共查询到20条相似文献,搜索用时 0 毫秒
1.
J. A. Campos-Ortega 《Cell and tissue research》1974,147(3):415-431
Summary The uptake of 3H-GABA in the visual system of half-head preparations of Musca and Drosophila was studied by means of light and electron microscope autoradiography. Of all three ganglia, only the first synaptic region, the lamina ganglionaris, showed accumulation of radioactive grains, and there a preferential glial uptake could be found. Under normal light conditions at incubation (constant light flux of 100 Lux) the maximum of radio-activity was found in the marginal glia cells. Increasing the time of incubation produced also an increase in the number of grains per surface unit in the marginal glia cells. After changing the light intensity during incubation, quantitative modifications of the distribution of radio-activity were observed: incubating with stroboscopic illumination, the number of grains diminished in the marginal glia cells and remained constant in the epithelial cells; incubated in darkness, the epithelial cells became more intensely labelled whilst the number of grains decreased in the marginal cells.The possibility is discussed that the receptor axons 1–6 are the neurological elements of the lamina which use GABA as a transmitter. This hypothesis is lent some support from results of similar experiments with neurological mutants of Drosophila. In opm 18 there was a delayed uptake of 3H-GABA whereas in opm 3 and ebony the results were comparable to those found in Musca incubated in darkness. Behavioral studies on these mutants have demonstrated a defect, most probably related to the receptor system 1–6. 相似文献
2.
The release of [3H]GABA from superfused slices of rat cerebral cortex was investigated in the presence and absence of the GABA-transaminase inhibitor aminooxyacetic acid (AOAA). In the latter case, an ion-exchange column chromatographic technique was used to separate [3H]GABA from tritiated metabolites released with it into the superfusate. In the absence of AOAA, omission of Ca2+ from the superfusion medium reduced the release of [3H]GABA evoked by a 30 mM K+ pulse by 81.6%, whereas in comparable experiments carried out in the presence of AOAA omission of Ca2+ reduced the K+-evoked release by only 23.5%. Similar results were obtained when a 50 mM K+ pulse was used, where-upon omission of Ca2+ reduced [3H]GABA release by 78.7% in the absence of AOAA as compared with a reduction of only 47.9% when AOAA was present. It is concluded that the presence of AOAA decreases the Ca2+-dependence of K+-evoked [3H]GABA release in this system. 相似文献
3.
The kinetics and specificity of taurine and -alanine uptake were studied in primary cultures of rat astrocytes under identical experimental conditions. The uptake consisted of nonsaturable penetration and saturable high-affinity transport that was strictly sodium dependent. The cells accumulated taurine more effectively than -alanine, both the affinity and uptake capacity being greater for taurine. Taurine uptake was competitively inhibited by -alanine and GABA, the former being more potent. Also, hypotaurine and 2-guanidinoethanesulphonic acid strongly reduced taurine uptake, but L-2,4-diaminobutyric acid had no significant effect. -Alanine uptake was also competitively inhibited by GABA, but the most potent inhibitors were hypotaurine and 2-guanidinoethanesulphonic acid.l-2,4-Diaminobutyric acid was moderately active. The uptake systems for taurine and -alanine were thus in principle similar, and they exhibited certain characteristics typical for a neurotransmitter amino acid. The inhibition studies further suggest the existence of only one common transport system for taurine, -alanine, and GABA in cultured primary astrocytes. The same uptake system may also be used for hypotaurine. 相似文献
4.
Both glial and neuronal cells maintained in primary culture were found to accumulate [3H]GABA by an efficient high-affinity uptake system (apparentK
m=9 M,V
max=0.018 and 0.584 nmol/mg/min, respectively) which required sodium ions and was inhibited by 1 mM ouabain. Strychnine and parachloromercuriphenylsulfonate (pCS) (both at 1 mM) also strongly inhibited uptake of [3H]GABA, but metabolic inhibitors (2,4-dinitrophenol, potassium cyanide, and malonate) were without effect. Only three structural analogs of GABA (nipecotate, -alanine, and 2,4-diaminobutyrate) inhibited uptake of [3H]GABA, while several other compounds with structural similarities to GABA (e.g. glycine,l-proline, and taurine) did not interact with the system. The kinetic studies indicated presence of a second uptake (K
m=92 M,V
max=0.124 nmol/mg/min) in the primary cultures containing predominantly glioblasts. On the other hand, only one of the neuronal cell lines transformed by simian virus SV40 appeared to accumulate [3H]GABA against a concentration gradient. ApparentK
m of this uptake was relatively high (819 M), and it was only weakly inhibited by 1 mM ouabain and 1 mM pCS. The structural specificity also differed from that of the uptake observed in the primary cultures. Significantly, none of the nontransformed continuous cell lines of either tumoral (glioma, C6; neuroblastoma, Ml; MINN) or normal (NN; I6) origin actively accumulated [3H]GABA. It is suggested that for the neurochemical studies related to GABA and requiring homogeneous cell populations, the primary cultures offer a better experimental model than the continuous cell lines. 相似文献
5.
Dr. Richard Reynolds Christine Steffen Norbert Herschkowitz 《Neurochemical research》1987,12(10):885-890
Oligodendrocytes were isolated from mixed glial cultures of neonatal mouse forebrain and further grown in serum-free hormone supplemented culture medium. Cell populations were identified by indirect immunofluorescence using a range of specific antibodies, revealing a predominantly immature population of oligodendrocytes, the majority expressing the myelin glycolipids galactocerebroside and sulfatide on their plasma membrane. Astroglial contamination was found to be minimal. Simultaneous autoradiography and immunofluorescence demonstrated the presence of a transport system for the major inhibitory neurotransmitter GABA in the oligodendrocytes. The transport system was found to be energy, sodium and temperature dependent. Kinetic analysis revealed a high affinity system, with aK
m of 6.27 M and aV
max of 0.714 nmol/min/mg protein, which is comparable to that found previously for CNS neurons and astrocytes.Special Issue dedicated to Dr. E. M. Shooter and Dr. S. Varon. 相似文献
6.
L. A. Nesterova B. N. Manukhin 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2007,1(4):318-324
The binding of nonselective α1- and β-adrenoreceptor antagonists [3H]prazosin and [3H]dihydroalprenolol ([3H]DHA) to rat cerebral cortex synaptosomal membranes has been studied. It is found that ligand-receptor interactions of α1-adrenoreceptors fit into a single receptor pool model, which assumes the binding of two ligand molecules to one receptor molecule. The parameters of [3H]prazosin binding to α1-adrenoreceptors are as follows: K d = 2.58 ± 0.20 nM; B m = 2.95 ± 1.12 fmol/mg protein; Hill coefficient, n = 2. For β-adrenoreceptors, ligand-receptor interactions fit into a model assuming the presence of two receptor pools in the same effector system and binding of two ligand molecules to one receptor molecule. The corresponding parameters of the [3H]DHA binding to β-adrenoreceptors are as follows: K d1 = 0.74 ± 0.09 nM; K d2 = 7.63 ± 0.70 nM; B m1 = 25 ± 2 fmol/mg, B m2 = 48 ± 2 fmol/mg, n 1 = 2; n 2 = 2. We suggest that in rat cerebral cortex membranes α-and β-adrenoreceptors exist as dimers. 相似文献
7.
C. S. Ramarao S. R. Acharya K. S. Krishnan U. W. Kenkare 《Journal of biosciences》1987,11(1-4):119-135
Preparations having properties resembling those of synaptosomes have been isolated from whole fly homogenates ofDrosophila melanogaster using ficoll gradient floatation technique. These have been characterized by marker enzymes and electron microscopy and binding of muscarinic antagenist3H Quinuclidinyl benzilate. An uptake system for neurotransmitter, ã-Aminobutyric acid has been demonstrated in these preparations. A high affinity uptake system for L-glutamate has also been studied in these subcellular fractions. This uptake of glutamate is transport into an osmotically sensitive compartment and not due to binding of glutamate to membrane components. The transport of glutamate has an obligatory requirements for either sodium or potassium ions. Kinetic experiments show that two transport systems, withK m values 0.33 X 10-6M and 2.0 X 10-6M, respectively, function in the accumulation of glutamate. ATP stimulates lower affinity transport of glutamate. Inhibition of glutamate uptake by L-aspartate but not by phenylalanine and tyrosine indicates that a common carrier mediates the transport of both glutamate and aspartate. β-N-oxalyl-L-β β-diamino propionic acid and kainic acid, both inhibitors of glutamate transport in mammalian brain preparations, strongly inhibited transport of glutamate inDrosophila preparations Comparison with uptake of ã-aminobutyric acid and glutamate in isolated larval brain is presented to show that the synaptosome-like preparations we have isolated are rich in central nervous system derived structures, and presynaptic endings from neuromuscular junctions. 相似文献
8.
Role of uptake inγ-aminobutyric acid (GABA)-mediated responses in guinea pig hippocampal neurons 总被引:2,自引:0,他引:2
Intracellular recordings were obtained from hippocampal pyramidal neurons maintained in vitro. Measurements were made of the conductance change induced by iontophoretically applied gamma-aminobutyric acid (GABA) and, using voltage-clamp techniques, of inhibitory postsynaptic currents resulting from activation of inhibitory pathways. Analysis of GABA iontophoretic charge-response curves indicated that there was considerable variation among neurons with respect to the slope of this relation. The placement of the GABA-containing pipette did not appear to be responsible for the observed variation, since vertical repositioning of the pipette did not alter the slope of the charge-response relationship. Steady iontophoresis of GABA from one barrel of a double-barreled pipette markedly affected the charge-response relation obtained when short pulses were applied to the other barrel. The curve was shifted to the left, and the slope was decreased. Concomitantly, the enhanced GABA-induced responses were prolonged. Similar alterations in GABA responsiveness were observed when the uptake blocker, nipecotic acid, was iontophoretically applied. Furthermore, bath application of saline containing a reduced sodium concentration (25% of control) also produced a prolongation of GABA-mediated responses. Under voltage clamp, inhibitory postsynaptic currents were observed to have biphasic decays. The initial, fast decay was prolonged by an average of 18% by nipecotic acid, whereas the later, slow phase was prolonged by 23%. The results of these studies support the hypothesis that a saturable GABA uptake system is responsible for the observed variation in the charge-response curves and, in turn, underlies the apparent sensitizing effect of excess GABA application. The results also suggest that a reduction of transmitter uptake affects the time course of inhibitory postsynaptic currents in the hippocampus. 相似文献
9.
In order to study the central neurochemical control of the vagus nerve, the contents of glycine, GABA, glutamate and five other amino acids have been measured in ten anatomically distinct regions of the rat medulla oblongata. Additionally, the high affinity uptake of glycine, GABA, glutamate, and leucine were measured in the same ten medullary regions. The data support published evidence for glutamatergic and GABAergic transmission in the nucleus of the tractus solitarius (NTS), and glycinergic inhibition in the hypoglossal nucleus. The data also lead to the suggestion that GABA and glutamate may be taken up into glial cells which exist along fiber tracts. 相似文献
10.
《Comparative biochemistry and physiology. B, Comparative biochemistry》1987,86(3):943-948
- 1.1. Subcellular location of dihydropyrimidinase and NCβA-amidohydrolase2 was studied in a cell suspension culture of tomato (Lycopersicon esculentum cv. Lukullus) and in Euglena gracilis.
- 2.2. By differential centrifugation, crude extracts were separated into ten fractions. Activities of both enzymes were found mainly in cytosolic fractions marked by EDH (tomato) and glu-6-P-DH (E. gracilis).
- 3.3. A cytosolic location was also found by a 20–60% and a 17.5–30% sucrose density gradients.
- 4.4. Using mitochondrial marker enzymes such as fumarase, SDH, CS and MDH, a mitochondrial occurrence of both enzymes or their release from mitochondria can be excluded by sucrose gradient centrifugations. This can also be achieved using purified mitochondria prepared from tomato cells by two subsequent sucrose gradients.
- 5.5. A possible vacuolar location of dihydropyrimidinase and NCβA-amidohydrolase was excluded by comparing their activities in isolated protoplasts and purified vacuoles which were characterized by their marker enzyme α-mannosidase.
- 6.6. A nuclear location of both enzymes and/or their release from the nucleus during procedures used cannot be excluded.
- 7.7. The results are discussed in relation to subcellular location to other pyrimidine-metabolizing enzymes in plant cells.
11.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein). 相似文献
12.
13.
The γ-aminobutyric acid (GABA) transporters (GATs) have long been recognized for their key role in the uptake of neurotransmitters. The GAT1 belongs to the family of Na(+)- and Cl(-)-coupled transport proteins, which possess 12 putative transmembrane (TM) domains and three N-glycosylation sites on the extracellular loop between TM domains 3 and 4. Previously, we demonstrated that terminal trimming of N-glycans is important for the GABA uptake activity of GAT1. In this work, we examined the effect of deficiency, removal or oxidation of surface sialic acid residues on GABA uptake activity to investigate their role in the GABA uptake of GAT1. We found that the reduced concentration of sialic acid on N-glycans was paralleled by a decreased GABA uptake activity of GAT1 in Chinese hamster ovary (CHO) Lec3 cells (mutant defective in sialic acid biosynthesis) in comparison to CHO cells. Likewise, either enzymatic removal or chemical oxidation of terminal sialic acids using sialidase or sodium periodate, respectively, resulted in a strong reduction in GAT1 activity. Kinetic analysis revealed that deficiency, removal or oxidation of terminal sialic acids did not affect the K(m) GABA values. However, deficiency and removal of terminal sialic acids of GAT1 reduced the V(max) GABA values with a reduced apparent affinity for extracellular Na(+). Oxidation of cell surface sialic acids also strongly reduced V(max) without affecting both affinities of GAT1 for GABA and Na(+), respectively. These results demonstrated for the first time that the terminal sialic acid of N-linked oligosaccharides of GAT1 plays a crucial role in the GABA transport process. 相似文献
14.
《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1999,735(2):141-149
A method for the stereoselective assay of d- and l-enantiomers of both leucine and [2H7]leucine in rat plasma was developed using gas chromatography–mass spectrometry–selected-ion monitoring. dl-[2H3]leucine was used as an internal standard. The method involved purification by cation-exchange chromatography using BondElut SCX cartridge and derivatization with hydrochloric acid in methanol to form methyl ester followed by subsequent chiral derivatization with (+)-α-methoxy-α-trifluoromethylphenylacetyl chloride to form diastereomeric amide. The derivatization made the separation of the leucine enantiomers possible with good gas chromatographic behavior. Quantitation was performed by selected-ion monitoring of the quasi-molecular ions of the diastereomers on the chemical ionization method. The sensitivity, specificity, accuracy and reproducibility of the method were demonstrated to be satisfactory for application to pharmacokinetic studies of leucine enantiomers. 相似文献
15.
Ikeda S Tachikawa M Akanuma S Fujinawa J Hosoya K 《American journal of physiology. Gastrointestinal and liver physiology》2012,303(3):G291-G297
Taurine is essential for the hepatic synthesis of bile salts and, although taurine is synthesized mainly in pericentral hepatocytes, taurine and taurine-conjugated bile acids are abundant in periportal hepatocytes. One possible explanation for this discrepancy is that the active supply of taurine to hepatocytes from the blood stream is a key regulatory factor. The purpose of the present study is to investigate and identify the transporter responsible for taurine uptake by periportal hepatocytes. An in vivo bolus injection of [(3)H]taurine into the rat portal vein demonstrated that 25% of the injected [(3)H]taurine was taken up by the liver on a single pass. The in vivo uptake was significantly inhibited by GABA, taurine, β-alanine, and nipecotic acid, a GABA transporter (GAT) inhibitor, each at a concentration of 10 mM. The characteristics of Na(+)- and Cl(-)-dependent [(3)H]taurine uptake by freshly isolated rat hepatocytes were consistent with those of GAT2 (solute carrier SLC6A13). Indeed, the K(m) value of the saturable uptake (594 μM) was close to that of mouse SLC6A13-mediated taurine transport. Although GABA, taurine, and β-alanine inhibited the [(3)H]taurine uptake by > 50%, each at a concentration of 10 mM, GABA caused a marked inhibition with an IC(50) value of 95 μM. The [(3)H]taurine uptake exhibited a significant reduction when the GAT2 gene was silenced. Immunohistochemical analysis showed that GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. These results suggest that GAT2 is responsible for taurine transport from the circulating blood to hepatocytes predominantly in the periportal region. 相似文献
16.
《Insect Biochemistry》1985,15(6):667-675
We have begun to examine the factors controlling the accumulation of the neurotransmitter γ-aminobutyric acid (GABA) in the central nervous system (CNS) of the sphinx moth Manduca sexta. Analysis of soluble amino acids in CNS structures from mature moths outlines the regional distribution of GABA. Analysis of amino acids in the antennal lobes (the primary olfactory centres) of Manduca during metamorphosis reveals that GABA accumulates gradually and continuously through most of adult development until eclosion; within 18 hr after eclosion, levels of GABA abruptly increase 27–50%. The activity of the biosynthetic enzyme glutamic acid decarboxylase (EC 4.1.1.15), assayed in extracts of antennal lobes from developing moths, does not change after eclosion. Extracts of hemolymph from mature moths contain low levels of glutamate ( <0.2 mM) and higher levels of certain other amino acids such as serine, glutamine and proline. The concentration of proline in hemolymph increases up to 2-fold after eclosion. Glutamate, glutamine and proline are interconvertible in the CNS, and each can serve as precursor for GABA synthesis both in vivo and in vitro. The efficiency of the precursor role in vitro is similar for each amino acid, as estimated from the ratio of the specific radioactivities of GABA and glutamic acid in the ganglion derived from each precursor. Exogenous proline and glutamine can equilibrate rapidly with the ganglionic pools of the same amino acids while glutamic acid is relatively excluded. Taken together, the findings of this study show that proline and glutamine may contribute substantially to synthesis of GABA in the CNS of M. sexta. 相似文献
17.
18.
Lena Lewin Mats-Olof Mattsson David K. Rassin Åke Sellström 《Neurochemical research》1992,17(4):333-337
The uptake of radioactive -aminobutyric acid (GABA) andd-aspartate and the effect of SKF 89976-A, a non-substrate inhibitor of the GABA transporter, on this uptake have been investigated. Neuronal cultures from eight-day-old chick embryos grown for three or six days in vitro, were used as a model. For comparison, we also used the P2-fraction from rat. Neuronal cultures grown for three and six days expressed high-affinity uptake systems for [3H]GABA and ford-[3H]aspartate with an increasing Vmax during this period. The lipophilic non-substrate GABA uptake inhibitor, SKF 89976-A, inhibited transporter mediated uptake of GABA both in cell cultures from chicken, and in P2-fractions from rat. The results also showed that SKF 89976-A was a poor inhibitor of the uptake ofd-aspartate. We found no non-saturable uptake ofd-aspartate. 相似文献
19.
Recent evidence indicates that glial cell line-derived neurotrophic factor (GDNF) may influence microglial survival, proliferation, and activation, but this has not yet been tested on isolated primary microglia. We compared the effects of individual and combined application of 10 ng/ml GDNF and 1 ng/ml transforming growth factor-beta1 (TGF-beta1) on total cell number, 5-bromo-2'-deoxyuridine (BrdU) incorporation, DNA nick-end labelling (TUNEL staining), and nitrite and lactate dehydrogenase (LDH) secretion in serum-free cultures of primary rat microglia. GDNF as well as TGF-beta1 enhanced the total number of lectin-positive cells and decreased the number of TUNEL-positive nuclei, while no effect on proliferation was observed. Both factors suppressed the secretion of nitrite during the first 4 days of culturing, and GDNF but not TGF-beta1 reduced the secretion of LDH in 2-week-old cultures. These findings suggest that GDNF and TGF-beta1 support survival of primary microglia in vitro. 相似文献
20.
Arthur R. Hand 《Histochemistry and cell biology》1975,41(3):195-206
Summary The localization of L--hydroxy acid oxidase activity in rat liver peroxisomes was studied using slight modifications of the Shnitka and Talibi (1971) method. Best results were obtained with formaldehyde fixation and incubation with glycolate as substrate. Following incubation the copper ferrocyanide reaction product was amplified with 3,3-diaminobenzidine according to Hanker et al. (1972a, b). Dense reaction product was visible in hepatocyte peroxisomes by light and electron microscopy. Some diffusion of enzyme and/or reaction product into the adjacent cytoplasm occurred around the peroxisomes. Apparent non-specific deposits occurred on the plasmalemma, in the nucleus, and occasionally over mitochondria. Glutaraldehyde fixation severely inhibited enzymatic activity, and the enzyme showed less activity toward L-lactate and DL--hydroxybutyrate. 相似文献