首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
IP(3) receptors: the search for structure   总被引:4,自引:0,他引:4  
Inositol (1,4,5)-trisphosphate receptors (IP(3)R) are intracellular Ca(2+) channels that are regulated by Ca(2+) and IP(3), and are modulated by many additional signals. They thereby allow both receptors that stimulate IP(3) formation and Ca(2+) to control release of Ca(2+) from intracellular stores. IP(3)Rs share many features with their close relatives, ryanodine receptors; each provides insight into the structure and function of the other. The structural basis of IP(3)R behaviour is beginning to emerge from intermediate-resolution structures of the complete IP(3)R, a 2.2-A structure of the IP(3)-binding core and comparisons with the pore structures of other tetrameric cation channels. The binding of IP(3) to a site towards the N-terminal of each IP(3)R subunit promotes binding of Ca(2+). This destabilizes an inhibitory interaction between N-terminal residues and a C-terminal 'gatekeeper' sequence, enabling the pore to open.  相似文献   

2.
The inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular calcium channel involved in coupling cell membrane receptors to calcium signal transduction pathways within cells including endocrine cells. Several isoforms (I, II, and III) of IP3Rs have been identified, which are encoded by separate genes, and are expressed in many tissues with differing patterns of cellular expression. We have generated specific affinity-purified polyclonal anti-peptide antibodies to each of the three isoforms. Western blot analysis of RINm5F and ATt20 cells shows high levels of endogenously expressed type I and type III IP3R, but undetectable levels of type II. Immunofluorescence studies revealed an endoplasmic reticulum-like pattern similar to BiP, an ER marker. In contrast with previous claims, both type I and type III IP3Rs were absent from the secretory granules of ATt20 cells. Western blots of sucrose gradients and gel filtration probed with antibodies to either type I or type III showed a molecular weight of greater than 1,000 kDa consistent with a tetrameric structure. Co-immunoprecipitation experiments indicated that most of the receptors were present as heterotetramers. Homotetramers were identified for the type III IP3R; however, type I homotetramers were undetectable. These data suggest that molecular association of IP3Rs into heterotetrameric forms can contribute to the complexity of the regulation of Ca2+ release from ER by IP3Rs within cells.  相似文献   

3.
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are ubiquitous intracellular Ca(2+) release channels whose functional characterization by transfection has proved difficult due to the background contribution of endogenous channels. In order to develop a functional assay to measure recombinant channels, we transiently transfected the rat type I IP(3)R into COS-7 cells. Saponin-permeabilized COS cells transfected with type I IP(3)R showed a 50% increase in inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release at saturating [IP(3)] (10 micrometer) but no enhancement at subsaturating [IP(3)] (300 nm). However, cotransfection of the IP(3)R and human sarco/endoplasmic reticulum ATPase (SERCA)-2b ATPase cDNA resulted in 60 and 110% increases in Ca(2+) release at subsaturating and saturating doses of IP(3), respectively. IP(3) or adenophostin A failed to release (45)Ca(2+) from microsomal vesicles prepared from cells expressing either type I IP(3)R or SERCA cDNAs alone. However, microsomal vesicles prepared from cells doubly transfected with IP(3)R and SERCA cDNAs released 33.0 +/- 0.04% of the A23187-sensitive pool within 30 s of 1 micrometer adenophostin A addition. Similarly, the initial rate of (45)Ca(2+) influx into oxalate-loaded microsomal vesicles was inhibited by IP(3) only when the microsomes were prepared from COS cells doubly transfected with SERCA-2b and IP(3)R DNA. The absence of a functional contribution from endogenous IP(3)Rs has enabled the use of this assay to measure the Ca(2+) sensitivities of IP(3)-mediated (45)Ca(2+) fluxes through recombinant neuronal type I (SII(+)), peripheral type I (SII(-)), and type III IP(3)Rs. All three channels displayed a biphasic dependence upon [Ca(2+)](cyt). Introduction of mutations D2550A and D2550N in the putative pore-forming region of the type I IP(3)R inhibited IP(3)-mediated (45)Ca(2+) fluxes, whereas the conservative substitution D2550E was without effect. This assay therefore provides a useful tool for studying the regulatory properties of individual IP(3)R isoforms as well as for screening pore mutations prior to more detailed electrophysiological analyses.  相似文献   

4.
The role of inositol 1,4,5-trisphosphate receptors (IP(3)R) in caspase-3 activation and cell death was investigated in DT40 chicken B-lymphocytes stably expressing various IP(3)R constructs. Both full-length type-I IP(3)R and a truncated construct corresponding to the caspase-3 cleaved "channel-only" fragment were able to support staurosporine (STS)-induced caspase-3 activation and cell death even when the IP(3)R construct harbored a mutation that inactivates the pore of the Ca(2+) channel (D2550A). However, a full-length wild-type IP(3)R did not promote caspase-3 activation when the 159-amino acid cytosol-exposed C-terminal tail was deleted. STS caused an increase in cytosolic free Ca(2+) in DT40 cells expressing wild-type or pore-dead IP(3)R mutants. However, in the latter case all the Ca(2+) increase originated from Ca(2+) entry across the plasma membrane. Caspase-3 activation of pore-dead DT40 cells was also more sensitive to extracellular Ca(2+) chelation when compared with wild-type cells. STS-mediated release of cytochrome c into the cytosol and mitochondrial membrane potential depolarization could also be observed in DT40 cells lacking IP(3)Rs or containing the pore-dead mutant. We conclude that nonfunctional IP(3)Rs can sustain apoptosis in DT40 lymphocytes, because they facilitate Ca(2+) entry mechanisms across the plasma membrane. Although the intrinsic ion-channel function of IP(3)Rs is dispensable for apoptosis induced by STS, the C-terminal tail of IP(3)Rs appears to be essential, possibly reflecting key protein-protein interactions with this domain.  相似文献   

5.
Intracellular inositol 1,4,5-trisphosphate receptors (IP(3)Rs) form tetrameric Ca2+-release channels that are crucial for Ca2+ signalling in many eukaryotic cells. IP(3)R subunits contain an N-terminal, cytoplasmic, ligand binding domain linked by a modulatory domain to a channel-forming, hydrophobic C-terminal domain. We assembled and sequenced cDNAs encoding the SI-/SII+/SIII+ splice variant of the human brain type I IP(3)R, and functionally expressed the full-length receptor, and a C-terminally truncated receptor lacking the final 20% of the protein, in mammalian and insect cells. Both proteins were insoluble, consistent with in vivo immunofluorescence and ligand binding studies. This contrasted with the behaviour of recombinant FIKBP12 (a soluble control protein). The truncated receptor also fractionated with the "membrane" pellet after alkaline carbonate treatment. We conclude that the human type I IP(3)R forms high MW aggregates or complexes in cells when expressed without the C-terminal hydrophobic domain. This behaviour should be considered when expressing and refolding "soluble" human type I IP(3)R domains for structural studies.  相似文献   

6.
Human neuroblastoma SH-SY5Y cells, predominantly expressing type 1 inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), were stably transfected with IP(3)R type 3 (IP(3)R3) cDNA. Immunocytochemistry experiments showed a homogeneous cytoplasmic distribution of type 3 IP(3)Rs in transfected and selected high expression cloned cells. Using confocal Ca(2+) imaging, carbachol (CCh)-induced Ca(2+) release signals were studied. Low CCh concentrations (< or = 750 nM) evoked baseline Ca(2+) oscillations. Transfected cells displayed a higher CCh responsiveness than control or cloned cells. Ca(2+) responses varied between fast, large Ca(2+) spikes and slow, small Ca(2+) humps, while in the clone only Ca(2+) humps were observed. Ca(2+) humps in the transfected cells were associated with a high expression level of IP(3)R3. At high CCh concentrations (10 microM) Ca(2+) transients in transfected and cloned cells were similar to those in control cells. In the clone exogenous IP(3)R3 lacked the C-terminal channel domain but IP(3)-binding capacity was preserved. Transfected cells mainly expressed intact type 3 IP(3)Rs but some protein degradation was also observed.We conclude that in transfected cells expression of functional type 3 IP(3)Rs causes an apparent higher affinity for IP(3). In the clone, the presence of degraded receptors leads to an efficient cellular IP(3) buffer and attenuated IP(3)-evoked Ca(2+) release.  相似文献   

7.
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.  相似文献   

8.
The inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are IP(3)-gated Ca(2+) channels on intracellular Ca(2+) stores. Herein, we report a novel protein, termed IRBIT (IP(3)R binding protein released with inositol 1,4,5-trisphosphate), which interacts with type 1 IP(3)R (IP(3)R1) and was released upon IP(3) binding to IP(3)R1. IRBIT was purified from a high salt extract of crude rat brain microsomes with IP(3) elution using an affinity column with the huge immobilized N-terminal cytoplasmic region of IP(3)R1 (residues 1-2217). IRBIT, consisting of 530 amino acids, has a domain homologous to S-adenosylhomocysteine hydrolase in the C-terminal and in the N-terminal, a 104 amino acid appendage containing multiple potential phosphorylation sites. In vitro binding experiments showed the N-terminal region of IRBIT to be essential for interaction, and the IRBIT binding region of IP(3)R1 was mapped to the IP(3) binding core. IP(3) dissociated IRBIT from IP(3)R1 with an EC(50) of approximately 0.5 microm, i.e. it was 50 times more potent than other inositol polyphosphates. Moreover, alkaline phosphatase treatment abolished the interaction, suggesting that the interaction was dualistically regulated by IP(3) and phosphorylation. Immunohistochemical studies and co-immunoprecipitation assays showed the relevance of the interaction in a physiological context. These results suggest that IRBIT is released from activated IP(3)R, raising the possibility that IRBIT acts as a signaling molecule downstream from IP(3)R.  相似文献   

9.
myo-Inositol 1,4,5-trisphosphate receptor (IP3R) degradation occurs in response to carbachol (Cch) stimulation of CHO-K1 cells. The response was mediated by endogenous muscarinic receptors and was blocked by atropine or proteasomal inhibitors. We have used these cells to identify the sites of ubiquitination on IP3Rs and study the role of Ca2+ and substrate recognition properties of the degradation system using exogenously expressed IP3R constructs. Employing caspase-3 for IP3R cleavage, we show that Cch promotes polyubiquitination in the N-terminal domain and monoubiquitination in the C-terminal domain. The addition of extracellular Ca2+ to Ca2+-depleted Chinese hamster ovary (CHO) cells initiates IP3R degradation provided Cch is present. This effect is inhibited by thapsigargin. The data suggest that both a sustained elevation of IP3 and a minimal content of Ca2+ in the endoplasmic reticulum lumen is required to initiate IP3R degradation. Transient transfection of IP3R constructs into CHO cells indicated the selective degradation of only the SI+ splice variant of the type I IP3R. This was also the splice form present endogenously in these cells. A pore-defective, nonfunctional SI+ IP3R mutant (D2550A) was also degraded in Cch-stimulated cells. The Cch-mediated response in CHO cells provides a convenient model system to further analyze the Ca2+ dependence and structural requirements of the IP3R proteasomal degradation pathway.  相似文献   

10.
To understand the molecular mechanism of ligand-induced gating of the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)/Ca(2+) release channel, we analyzed the channel properties of deletion mutants retaining both the IP(3)-binding and channel-forming domains of IP(3)R1. Using intrinsically IP(3)R-deficient cells as the host cells for receptor expression, we determined that six of the mutants, those lacking residues 1-223, 651-1130, 1267-2110, 1845-2042, 1845-2216, and 2610-2748, did not exhibit any measurable Ca(2+) release activity, whereas the mutants lacking residues 1131-1379 and 2736-2749 retained the activity. Limited trypsin digestion showed that not only the IP(3)-gated Ca(2+)-permeable mutants lacking residues 1131-1379 and 2736-2749, but also two nonfunctional mutants lacking residues 1-223 and 651-1130, retained the normal folding structure of at least the C-terminal channel-forming domain. These results indicate that two regions of IP(3)R1, viz. residues 1-223 and 651-1130, are critical for IP(3)-induced gating. We also identified a highly conserved cysteine residue at position 2613, which is located within the C-terminal tail, as being essential for channel opening. Based on these results, we propose a novel five-domain structure model in which both N-terminal and internal coupling domains transduce ligand-binding signals to the C-terminal tail, which acts as a gatekeeper that triggers opening of the activation gate of IP(3)R1 following IP(3) binding.  相似文献   

11.
COS-7 cells were transiently transfected with type I and type III myo-inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms to study the processes underlying assembly and oligomerization of these tetrameric proteins. A FLAG epitope was engineered on to the N terminus of the type III IP(3)R to distinguish the transfected from the endogenous isoform. This was not necessary for the type I IP(3)R, since the endogenous levels of this isoform were extremely low. Based on sucrose gradient analysis, the transfected type I or FLAG-type III IP(3)Rs assembled into tetramers. Confocal immunofluorescence experiments confirmed that the constructs were primarily targeted to the endoplasmic reticulum. Recombinant type I IP(3)R expressed in COS cells over a 48-h period showed a negligible capacity to form hetero-oligomers with endogenous type III IP(3)Rs, based upon co-immunoprecipitation assays. However, substantial formation of hetero-oligomers was observed between recombinant receptors when the cells were simultaneously transfected with type I and FLAG-type III IP(3)Rs. Co-immunoprecipitation experiments using lysates from metabolically labeled cells allowed the quantitation of homo- and hetero-oligomers in cells transfected with different ratios of type I and FLAG-type III IP(3)R DNA. These studies show that the relative expression level of the two isoforms influences the fraction of hetero-oligomers formed. However, the proportion of hetero-oligomers formed were less than predicted by a binomial model in which the association of subunits is assumed to be random. In doubly transfected cells, the early kinetics of (35)S label incorporation into homotetramers showed a lag period corresponding to the time taken to synthesize a full-length receptor. However, hetero-oligomers were synthesized with a longer lag period, suggesting that there may be kinetic constraints that favor homo-oligomers over hetero-oligomers.  相似文献   

12.
We tested the hypothesis that part of the lumenal amino acid segment between the two most C-terminal membrane segments of the skeletal muscle ryanodine receptor (RyR1) is important for channel activity and conductance. Eleven mutants were generated and expressed in HEK293 cells focusing on amino acid residue I4897 homologous to the selectivity filter of K(+) channels and six other residues in the M3-M4 lumenal loop. Mutations of amino acids not absolutely conserved in RyRs and IP(3)Rs (D4903A and D4907A) showed cellular Ca(2+) release in response to caffeine, Ca(2+)-dependent [(3)H]ryanodine binding, and single-channel K(+) and Ca(2+) conductances not significantly different from wild-type RyR1. Mutants with an I4897 to A, L, or V or D4917 to A substitution showed a decreased single-channel conductance, loss of high-affinity [(3)H]ryanodine binding and regulation by Ca(2+), and an altered caffeine-induced Ca(2+) release in intact cells. Mutant channels with amino acid residue substitutions that are identical in the RyR and IP(3)R families (D4899A, D4899R, and R4913E) exhibited a decreased K(+) conductance and showed a loss of high-affinity [(3)H]ryanodine binding and loss of single-channel pharmacology but maintained their response to caffeine in a cellular assay. Two mutations (G4894A and D4899N) were able to maintain pharmacological regulation both in intact cells and in vitro but had lower single-channel K(+) and Ca(2+) conductances than the wild-type channel. The results support the hypothesis that amino acid residues in the lumenal loop region between the two most C-terminal membrane segments constitute a part of the ion-conducting pore of RyR1.  相似文献   

13.
Inositol (1,4,5)-trisphosphate receptors (IP(3)Rs) release intracellular Ca(2+) as localized Ca(2+) signals (Ca(2+) puffs) that represent the activity of small numbers of clustered IP(3)Rs spaced throughout the endoplasmic reticulum. Although much emphasis has been placed on estimating the number of active Ca(2+) release channels supporting Ca(2+) puffs, less attention has been placed on understanding the role of cluster microarchitecture. This is important as recent data underscores the dynamic nature of IP(3)R transitions between heterogeneous cellular architectures and the differential behavior of IP(3)Rs socialized into clusters. Here, we applied a high-resolution model incorporating stochastically gating IP(3)Rs within a three-dimensional cytoplasmic space to demonstrate: 1), Ca(2+) puffs are supported by a broad range of clustered IP(3)R microarchitectures; 2), cluster ultrastructure shapes Ca(2+) puff characteristics; and 3), loosely corralled IP(3)R clusters (>200 nm interchannel separation) fail to coordinate Ca(2+) puffs, owing to inefficient triggering and impaired coupling due to reduced Ca(2+)-induced Ca(2+) release microwave velocity (<10 nm/s) throughout the channel array. Dynamic microarchitectural considerations may therefore influence Ca(2+) puff occurrence/properties in intact cells, contrasting with a more minimal role for channel number over the same simulated conditions in shaping local Ca(2+) dynamics.  相似文献   

14.
The IP3R [IP3 (inositol 1,4,5-trisphosphate) receptor] is responsible for Ca2+ release from the ER (endoplasmic reticulum). We have been working extensively on the P400 protein, which is deficient in Purkinje-neuron-degenerating mutant mice. We have discovered that P400 is an IP3R and we have determined the primary sequence. Purified IP3R, when incorporated into a lipid bilayer, works as a Ca2+ release channel and overexpression of IP3R shows enhanced IP3 binding and channel activity. Addition of an antibody blocks Ca2+ oscillations indicating that IP3R1 works as a Ca2+ oscillator. Studies on the role of IP3R during development show that IP3R is involved in fertilization and is essential for determination of dorso-ventral axis formation. We found that IP3R is involved in neuronal plasticity. A double homozygous mutant of IP3R2 (IP3R type 2) and IP3R3 (IP3R type 3) shows a deficit of saliva secretion and gastric juice secretion suggesting that IP3Rs are essential for exocrine secretion. IP3R has various unique properties: cryo-EM (electron microscopy) studies show that IP3R contains multiple cavities; IP3R allosterically and dynamically changes its form reversibly (square form-windmill form); IP3R is functional even though it is fragmented by proteases into several pieces; the ER forms a meshwork but also forms vesicular ER and moves along microtubules using a kinesin motor; X ray analysis of the crystal structure of the IP3 binding core consists of an N-terminal beta-trefoil domain and a C-terminal alpha-helical domain. We have discovered ERp44 as a redox sensor in the ER which binds to the luminal part of IP3R1 and regulates its activity. We have also found the role of IP3 is not only to release Ca2+ but also to release IRBIT which binds to the IP3 binding core of IP3R.  相似文献   

15.
We tested the hypothesis that key residues in a putative intraluminal loop contribute to determination of ion permeation through the intracellular Ca(2+) release channel (inositol 1,4,5-trisphosphate receptors (IP(3)Rs)) that is gated by the second messenger inositol 1,4,5-trisphosphate (IP(3)). To accomplish this, we mutated residues within the putative pore forming region of the channel and analyzed the functional properties of mutant channels using a (45)Ca(2+) flux assay and single channel electrophysiological analyses. Two IP(3)R mutations, V2548I and D2550E, retained the ability to release (45)Ca(2+) in response to IP(3). When analyzed at the single channel level; both recombinant channels had IP(3)-dependent open probabilities similar to those observed in wild-type channels. The mutation V2548I resulted in channels that exhibited a larger K(+) conductance (489 +/- 13 picosiemens (pS) for V2548I versus 364 +/- 5 pS for wild-type), but retained a Ca(2+) selectivity similar to wild-type channels (P(Ca(2+)):P(K(+)) approximately 4:1). Conversely, D2550E channels were nonselective for Ca(2+) over K(+) (P(Ca(2+)):P(K(+)) approximately 0.6:1), while the K(+) conductance was effectively unchanged (391 +/- 4 pS). These results suggest that amino acid residues Val(2548) and Asp(2550) contribute to the ion conduction pathway. We propose that the pore of IP(3)R channels has two distinct sites that control monovalent cation permeation (Val(2548)) and Ca(2+) selectivity (Asp(2550)).  相似文献   

16.
Homologues of Drosophila Trp (transient receptor potential) form plasma membrane channels that mediate Ca(2+) entry following the activation of phospholipase C by cell surface receptors. Among the seven Trp homologous found in mammals, Trp3 has been shown to interact with and respond to IP(3) receptors (IP(3)Rs) for activation. Here we show that Trp4 and other Trp proteins also interact with IP(3)Rs. The IP(3)R-binding domain also interacts with calmodulin (CaM) in a Ca(2+)-dependent manner with affinities ranging from 10 nm for Trp2 to 290 nm for Trp6. In addition, other binding sites for CaM and IP(3)Rs are present in the alpha but not the beta isoform of Trp4. In the presence of Ca(2+), the Trp-IP(3)R interaction is inhibited by CaM. However, a synthetic peptide representing a Trp-binding domain of IP(3)Rs inhibited the binding of CaM to Trp3, -6, and -7 more effectively than that to Trp1, -2, -4, and -5. In inside-out membrane patches, Trp4 is activated strongly by calmidazolium, an antagonist of CaM, and a high (50 microm) but not a low (5 microm) concentration of the Trp-binding peptide of the IP(3)R. Our data support the view that both CaM and IP(3)Rs play important roles in controlling the gating of Trp-based channels. However, the sensitivity and responses to CaM and IP(3)Rs differ for each Trp.  相似文献   

17.
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are intracellular channel proteins that mediate Ca(2+) release from the endoplasmic reticulum (ER) and are involved in many biological processes and diseases. IP(3)Rs are differentially regulated by a variety of cytosolic proteins, but their regulation by ER lumenal protein(s) remains largely unexplored. In this study, we found that ERp44, an ER lumenal protein of the thioredoxin family, directly interacts with the third lumenal loop of IP(3)R type 1 (IP(3)R1) and that the interaction is dependent on pH, Ca(2+) concentration, and redox state: the presence of free cysteine residues in the loop is required. Ca(2+)-imaging experiments and single-channel recording of IP(3)R1 activity with a planar lipid bilayer system demonstrated that IP(3)R1 is directly inhibited by ERp44. Thus, ERp44 senses the environment in the ER lumen and modulates IP(3)R1 activity accordingly, which should in turn contribute to regulating both intralumenal conditions and the complex patterns of cytosolic Ca(2+) concentrations.  相似文献   

18.
Aortic endothelial cells (GM7372A) express a major cell adhesion molecule, CD44v10, which binds the extracellular matrix component, hyaluronan (HA), at its external domain and interacts with various signaling molecules at its cytoplasmic domain. In this study, we have determined that CD44v10 and Rho-Kinase (ROK) are physically associated as a complex in vivo. Using a recombinant fragment of ROK (in particular, the pleckstrin homology [PH] domain) and in vitro binding assays, we have detected a specific binding interaction between the PH domain of ROK and the cytoplasmic domain of CD44. Scatchard plot analysis indicates that there is a single high-affinity CD44 binding site in the PH domain of ROK with an apparent dissociation constant (Kd) of 1.76 nM, which is comparable to CD44 binding (Kd approximately 1.56 nM) to intact ROK. These findings suggest that the PH domain is the primary ROK binding region for CD44. Furthermore, HA binding to GM7372A cells promotes RhoA-mediated ROK activity, which, in turn, increases phosphorylation of three different inositol 1, 4, 5-trisphosphate receptors (IP(3)Rs) [in particular, subtype 1 (IP(3)R1), and to a lesser extent subtype 2 (IP(3)R2) and subtype 3 (IP(3)R3)] all known as IP(3)-gated Ca(2+) channels. The phosphorylated IP(3)R1 (but not IP(3)R2 or IP(3)R3) is enhanced in its binding to IP(3) which subsequently stimulates IP(3)-mediated Ca(2+) flux. Transfection of the endothelial cells with ROK's PH cDNA significantly reduces ROK association with CD44v10, and effectively inhibits ROK-mediated phosphorylation of IP(3)Rs and IP(3)R-mediated Ca(2+) flux in vitro. The PH domain of ROK also functions as a dominant-negative mutant in vivo to block HA-dependent, CD44v10-specific intracellular Ca(2+) mobilization and endothelial cell migration. Taken together, we believe that CD44v10 interaction with ROK plays a pivotal role in IP(3)R-mediated Ca(2+) signaling during HA-mediated endothelial cell migration.  相似文献   

19.
Proliferation of smooth muscle cells (SMC) has a role in the development of cardiovascular diseases. We investigated the alteration of contractile signals in proliferating SMC by measuring the increase in intracellular [Ca(2+)] to endothelin-1 (ET-1), noradrenaline (NA), or angiotensin II (AgII). We found that the increase in intracellular [Ca(2+)] by NA or ET-1 decreased in proliferating SMC in comparison to growth-arrested SMC. The increase in intracellular [Ca(2+)] by AgII was stable between the cells. Immunoblotting of inositol 1,4,5-trisphosphate receptors (IP(3)Rs) which are responsible for the mobilization of Ca(2+) by those vasoactive substances revealed that expression of IP(3)R type 1 and type 2 was decreased. Expression of IP(3)R type 3 was increased. The altered Ca(2+) signaling by the cell growth might involve the expression of IP(3)R subtypes.  相似文献   

20.
Mikoshiba K 《Cell calcium》2011,49(5):331-340
IP? receptor is a Ca(2+) release channel localized on the endoplasmic reticulum. IP(3) receptor is composed of three isoforms, which are expressed in various cells and tissues, and play variety of roles throughout development. I here describe the role of IP? receptor from oogenesis, meiotic maturation and fertilization. I also describe the Ca(2+) signaling at meiosis and mitosis, and especially the role in early embryogenesis to determine dorso-ventral axis formation. Loss of function mutation of type 1 IP? receptor in mouse, both by gene targeting and spontaneous mutations shows severe ataxia and other phenotypes. Interestingly, double knockouts of type 1 and type 2 exhibit cardiogenesis arrest and that of type 2 and type 3 results in exocrine secretion deficit. IP?R of Drosophila or Caenorhabditis elegans is single gene and mutation results severe phenotype of behavior. All the data described here show that IP?Rs are essential for life and abnormality of IP(3)Rs results in severe abnormality in its structure and function of organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号