首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 958 毫秒
1.
The interaction between poly (I) and poly (C) in acid medium has been studied by potentiometric titration, mixing curves and thermal denaturation. Phase diagramms as a function of ionic strength, pH, and temperature have been established. From these data it is shown that the acid titration of the complex poly (I) · poly (C) passes through a triple-stranded intermediate poly (I) · poly (C) · poly (C+) to yield finally the protonated double-helical complex poly (I) · poly (C+). The mixing curves indicate the sole presence of the three-stranded complex in the intermediate zone. On the basis of the pK's the coexistence between the three-stranded complex with the neighboring double-stranded structure is demonstrated in a narrow rang of pH and ionic strength. The geometry of the base arrangements, their conformation and the sense of the strands are discussed in the light of the data presented. A Hoogsteen-type pairing between the bases for poly (I) · poly (C+) is favored, although the reverse Hoogsteen pair cannot be excluded.  相似文献   

2.
H Slegers  W Fiers 《Biopolymers》1973,12(9):2023-2031
When MS2 RNA is heated at low pH in the presence of formaldehyde, a fast-sedimenting conformation is irreversibly formed. This species is homogeneous and stable at neutral pH. Its formation further requires Mg++ ions and low ionic strength. The most compact form sediments at 46S and is obtained after short reaction times at high temperature or after long reaction times at 35°C. Melting curves suggest that the specific acid conformation is not destabilized by the formaldehyde addition reaction. The pH at which this acid conformation is formed depends on the MgC12 concentration. At 10?2M MgCl2 the midpoint is pH 5.3. Removal of more than half of the bound formaldehyde has no effect on the compactness of the molecule, although most of the original secondary structure has not yet re-formed.  相似文献   

3.
M M Warshaw  R Noe 《Biopolymers》1972,11(6):1269-1287
The optical rotatory dispersion properties of poly 5MeC, poly diMeC, and 5MeCMP-(5′) in 0.1M Na+ have been studied at various pH values and temperatures. Poly 5MeC and poly diMeC have optical properties which are similar to those for poly C; however, poly 5MeC has a biphasic melting profile in the pH range from 3.8 to 5.4 similar to that observed for poly 51C. Using titration, ionic strength, and pH dependence measuements, the data for poly 5MeC are interpreted in terms of the following scheme at pH 4.0 and 0.1 ionic strength: triple-strand helix 37°C double-strand helix 79°C single-strand coil. Support for this scheme is discussed. The effect of the methyl group is discussed in terms of similar structural possibilities for other polymers of cytidylic acid.  相似文献   

4.
The interaction between poly (G) and poly (C) was investigated in neutral and acid medium by optical methods. Three main points arise from this investigation. (1) The formation of poly (G)·poly (C) was complete only above an ionic strength of about 0.6M [Na+]. Lowering the ionic strength increased the amounts of free poly (G) and free poly (C) that could be detected. (2) When titrating towards acid pH values a transition took place which was characterized by potentiometry, mixing curves, and circular dichroism: a three-stranded poly (G)·poly (C)·poly (C+) complex was formed analogous to the transition observed for the acid titration of poly (I)·poly (C). (3) Even when the poly (G)·poly (C) complex was incompletely formed (at low ionic strength) in neutral medium all poly (C) entered the triple-stranded complex.  相似文献   

5.
Poly(rI) stabilized by either Na+ or K+ was investigated using uv resonance Raman (UVRR) spectroscopy. Raman excitation profiles of inosine 5′-monophosphate demonstrated the 250 nm excitation selectively enhances base stacking interactions, while ribose and carbonyl stretching vibrations are preferentially enhanced with 210 nm excitation. These wavelengths were used to examine the structure of poly(rI) in the presence of either K+ or Na+ as a function of temperature. UVRR studies revealed that the K+ stabilized form is more thermally stable, yielding a Tm of ∼ 47°C compared to a Tm of ∼ 30°C for the Na+ stabilized form. We observed that both the ribosyl conformation and the coordination of the carbonyl groups depend on the nature of the cation. The C6O stretching frequency indicates that Na+ coordinates much more strongly to the carbonyl groups than K+ (1672 cm−1 Na+ vs 1684 cm−1 K+ at 4°C). Conformationally sensitive modes of the phosphate backbone and the ribosyl ring indicate that Na+ stabilized poly(rI) predominantly exists in a C3′-endo ribose conformation, whereas K+ stabilized poly(rI) adopts a C2′-endo conformation possibly as a consequence of the larger ionic radius of the K+ ion. © 1998 John Wiley & Sons, Inc. Biopoly 46: 475–487, 1998  相似文献   

6.
H Slegers  W Fiers 《Biopolymers》1970,9(11):1373-1389
Reaction of 27 SMS2 RNA with formaldehyde normally results in an unfolded, 13.4 S form. At acidic pH, however, and under the proper ionic conditions, a compact component sedimenting at 36–40 S was obtained. The molecular weight of this species corresponds to a dinner. The formaldehyde concentration was not critical, and approximately the same number of base pairs had been opened in the compact and in the unfolded form. Presumably dimers, which had been specifically formed under defined conditions, were stabilized by formaldehyde-induced crosslinks. Similar dimers were formed by 16 S and by 23 S ribosomal RNA, but not by tRNA.  相似文献   

7.
A new method of isolating nuclei and chromosomes of salivary gland cells is described. — The influence of ionic strength and pH of the medium on the state of decondensation of chromosomal bands is studied. In the isolation medium (a modified Ringer solution), all the bands are in a condensed state; as the ionic strength is increased the bands decondense. This reaction of the bands to increasing ionic strength is dependent on the pH which determines: 1) the range of ionic strengths which causes decondensation of the bands; i.e., the lower the pH, the higher the ionic strength is required for decondensation (at pH 7.3, 150–350 mM NaCl, at pH 4.3, 500–800 mM NaCl), and 2) the extent of structural changes caused by increasing ionic strength; that is, at neutral pH the bands become diffuse (“fading”) and at moderate acidic pH (optimum 4.3) the bands unravel to yield pufflike structures (“swelling”). — All ion species tested induce decondensation of bands, but each one is effective differently; specifically, Mg+ is more effective than Na+ and K+, and ClO4 ? is more effective than Cl?. — “Swelling” as induced at pH 4.3 by high ionic strength cannot be reversed by a mere lowering of ionic strength (to 150 mM NaCl) and a subsequent raise of pH (to 7.5); it can be reversed only by an addition of histones. The various histone fractions act differently on the recondensation process. — “Swelling” is correlated with an increase in template activity as evidenced by an increased incorporation of 3H-UTP, measured in the presence of ATP, CTP, GTP and exogeneous RNA polymerase. — The individual bands differ in their sensitivity to an increasing ionic strength. This differential sensitivity expresses itself only if one of the following conditions is met: 1) a moderately acidic pH (optimum 4.3) or 2) the presence of divalent cations at neutral pH. — In a few bands the sensitivity to an increasing ionic strength is dependent on the ionic species (Na+, K+, Mg++ and Ca++). — It is attempted to explain the above reactions on the basis of the physico-chemical properties of chromosomes.  相似文献   

8.
Using the presence of poly(A) tracts as a marker for mRNA, we have examined the distribution of this class of RNA between polysomes and free RNP particles. This has been done in mature oocytes and in embryos aged for various times from fertilization through to hatching of a larva. The proportion of ribosomes that are in polysomes to those that are not has been calculated. In mature oocytes, 58% of the poly(A)+ RNA and 72% of the ribosomes are not in polysomes. By 1 hr, this drops to 51% of the poly(A)+ RNA and 48% of the ribosomes. By 7 hr, a plateau is reached: 30% of each are not in polysomes. The poly(A)+ RNA in the cytoplasm of oocytes and 1-hr embryos is found in particles with an average size of 50S and a range of 30–70S. The poly(A)+ RNA ranges in size from 7 to 40S, with an average size of 22S. The polyA from this RNA is 50–200 nucleotides long with an average of 115 nucleotides. These data have allowed us to calculate that 1–2% of the total RNA is poly(A)+ RNA.  相似文献   

9.
Different conformations have been identified for the enzyme valyl-tRNA synthetase from yeast inside its complex with one tRNA molecule by neutron scattering. One form is identical to that of the free enzyme in solution; the other form is more contracted, having a radius of gyration which is smaller by 10% and a specific volume which is smaller by 1%. The contracted conformation has been found for the complexes with tRNAVal and tRNAAsp in phosphate buffer (pH 6.3) provided the ionic strength is lower than about 150 mm. In higher ionic strength (up to about 500 mm) the enzyme still forms a complex with tRNAVal but its conformation remains that of the free protein in solution. In the complex with tRNA3Leu, the enzyme conformation is that of the free state even at the lowest ionic strength examined (that of the phosphate buffer, 60 mm). The free enzyme is an elongated molecule of radius of gyration 40 Å (a compact protein of the same molecular weight would have a radius of gyration of 30 Å).The positioning within the complex of tRNAVal, on the one hand, and tRNA3Leu, on the other, is very different. The first tRNA is intimately associated with the enzyme, lying predominantly closer to the centre of mass of the complex than the protein. In the complex with tRNA3Leu, the tRNA lies further away from the centre of mass of the complex than the protein.Small concentrations of tRNAVal, tRNAAsp, tRNA3Leu or Escherichia coli 5 S ribosomal RNA cause the enzyme to aggregate into dimers, trimers and higher aggregates provided the ionic strength of the buffer is below 150 mm. In higher ionic strength or for [RNA]: [enzyme] > 1 the aggregates are dissociated to yield the one-to-one RNA-enzyme complex.  相似文献   

10.
When paramecia grown at 24°C are transferred rapidly to 32°C, DNA and protein synthesis continue uninterrupted but at higher rates. Electron microscopic observations indicate that more of the macronuclear chromatin is transcribed at the elevated temperature. This interpretation is supported by hybridization experiments which show that the percentage of the macronuclear genome transcribed into poly(A)+ RNA is 24°C and 35% at 32°C. Kinetic analysis of cDNA-poly(A)+ RNA hybridizations reveals three abundance classes of poly(A)+ RNA and indicates that the number of genes expressing low abundance sequences is about 9000 at 24°C and 13000 at 32°C. The intermediately abundant and highly abundant classes are represented by 100–200 and 1–3 different kinds of RNA sequence, respectively. Cross hybridization shows that changes occur throughout the distribution of abundance classes of poly(A)+ RNA with increase in temperature.  相似文献   

11.
Polyadenylated-RNA (Poly(A)+RNA) levels have been studied during the germination of wheat embryos of high viability but differing vigour. In high-vigour embryos imbibed at 20°C the level of poly(A)+RNA falls dramatically over the first hour of imbibition, then remains constant up to 3 h of imbibition before increasing rapidly to a level similar to that found in the quiescent state by 7 h of imbibition. Median-vigour embryos imbibed at 20°C show similar changes in poly(A)+RNA content but the initial decrease and subsequent increase in poly(A)+RNA levels are less marked. On imbibition at 10°C, the poly(A)+RNA content in high-vigour embryos decreases to a lesser extent during the first hour than at 20°C and the level increases more slowly over the next 6 h than during the same time period at 20°C. The level of poly(A)+RNA in medianvigour embryos remains constant over the first 4 h of germination and then falls to a level of about half that found in quiescent high-vigour embryos. Polyacrylamide gel electrophoresis of total-RNA samples shows that the polyadenylic acid (poly(A)) sequences occur in RNA species ranging in size from 35-7S. Polyacrylamide gel electrophoresis of isolated poly(A) sequences demonstrates the presence of two size classes of poly(A) in quiescent embryos, but at 20°C a more heterodisperse pattern appears by 2 h of imbibition. At 10°C, two size classes of poly(A) persist throughout the period studied in both high- and median-vigour embryos, although in median-vigour embryos the ratio of larger: smaller poly(A)-tail sizes decreases more rapidly than in high-vigour embryos.Abbreviations Poly(A) polyadenylic acid - poly(U) polyuridylic acid - poly(A)+RNA polyadenylated RNA  相似文献   

12.
The interaction of purine with DNA, tRNA, poly A, poly C, and poly A. poly U complex was investigated. In the presence of purine, the nucleic acids in coil form (such as denatured DNA, poly A and poly C in neutral solutions, or tRNA) have lower optical rotations. In addition, hydrodynamic studies indicate that in purine solutions the denatured DNA has a higher viscosity and a decreased sedimentation coefficient. These findings indicate that through interaction with purine, the bases along the poly-nucleotide chain are unstacked and are separated farther from each other, resulting in increased assymmetry (and possibly volume) of the whole polymer. Thus, the de-naturation effect of purine reported previously can be explained by this preferential interaction of purine with the bases of nucleic acids in coil form through a hydrophobic-costacking mechanism. Results from studies on optical rotation and helix-coil transition show that the interaction of purine is greater with poly A than with poly C. The influence of temperature, Mg++ concentration, ionic strength, and purine concentration on the effect of purine on nucleic acid conformation has also been investigated. In all these situations the unraveling of nucleic acid conformation occurs at much lower temperatures (20–40°C lower) in the presence of purine (0.2–0.6M).  相似文献   

13.
We elucidate the mechanisms that lead to population shifts in the conformational states of calcium-loaded calmodulin (Ca2+-CaM). We design extensive molecular dynamics simulations to classify the effects that are responsible for adopting occupied conformations available in the ensemble of NMR structures. Electrostatic interactions amongst the different regions of the protein and with its vicinal water are herein mediated by lowering the ionic strength or the pH. Amino acid E31, which is one of the few charged residues whose ionization state is highly sensitive to pH differences in the physiological range, proves to be distinctive in its control of population shifts. E31A mutation at low ionic strength results in a distinct change from an extended to a compact Ca2+-CaM conformation within tens of nanoseconds, that otherwise occur on the time scales of microseconds. The kinked linker found in this particular compact form is observed in many of the target-bound forms of Ca2+-CaM, increasing the binding affinity. This mutation is unique in controlling C-lobe dynamics by affecting the fluctuations between the EF-hand motif helices. We also monitor the effect of the ionic strength on the conformational multiplicity of Ca2+-CaM. By lowering the ionic strength, the tendency of nonspecific anions in water to accumulate near the protein surface increases, especially in the vicinity of the linker. The change in the distribution of ions in the vicinal layer of water allows N- and C- lobes to span a wide variety of relative orientations that are otherwise not observed at physiological ionic strength. E31 protonation restores the conformations associated with physiological environmental conditions even at low ionic strength.  相似文献   

14.
Sugar beet leaf homogenate contains Mg2+-stimulated ATPase activity with the highest specific activity in the 25,000–30,000 ×g-fraction. This fraction also has (Na++ K+)-activated ATPase activity. Both activities have two pH optima, one stable at pH 7.9 and one variable at lower pH. When optimal conditions of Na+ and K+ were tested with 64 combinations of these ions, at least two mountains of activity were revealed. The (Na++ K+)-ATPase had a high specificity for ATP. It had lost about 50% of its original activity after 56 days of storage at ?85°C. The activity drop was most pronounced at high ionic concentrations in the test medium. The (Na++ K+)-ATPase shows four peaks of activity when tested at constant ionic strength. The idea is put forward that the four peaks reflect two ATPases, one in the tonoplast and one in the plasmalemma, which undergo conformational changes in relation to the ionic milieu.  相似文献   

15.
Three series of model peptides containing histidine have been examined by 1H-n.m.r. and c.d. spectroscopy: X-His peptides with X = Gly, Ala, Leu; His-X peptides with X = Gly, Ala, Leu, Ser, Lys, Phe, Tyr; and Pro-His-X peptides with X = Gly; Ala; Leu; Val; Phe; Tyr, C.d. spectra were obtained for pH values between 1 and 11 to give titration curves [θ] vs. pH; 1H-n.m.r. spectra were recorded at four selected pH values corresponding to defined ionic species. 1H-n.m.r. spectra in Me2SO of the NH3+, Imid+, COO? ionic state (pH 4.5) were also obtained. The histidine side chain conformation in the various peptides and the changing ionic states is reflected in the 3Jαβ,β coupling constants, the Δδ ββ′ anisochrony values and the c.d. histidine chromophore contribution at 215 nm, and qualitative and semiquantitative correlations can be established between these parameters. Whereas the histidine side chain conformation is quite different in each of the three series, and varies with the ionic state and environment, it is practically identical for each peptide within a series: the nature of the X-residue does not exert any influence on the histidine side chain conformational behaviour. Thus, the classical rotamer distribution R I > R II > R III which is due to steric factors is usually observed unless specific intramolecular interactions such as hydrogen or ionic bonds override these.  相似文献   

16.
Absorbance measurements performed with high molecular weight poly A at pH 8 show that the degree of single strand stacking present at high ionic strength is reduced at low ionic strengths. The salt dependence of the poly A conformation is assigned to an electrostatic repulsion between subsequent turns of the single strand “helix” structure. - Electric fields of 5 to 80 kV/cm induce an increase in the poly A absorbance consistent with a decrease in the ion concentration in the environment of the polymer. The increase of the absorbance is a linear function of the field strength suggesting that the conformation change is caused by a dissociation field effect. At increasing ionic strength, threshold values of the electric field strength have to be exceeded in order to induce measurable absorbance changes. - The time required for the conformation change decreases from about 2 μsec at 10−4 M ionic strength to about 0.3 μsec at high ionic strengths. At low ionic strengths the ion equilibration may influence the rate limiting step, whereas the arrangement of the nucleotide residues into the ordered structure is rate limiting at high ionic strengths.  相似文献   

17.
Cytoplasmic extracts of mouse Taper ascites cells were centrifuged on sucrose gradients to give 0–80 S, monosome, and polysome fractions. CsCl equilibrium density centrifugation of formaldehyde-fixed material from the 0–80 S fraction demonstrated that the messenger RNA in the 0–80 S fraction was in the form of free ribonucleoprotein. The size of the poly(A+)RNA and the size of the poly(A) segments of these molecules were shown to be very similar in both the free mRNP2 and polysome fractions. The labeling kinetics of the free mRNP poly(A+)RNA was similar to that of the polysomal poly(A+)RNA.The free mRNP poly(A+)RNA efficiently stimulated protein synthesis in the wheat germ cell-free system, supporting the view that it was mRNA. Two-dimensional gel electrophoresis was used to analyze the proteins whose synthesis was directed by free mRNP and polysomal poly(A+)RNA. The free mRNP poly(A+)RNA directed the synthesis of a simpler set of abundant protein products than did the polysomal poly(A+)RNA. Most of the free mRNP abundant protein products were also present in the polysomal products, though obvious quantitative differences were evident, indicating that each individual mRNA had its own characteristic distribution between polysomes and the translationally inactive RNP form.  相似文献   

18.
A simple and effective method has been developed to purify the recombinant protein tyrosine kinase pp60c-src from a baculovirus-insect cell expression system. The procedure includes affinity chromatography and HPLC. Milligram quantities of protein have been isolated with an activity of 3.9 μmol/min/mg protein using the substrate poly E4Y. This specific activity is many times higher than any published protocol. The enzyme is stable for months when stored in buffered 10% glycerol at ?70°C. This purification technique is compared to the immuno-affinity technique which is widely used for this enzyme. Enzyme kinetics were characterized with respect to substrate specificity, the effect of temperature, ionic strength, pH, and Mg+2 versus Mn+2 ions. Similar to the enzyme expressed in human cells, the recombinant enzyme demonstrated a higher Vmax and substrate specificity for poly E4Y over 5V-Agt-II. An activation energy of 14.2 kcal/mol was determined. Inhibition by increasing ionic strength is mostly due to an increase in Km for the poly E4Y substrate and hence was substrate dependent. The Km(ATP) was pH dependent while the Km(poly E4Y) was pH independent.  相似文献   

19.
Poly(A)+RNA is synthesized during the first hours of pollen germination and is rapidly incorporated into polysomal structures. After a 2-h pulse with uracil-14C, 42% of the transcribed fraction of polysomal RNA is polyadenylated. Following 4 h of germination the amount of the newly-made poly(A)+RNA decreases steadily at the rate of about 14% per h, whereas that of rapidly-labelled poly(A)RNA continues to grow. Beginning 1 h of cultivation the ratio of poly(A)/poly(A)+RNA increases exponentially. Similarly as in non-polyadenylated mRNA the main portion of the synthesized polysomal poly(A)+RNA sediments at a rate of 4 to 14 S and its mean size decreases slightly with the time of labelling. RNA isolated from nuclei and cell wall containing pollen tube fraction differed from the polysomal one in higher apeoific radioactivity and the polyadenylated RNA exhibited higher size distribution. The comparison of the results with earlier observations suggests the involvement of poly(A)in mRNA translation in pollen tubes.  相似文献   

20.
A series of 2′-fluorinated adenosine compounds, dAfl, dAflp, pdAfl, dAfl-A, A-dAfl, and dAfl-dAfl, have been investigated by nmr spectroscopies. The 1H-, 19F-, and 31P-nmr data provide structural information from different parts of these moleucles. The pKa of the phosphate group of these two 2′-fluoro-2′-deoxyadenosine monophosphates was found to be the same as that of hte parent adenosine monophosphate. As for the pentose conformation, the 3E population is greatly increased as a result of the fluorine substitution at the C2′ position. However, the populations of conformers of gg (C4′-C5′) and g′g′ (C5′-O5′) and the average angle ?′(C3′-O3′) of the 2′-fluoro compounds remain unchanged as compared to the natural riboadenosine monomer and dimer (A-A). Thefefore, the backbone conformation of the 2′-fluoro-2′-deoxy-adenosine, its monophosphates and dimers, resembles that of RNA. The extent of base-base overlapping in these 2′-fluoro-2′-deoxy-adenosine-containing dimers is also found to be similar to or even greater than A-A. Thus, the conformations of these compounds can be considered as those in the RNA family. These fluorocompounds also serve as models for a careful study on the 19F-nmr in nucleic acid. The 19F chemical-shift values are sensitive to the environment of the fluorine atom such as ionic structure of the neighboring group(s) (phosphate of base), solvation, and ring-ruccent anisotropic effect from the base(s). Qualitatively, the change of the 19F chemical-shift values (up to 2 ppm) is much larger than that of 1H-nmr (up to 0.5 ppm) in the dimers. Using dAfl·poly(U), poly(dAfl)·poly(dAfl), and poly(dAfl)·poly(U) helix–coil transition as model systems, the linewidth of 19F in dAfl- residues reflects effectively the mobility of the unit in the nucleic acid complex as calibrated by uv data and by 1H-nmr. Therefore, application of 19F-nmr spectroscopy on fluorine-substituted nucleic acid can also be used to detect nucleic acid-nucleic acid interaction in complicated systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号