  相似文献   

15.
Lipopolysaccharide (LPS) is the main component of Gram-negative bacteria that - upon infection - activates the host immune system and is crucial in fighting pathogens as well as in the induction of sepsis. In the present study we addressed the question whether the key structural components of LPS equally take part in the activation of different macrophage immune responses. By genomic modifications of Escherichia coli MG1655, we constructed a series of strains harboring complete and truncated forms of LPS in their cell wall. These strains were exposed to RAW 264.7 macrophages, after which phagocytosis, fast release of pre-synthesized TNF and activation of NF-κB signal transduction pathway were quantified. According to our results the core and lipid A moieties are involved in immune recognition. The most ancient part, lipid A is crucial in evoking immediate TNF release and activation of NF-κB. The O-antigen inhibits phagocytosis, leading to immune evasion.  相似文献   

16.
Leukocytes express both urokinase-type plasminogen activator (uPA) and the urokinase receptor (uPAR, CD87). Evidence in vitro has implicated uPAR as a modulator of beta2 integrin function, particularly CR3 (CD11b/CD18, Mac-1). Pseudomonas aeruginosa infection has been demonstrated to recruit neutrophils to the pulmonary parenchyma by a beta2 integrin-dependent mechanism. We demonstrate that mice deficient in uPAR (uPAR-/-) have profoundly diminished neutrophil recruitment in response to P. aeruginosa pneumonia compared with wild-type (WT) mice. The requirement for uPAR in neutrophil recruitment is independent of the serine protease uPA, as neutrophil recruitment in uPA-/- mice is indistinguishable from recruitment in WT mice. uPAR-/- mice have impaired clearance of P. aeruginosa compared with WT mice, as demonstrated by CFU and comparative histology. WT mice have diminished neutrophil recruitment to the lung when an anti-CD11b mAb is given before inoculation with the pathogen, while recruitment of uPAR-/- neutrophils is unaffected. We conclude that uPAR is required for the recruitment of neutrophils to the lung in response to P. aeruginosa pneumonia and that this requirement is independent of uPA. Further, we show that uPAR and CR3 act by a common mechanism during neutrophil recruitment to the lung in response to P. aeruginosa. This is the first report of a requirement for uPAR during cellular recruitment in vivo against a clinically relevant pathogen.  相似文献   

17.
We examined the role of the pleiotropic cytokine interferon-gamma (IFN-gamma) in initiating the burn injury-induced acute phase response (APR). Two-dimensional (2-D) electrophoresis was used to obtain serum protein profiles from wild-type (WT) and IFN-gamma knockout mice following sham-burn or 20% burn injury. Serum 2-D images from both groups of burn-injured mice were characterized by the upregulation of a similar panel of protein spots. These included the three major murine acute phase proteins haptoglobin, serum amyloid A, and serum amyloid P, that were identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF)-mass spectrometry. Furthermore, the changes in the levels of these protein spots were very similar between these two groups of mice, as determined by image analysis. Other features of burn-induced APR such as a decrease in total serum protein concentration, an elevated circulation level of the cytokine interleukin-6 (IL-6), and activation of the IL-6 signal transduction protein STAT3 were also evaluated and found to be similar between wild-type and IFN-gamma knockout mice. These results suggest a dispensable role of IFN-gamma in the induction of the hepatic APR in mice following burn injury.  相似文献   

18.
The role of innate immunity in the pathogenesis of asthma is unclear. Although increased presence of neutrophils is associated with persistent asthma and asthma exacerbations, how neutrophils participate in the pathogenesis of asthma remains controversial. In this study, we show that the absence of dipeptidyl peptidase I (DPPI), a lysosomal cysteine protease found in neutrophils, dampens the acute inflammatory response and the subsequent mucous cell metaplasia that accompanies the asthma phenotype induced by Sendai virus infection. This attenuated phenotype is accompanied by a significant decrease in the accumulation of neutrophils and the local production of CXCL2, TNF, IL-1beta, and IL-6 in the lung of infected DPPI-/- mice. Adoptive transfer of DPPI-sufficient neutrophils into DPPI-/- mice restored the levels of CXCL2 and enhanced cytokine production on day 4 postinfection and subsequent mucous cell metaplasia on day 21 postinfection. These results indicate that DPPI and neutrophils play a critical role in Sendai virus-induced asthma phenotype as a result of a DPPI-dependent neutrophil recruitment and cytokine response.  相似文献   

19.
During Gram-negative sepsis and endotoxemia, CD14 is essential for the recognition of LPS by the TLR4 complex and subsequent generation of systemic inflammation. However, CD14-independent responses to LPS have been reported in vitro and in vivo in selected tissues including the skin. As the liver is a key target organ for neutrophil sequestration and inflammatory pathology during sepsis and endotoxemia, we investigated the role of CD14 in the recruitment of neutrophils into the liver in a mouse model of endotoxemia. Using dynamic in vivo imaging of the liver, we observed that neutrophil recruitment within the sinusoids and post-sinusoidal venules occurred equivalently between LPS-treated wild-type and CD14-knockout mice. Neutrophil recruitment within the liver was completely independent of CD14 regardless of whether it was expressed on cells of hematopoietic or nonhematopoietic origin or in serum as soluble CD14. Whereas CD14 expression was essential for activation of circulating neutrophils and for the development of LPS-induced systemic inflammation (pulmonary neutrophil sequestration, leukopenia, and increased serum proinflammatory cytokine levels), deficiency of CD14 did not limit the adhesion strength of neutrophils in vitro. Furthermore, wild-type and CD14-knockout mice displayed identical deposition of serum-derived hyaluronan-associated protein within liver sinusoids in response to LPS, indicating that the sinusoid-specific CD44/hyaluronan/serum-derived hyaluronan-associated protein-dependent pathway of neutrophil adhesion is activated independently of CD14. Therefore, the liver microcirculation possesses a unique CD14-independent mechanism of LPS detection and activation of neutrophil recruitment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号