首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Internal motions of melittin and its lipid complexes were studied by anisotropy decays determined by frequency-domain fluorometry. A covalent anthraniloyl probe was attached, probably to lysine-21. The emission spectra indicate that the anthraniloyl moiety is exposed to solvent in both monomeric and tetrameric forms and is present at the lipid-water interfacial region in the lipid complexes. The fluorescence intensity decay of melittin in solution and its lipid complexes was characterized by three lifetimes. The lifetimes were near 1-2 ns, 6-7 ns and 10 ns. At increased temperatures there was an increase in the amplitude of the intermediate lifetime and a decrease in that of the longer lifetime. For all the melittin systems, at least three correlation times were required to fit the anisotropy data. Of the three correlation times, the shortest correlation time represents the local motions of the probe, while the longest represents global motions of the whole molecule. The intermediate correlation time probably represents the dynamics of domains/helices within the molecule. The melittin monomer is highly flexible, with greater than 90% of its anisotropy being lost by the local motions. Even though it is well organized (greater than 75% helical), the tetramer is still a highly flexible molecule, with 70% of its anisotropy being lost by the local motions. The internal motions of melittin decrease upon binding to lipids and are sensitive to the phase state of the lipid complexes.  相似文献   

2.
Procedures are described for the treatment of phase and modulation lifetime data in fluorescent systems having multiexponential decay. All computer procedures (called FIT programs) arise from the lifetime resolution theory for phase-modulation measurements (Weber, G (1981) J. Phys. Chem. 85, 949–953). The programs most successful in resolving heterogeneous lifetimes use a Monte Carlo approach in which phase and modulation lifetime data at three modulation frequencies are simultaneously utilized. These programs are shown to have more utility than the final closed form procedure presented by Weber (1981). The FIT routines are simple and require little computer time while yielding excellent results. To illustrate the applicability of these programs, defined binary (carbazole and pyrene) and ternary systems (carbazole, pyrene and POPOD) were examined. In most cases, the resolved lifetimes were within 5% of the independently measured value and the fractional fluorescence contributions were within 10% of that expected. These results demonstrate that phase-modulation measurements analyzed by appropriate computer programs are capable of solving for lifetimes in both binary and, in selected cases, ternary systems. An example is given from the recent literature (Dalbey, R., Weiel, J. and Yount, R.G. (1983) Biochemistry 22, 4696–4706) in which the above programs allowed the resolution of both binary and ternary lifetimes of a dansyl label on myosin, where Förster energy transfer was occuring. These lifetimes] were used to quantify changes in distances between two activity-related thiols on myosin upon the addition of Mg-ATP or its analogs.  相似文献   

3.
We extended the technique of frequency-domain fluorometry to an upper frequency limit of 2000 MHz. This was accomplished by using the harmonic content of a laser pulse train (3.76 MHz, 5 ps) from a synchronously pumped and cavity-dumped dye laser. We used a microchannel plate photomultiplier as the detector to obtain the 2-GHz bandwidth. This new instrument was used to examine tyrosine intensity and anisotropy decays from peptides and proteins. These initial data sets demonstrate that triply exponential tyrosine intensity decays are easily recoverable, even if the mean decay time is less than 1 ns. Importantly, the extended frequency range provides good resolution of rapid and/or multiexponential tyrosine anisotropy decays. Correlation times as short as 15 ps have been recovered for indole, with an uncertainty of +/- 3 ps. We recovered a doubly exponential anisotropy decay of oxytoxin (29 and 454 ps), which probably reflects torsional motions of the phenol ring and overall rotational diffusion, respectively. Also, a 40-ps component was found in the anisotropy decay of bovine pancreatic trypsin inhibitor, which may be due to rapid torsional motions of the tyrosine residues and/or energy transfer among these residues. The rapid component has an amplitude of 0.05, which is about 16% of the total anisotropy. The availability of 2-GHz frequency-domain data extends the measurable time scale for fluorescence to overlap with that of molecular dynamics calculations.  相似文献   

4.
We report the first anisotropy decays of protein fluorescence obtained using a frequency-domain fluorometer. The ultraviolet light source (300 nm) was a ring dye laser equipped with an intracavity frequency doubler, pumped by an argon ion laser. The data, measured at modulation frequencies from 2 to 200 MHz, reveal the presence of subnanosecond motions (0.1-0.2 ns) of the single tryptophan residues in melittin and monellin. For melittin the data also indicate the presence of slower motions near 1 ns, which may be the result of concerted motions of several peptide units. Smaller amplitude motions, on a similar timescale, were observed for the single tryptophan residue in staphylococcal nuclease. We demonstrate using N-acetyl-L-tryptophanamide in water that the method of frequency-domain fluorometry is capable of measuring correlation times as short as 50 ps. This method can provide data for the direct comparison of measured anisotropy decays with those predicted from molecular dynamics calculations.  相似文献   

5.
Frequency-domain fluorometry was used to investigate the intensity and anisotropy decays of diphenylhexatriene (DPH) in melittin-lipid complexes. Simulated and experimental data indicate that correlation times ranging from 0.3 to 500 ns can be determined using data from 1 to 200 MHz. For the melittin-lipid complexes the hindered rotator model was not adequate to account for the anisotropy decays, especially at temperatures above the transition temperatures. At high protein-to-lipid ratios the data revealed the formation of small particles (100 A) of melittin and dipalmitoylphosphatidylcholine and the disruption of membrane order in bilayers of dipalmitoylphosphatidic acid.  相似文献   

6.
We report the first time-resolved fluorescence emission spectra and time-resolved fluorescence anisotropies obtained using frequency-domain fluorescence spectroscopy. We examined the fluorophore p-2-toluidinyl-6-naphthalenesulfonic acid (TNS) in viscous solvents and bound to the heme site of apomyoglobin using multifrequency phase fluorometers. Fluorescence phase shift and modulation data were obtained at modulation frequencies ranging from 1 to 200 MHz. For time-resolved emission spectra, the impulse response for the decay of intensity at each emission wavelength was obtained from the frequency response of the sample at the same emission wavelength. The decays have negative pre-exponential factors, consistent with a time-dependent spectral shift to longer wavelengths. These multiexponential decays were used to construct the time-resolved emission spectra, which were found to be in good agreement with earlier spectra obtained from time-domain measurements. Additionally, time-resolved anisotropies were obtained from the frequency-dependent phase angle differences between the parallel and perpendicularly polarized components of the emission. The rotational correlation times of TNS bound to apomyoglobin are consistent with those expected for this probe rigidly bound to the protein. TNS in propylene glycol also displayed a single exponential decay of anisotropy. These results, in conjunction with the previous successful resolution of multiexponential decays of fluorescence intensity (Lakowicz, J. R., Gratton, E., Laczko, G., Cherek, H., and Limkeman, M. (1984) Biophys. J., in press; Gratton, E., Lakowicz, J. R., Maliwal, B. P., Cherek, H., Laczko, G., and Limkeman, M. (1984) Biophys. J., in press) demonstrate that frequency-domain measurements provide information which is, at a minimum, equivalent to that obtainable from time-domain measurements.  相似文献   

7.
We used frequency-domain fluorometry to measure intensity and anisotropy decay of indole fluorescence in cyclohexane/ethanol mixtures at 20 degrees C. In 100% cyclohexane or 100% ethanol the intensity decay of indole appears to be a single exponential with decay times of 7.66 and 4.10 ns, respectively. In cyclohexane containing a small percentage of ethanol (up to 10%), we observed increased heterogeneity in intensity decay, resulting in a 10-fold increase in chi 2R for the single-exponential fit, as compared with the double-exponential model. We obtained comparable or better fits using unimodal Lorentzian and Gaussian lifetime distributions (two floating parameters) than for the two-exponential model (three floating parameters). We believe that the distribution of decay times reflects a range of indole solvation states in the dominately nonpolar solutions. This result suggests that a variety of hydrogen-bonding configurations could be one origin of the distributions of decay times observed for tryptophan emission from proteins. We also measured rotational diffusion of indole in cyclohexane, ethanol and its mixtures at 20 degrees C. The picosecond correlation times required that the mean decay times be decreased by acrylamide quenching (in ethanol) or energy transfer (in cyclohexane). In ethanol we observed nearly isotropic rotation of indole; in cyclohexane we obtained two correlation times of 17 and 73 ps. The shorter correlation time in cyclohexane appears to be due to the slip boundary condition, which was found to be progressively eliminated by small percentages of ethanol. Hence, hydrogen-bonding interactions appear to have a substantial effect on the rotational dynamics of indole.  相似文献   

8.
The intensity and anisotropy decays of Wye base fluorescence from yeast tRNA(Phe) were determined by frequency-domain fluorometry. The intensity decay is at least a double exponential in the presence and absence of Mg2+, but the multi-exponential character of the decay is more pronounced in the absence of Mg2+. The anisotropy decay displays components due to overall tRNA rotational diffusion and to local torsional motions. The amplitude of the local motion is decreased 2-fold by the presence of Mg2+. The results are broadly consistent with a more homogeneous environment for the Wye base in the presence of Mg2+.  相似文献   

9.
A method of fluorescence anisotropy decay analysis is described in this work. The transient anisotropy r(ex)(t) measured in a photocounting pulsefluorimeter is fitted by a non linear least square procedure to the ratio of convolutions of the apparatus response function g(t) by sums of appropriate exponential functions. This method takes rigorously into account the apparatus response function and is applicable to any shape of the later as well as to any values of fluorescence decay times and correlation times. The performances of the method have been tested with data simulated from measured response functions corresponding to an air lamp and a high pressure nitrogen lamp. The statistical standard errors of the anisotropy deca parameters have been found to be smaller than the standard errors previously calculated for the moment method. A systematic error delta in the fluorescence decay time entailed an error deltatheta in the correlation time such as Deltatheta/theta < deltatau/tau. By this method, good fitting of experimental data have been achieved very conveniently and accurately.  相似文献   

10.
We used frequency-domain fluorometry to demonstrate the presence of an associated decay of fluorescence anisotropy. In such systems the individual correlation times are associated with distinct emitting species, each with its own characteristic lifetime and rotational correlation times. We obtained an associated system using 1-anilino-8-naphthalenesulfonic acid (ANS) in the presence of increasing amounts of apomyoglobin. When both free and apomyoglobin-bound ANS contributed to the emission the differential polarized phase angles become negative at particular frequencies, even though the fundamental anisotropy (r0) is greater than zero. Additionally, the modulated anisotropy decreases at high frequencies. Both observations appear to be the unique consequence of an associated anisotropy decay, and are not possible for a multiexponential anisotropy decay of a single species.  相似文献   

11.
An activity sensing rate-responsive pacing system is presented which adaptively controls heart rate to adjust cardiac output in response to increased metabolic demand, and more optimally restore homeostasis of the intact cardiovascular system. The current use of ventricular demand and DDD universal pacing systems, although rate and multi-parameter and multi-function programmable, are fixed at these programmed settings. These devices are adequate for patients at rest or during moderate exertion, but are suboptimal for physically active patients whose physiology requires increased oxygen supply to meet an increased cardiac demand. In the past, these patients may have experienced fatigue or dyspnea out of proportion to their cardiovascular disease. The Ergos rate-adaptive single- and dual-chamber pacing system is a second generation pulse generator which is rate responsive to a patient's increased physiologic demand by sensing a motion signal which reflects increased work load and the need for a compensating increase in heart rate. Ergos offers increased assistance to patients with sinus bradycardia who may require the rate-responsiveness with the additional advantage of AV synchrony. Clinical results show the effectiveness of the presented sensor control by motion energy for rate adaptive pacing therapy.  相似文献   

12.
We used frequency domain measurements of fluorescence resonance energy transfer to recover the distribution of distances between Met 25 and Cys 98 in rabbit skeletal troponin C. These residues were labeled with dansylaziridine as energy donor and 5-(iodoacetamido)eosin as acceptor and are located on the N- and C-terminal lobes of the two-domain protein, respectively. We developed a procedure to correct for the fraction of the sample that was incompletely labeled with the acceptor independent of chemical data. At pH 7.5 and in the presence of Mg2+, the mean distance was near 15 A with a half-width of the distribution of 15 A; when Mg2+ was replaced by Ca2+, the mean distance increased to 22 A with a decrease in the half-width by 4 A. Similar but less pronounced differences in the mean distance and half-width between samples containing Mg2+ and Ca2+ were also observed with troponin C complexed to troponin I. The results suggest that the conformation of troponin C is altered by Ca2+ binding to the Ca(2+)-specific sites and displacing bound Mg2+ at the Ca2+/Mg2+ sites. This alteration may play an important role in Ca2+ signaling in muscle. At pH 7.5, the anisotropy decays of the donor-labeled troponin C showed two components, with the long rotational correlation time (12 ns) reflecting the overall motion of the protein. When the pH was lowered from 7.5 to 5.2, the mean distribution distance of apotroponin C increased from 22 to 32 A and the half-width decreased by a factor of 2 from 13 to 7 A. The long correlation time of apotroponin C increased to 19 ns at the acidic pH. These results are discussed in terms of a model in which skeletal troponin C is a dimer at low pH and enable comparison of the solution conformation of the protein at neutral pH with a crystal structure obtained at pH 5.2. While the conformation of the monomeric unit of troponin C dimer at pH 5.2 is extended and consistent with the crystal structure, the conformation at neutral pH is likely more compact than the crystal structure predicts.  相似文献   

13.
We used harmonic-content frequency-domain fluorometry to determine the anisotropy decays of a variety of single tryptophan peptides and proteins. Resolution of the rapid and complex anisotropy decays was enhanced by global analysis of the data measured in the presence of quenching by either oxygen or acrylamide. For each protein, and for each quencher, data were obtained at four to six quencher concentrations, and the data analyzed globally to recover the anisotropy decay. The decrease in decay times produced by quenching allows measurements to an upper frequency limit of 2 GHz. The chosen proteins provided a range of exposures of the tryptophan residues to the aqueous phase, these being ACTH, monellin, Staphylococcus nuclease and ribonuclease T 1, in order of decreasing exposure. Examination of indole and several small peptides demonstrates the resolution limitations of the measurements; a correlation time of 12 ps was measured for indole in methanol at 40°C. Comparison of the anisotropy decays of gly-trp-gly with leu-trp-leu revealed stearic effects of the larger leucine side chains on the indole ring. The anisotropy decay of gly-trp-gly revealed a 40 ps component for the indole side chain, which was resolved from the overall 150 ps correlation time of the tripeptide. Only the longer correlation time was observed for leu-trp-leu. With the exception of ribonuclease T 1, each of the proteins displayed a subnanosecond component in the anisotropy decay which we assign to independent motions of the tryptophan residues. For example, Staphylococcus nuclease and monellin displayed segmental tryptophan motions with correlation times of 80 and 275 ps, respectively. The amplitudes of the rapid components increased with increasing exposure to the aqueous phase. These highly resolved anisotropy decays for proteins of known structure are suitable for comparison with molecular dynamic simulations.Abbreviations Ac acrylamide - ACTH adrenocorticotropin hormone (1–24) - BPTI bovine pancreatic trypsin inhibitor - NATA N-acetyl-L-tryptophanamide - RNase T 1 ribonuclease T 1 - S. Nuclease staphylococcus aureus nuclease Supported by grants DMB-8804931 and DIR-8710401 from the National Science Foundation, and GM-39617 from the National Institutes of Health. J. R. Lakowicz acknowledges support from the Medical Biotechnology Center at the University of Maryland. I. Gryczynski was on leave from University of Gáansk, Institute of Experimental Physics, Gdansk, Poland, with partial support from CPBP 01.06.2.01 (Poland). H. Cherek was on leave from Nicholas Copernicus University, Torun, Poland, with partial support from CPBP 01.06.2.03 Offprint requests to: J. R. Lakowicz  相似文献   

14.
15.
We used frequency-domain fluorescence spectroscopy to measure the fluorescence lifetime and anisotropy decays of indole in propylene glycol, and of the tryptophan emission of melittin monomer and tetramer in water solutions at 5 degrees C. We obtained an increase in resolution of the anisotropy decays by using multiple excitation wavelengths, chosen to provide a range of fundamental anisotropy values. The multi-excitation wavelength anisotropy decays were analyzed globally to recover a single set of correlation times with wavelength-dependent anisotropy amplitudes. Simulated data and kappaR2 surfaces are shown to reveal the effect of multi-wavelength data on the resolution of complex anisotropy decays. For both indole and melittin, the anisotropy decays are heterogeneous and require two correlation times to fit the frequency-domain data. For indole in propylene glycol at 5 degrees C we recovered correlation times of 0.59 and 4.10 ns, which appear to be characteristic of the rigid and asymmetric indole molecule. For melittin monomer the correlation times were 0.13 and 1.75 ns, and for melittin tetramer 0.12 and 3.96 ns. The shorter and longer correlation times of melittin are due to segmental motions and overall rotational diffusion of the polypeptide.  相似文献   

16.
We report the first resolution of both the conformational distribution and end-to-end diffusion coefficient of a flexible molecule. This molecular information was recovered using only the donor intensity decay in a single solvent at a single viscosity, as observed by the technique of frequency-domain fluorometry. This technique can be extended to measurements of structural fluctuations of biological macromolecules.  相似文献   

17.
During normal daily activity, muscle motor units (MUs) develop unfused tetanic contractions evoked by trains of motoneuronal firings at variable interpulse intervals (IPIs). The mechanical responses of a MU to successive impulses are not identical. The aim of this study was to develop a mathematical approach for the prediction of each response within the tetanus as well as the tetanic force itself. Experimental unfused tetani of fast and slow rat MUs, evoked by trains of stimuli at variable IPIs, were decomposed into series of twitch-shaped responses to successive stimuli using a previously described algorithm. The relationships between the parameters of the modeled twitches and the tetanic force level at which the next response begins were examined and regression equations were derived. Using these equations, profiles of force for the same and different stimulation patterns were mathematically predicted by summating modeled twitches. For comparison, force predictions were made by the summation of twitches equal to the first one. The recorded and the predicted tetanic forces were compared. The results revealed that it is possible to predict tetanic force with high accuracy by using regression equations. The force predicted in this way was much closer to the experimental record than the force obtained by the summation of equal twitches, especially for slow MUs. These findings are likely to have an impact on the development of realistic muscle models composed of MUs, and will assist our understanding of the significance of the neuronal code in motor control and the role of biophysical processes during MU contractions.  相似文献   

18.
[This corrects the article on p. 386 in vol. 14.].  相似文献   

19.
 Muscle fiber response to a train of variable-frequency pulses includes the potentiation and catch-like effect. For better understanding of these phenomena, we built an activation model with emphasis on the calcium liberation from and re-sequestration into the sarcoplasmic reticulum, including calcium-induced calcium release. The model had two stable equilibrium points in the calcium concentration. Changes from the low to the high equilibrium point could be produced by high-frequency trains of pulses and would account for the potentiation. The model also showed a catch-like effect, as a long-lasting increment of muscle force after the application of a single extra pulse. The increase in force appeared in resting muscle, disappeared when the muscle was potentiated, and reappeared briefly if the stimulation was continued for long periods. Received: 31 January 2000 / Accepted in revised form: 2 August 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号