首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Early Permian mesosaurids are the oldest known aquatic amniotes with an exclusively Gondwanan distribution. Although several hundred of complete skeletons have been discovered and intensively studied, the anatomy and taxonomic composition of the group, as well as its phylogenetic relationships remain controversial. Several well-preserved mesosaurid specimens found in Uruguay justify a new anatomical reconstruction of the skull of Mesosaurus tenuidens, differing from earlier ones especially in the presence of a lower temporal fenestra. The significance of this structure for the evolution of temporal fenestration in amniotes is evaluated according to the two most recent phylogenetic hypotheses, in which mesosaurids are basalmost sauropsids or basalmost parareptiles. A synapsid-like fenestration may be the primitive condition for Amniota, and it may be also a basal condition for parareptiles, because recent phylogenies suggest a basal position for mesosaurids and lanthanosuchoids within that group, and both possess a lower temporal fenestra. Our results also give a moderately strengthened support for diapsid affinities of turtles.  相似文献   

2.
In many amphibian larvae a suite of morphological and behavioural characters varies together in an induced defence against predators, but it remains unclear which features are functionally related to defence. We independently manipulated behaviour and morphology in tadpoles of Hyla versicolor and assessed their consequences for swimming performance and predator escape. Data on burst swimming showed that tadpoles which accelerated rapidly were elongate, with shallow bodies and tails. Predator escape was measured by exposing tadpoles to predators (larval Anax dragonflies or larval Ambystoma salamanders) and recording time until death. Tadpoles were first reared for 30 days in ponds containing either caged Anax or no predators; individuals responded to predators by developing large brightly coloured tails and short bodies. We placed tadpoles of both morphological phenotypes into plastic tubs, and manipulated their behaviour using food and chemical cues from predators. Mortality risk experienced by the predator‐induced phenotype was about half that of the no‐predator phenotype, and risk increased with time spent swimming. An interaction between morphology and behaviour arose because increasing activity caused higher risk for tadpoles with deep tail fins but not shallow tail fins.  相似文献   

3.
Phalarodon atavus from the Germanic Muschelkalk Basin was previously represented only by cranial elements. Here we report a nearly complete and articulated specimen of P. atavus from the Middle Triassic Luoping Biota, Yunnan, South China. This is the first specimen of P. atavus from outside the Germanic Basin. This discovery demonstrates a peri‐Tethyan distribution of P. atavus. The new specimen is also the first one preserving the postcranial anatomy of this species, providing the opportunity to evaluate its sustained swimming ability. Inferences made on its functional morphology suggest that this species was probably adapted for active foraging. Tooth crown morphology suggests that P. atavus may have preferred externally soft prey.  相似文献   

4.
It was hypothesized that the Malabar grouper Ephinephelus malabaricus larvae have developed search patterns adapted to the distribution of their prey to maximise their net energy intake per unit time. Analysis of the swimming behaviour of E. malabaricus larvae in both the presence and absence of Artemia sp. nauplii is presented to test this hypothesis. A method derived from turbulence studies (the moment function of the displacements) was used to characterize the behaviour. The results revealed that larval swimming pattern was multifractal (intermittent and long‐range‐correlated) and isotropic (i.e. uniform in all directions) in the presence of prey, but multifractal and anisotropic (i.e. more frequent long displacement on the vertical axis) in the absence of prey. It is suggested that the search behaviour observed in the absence of prey is an adaptive response to prey distribution pattern, which is often characterised by multifractality and anisotropy (i.e. larger patches on the horizontal axes). In the presence of prey, E. malabaricus shifted to intensive search behaviour. Other possible contributors to the observed patterns are discussed. It is concluded that multifractality and anisotropy of swimming patterns observed in the experiment are mainly explained in an optimal foraging theory framework.  相似文献   

5.
A Japanese minnow, Pseudorasbora parva, was exposed simultaneously to multiple dangers in experimental tanks. The study aimed to quantify to what extent the risk of predation coinciding with an adverse environmental factor, high flow velocity, affects prey in terms of growth and energy expenditure. In this experiment, two measures of growth (i.e., body weight and length), condition, feeding, swimming cost and behavioral responses were analyzed. The results showed that in such an environment, prey showed lowered growth and were in a poorer condition. As the prey shifted to the shallow area with high flow velocity, the prey consumed a lower ration and incurred multiple costs for swimming locomotion that might reduce the allocation of energy to biomass and energy storage. Reduction in activity might decrease the cost of locomotion, but it did not have a considerable effect on overall swimming energy expenditure. In stream ecosystems, the high swimming energy expenditure appears to magnify the effects of predation risk by causing lowered growth and a poorer condition and, hence, fitness. The present study shows that high flow velocity is one of the environmental factors that determine the energetic responses of a potential prey to the presence of predators.  相似文献   

6.
In order to enhance encounters with prey, planktonic predators may display different swimming behavior with respect to food availability and distribution. In this study, we used 3D video techniques to record the swimming behavior of malabar grouper (Epinephelus malabaricus) larvae in both the absence and the presence of prey (Artemia sp. nauplii). Swimming properties were investigated in all of the 3D, the two vertical, and the horizontal projections using scale-dependent (mean speed and Net to Gross Displacement Ratio) and scale-independent (fractal dimension) metrics. When prey was added, larvae swam slower and in a less convoluted way as compared to what was observed in the absence of food. The results obtained with scale-dependant metrics were confirmed by those obtained with scale-independent analyses. Both unveiled the anisotropy of the swimming behavior of grouper larvae that tend to swim toward the vertical axis in order to maximize encounters with prey patches. This study shows that malabar grouper larvae can optimize their search volume by switching their behavior and further draws attention to the need to consider both vertical- and horizontal-projections components while addressing the plankter’s swimming trajectories.  相似文献   

7.
The cranial osteology of the aquatic reptile Mesosaurus tenuidens is redescribed on the basis of new and previously examined materials from the Lower Permian of both southern Africa and South America. Mesosaurus is distinguished from other mesosaurs in exhibiting an absolutely larger skull and possessing relatively longer marginal teeth. The teeth gradually angle outwards as one progresses anteriorly in the tooth row and become conspicuously procumbent at the tip of the snout. The suggestion that mesosaurs used their conspicuous dental apparatus as a straining device for filter feeding is based upon erroneous reconstruction of a high number of teeth in this mesosaur. Reinterpretation of the morphology and the organization of the marginal teeth of Mesosaurus suggests that they were used to capture individually small, nektonic prey. General morphological aspects of the skull support the idea that Mesosaurus was an aquatic predator and that the skull was well adapted for feeding in an aqueous environment. The anatomical review permits critical reappraisal of several cranial characters that have appeared in recent phylogenetic analyses of early amniotes. Emendation of problematic characters and reanalysis of amniote phylogeny using a slightly modified data matrix from the literature strengthens the hypothesis that mesosaurs form a clade with millerettids, procolophonoids and pareiasaurs within Reptilia.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 146 , 345–368.  相似文献   

8.
The swimming and feeding behavior of Mesocyclops   总被引:1,自引:1,他引:0  
The swimming and feeding behaviors of Mesocyclops are described from a review of the literature and personal observations. Mesocyclops exhibits considerable behavioral flexibility in response to environmental stimuli. Mesocyclops edax exhibits an increase in horizontal looping behavior at high prey densities, and performs a tight vertical looping behavior in response to the loss of captured prey. Ingestion rates by Mesocyclops are a complex function of prey density, morphology, and behavior in addition to prey size. Vertebrate predators induce a rapid escape response in Mesocyclops and may be responsible at least in part for their extensive diel vertical migrations. The complex behavioral patterns of Mesocyclops suggest that its distribution and abundance in nature will be distinctly nonrandom and influenced as much by its own behavioral responses as by other external physical factors such as water circulation patterns.  相似文献   

9.
We describe a recently discovered trace fossil from a eurypterid Konservat‐Lagerstätte in the upper Silurian Tonoloway Formation of Pennsylvania, and formally describe contemporaneous traces from the Williamsville Formation Lagerstätte of Ontario. The traces from both localities are assigned here to Arcuites bertiensis igen. et isp. nov. Based on comparisons with previously described eurypterid trackways, neoichnological experiments, and the co‐occurrence with eurypterid remains, Arcuites is interpreted as having been made by the swimming leg (sixth prosomal appendage) of swimming juvenile to adult eurypteroid eurypterids, and represents the first unambiguous trace fossil evidence for eurypterid swimming behaviour. The morphology of Arcuites indicates that eurypteroid eurypterids swam using drag‐based rowing, whereby the animal propelled itself forward by moving its oar blade‐like swimming paddles in an in‐phase backstroke. Arcuites morphology also indicates that the eurypteroid swimming appendage had a greater degree of movement than was previously suggested, and a revised rowing model is proposed. Differences in the abundance of A. bertiensis in the Tonoloway and Williamsville formations suggest a bathymetric control on eurypterid swimming behaviour and trace production. The association of Arcuites with eurypterid body fossils in both units indicates that these Lagerstätten were autochthonous assemblages and provides additional evidence for eurypterid inhabitation of shallow subtidal marine environments in the late Silurian.  相似文献   

10.
Predation is a strong selective force acting on both morphology and behaviour of prey animals. While morphological defences (e.g. crypsis, presence of armours or spines or specific body morphologies) and antipredator behaviours (e.g. change in foraging or reproductive effort, or hiding and fleeing behaviours) have been widely studied separately, few studies have considered the interplay between the two. The question raised in our study is whether antipredator behaviours of a prey fish to predator odours could be influenced by the morphology of prey conspecifics in the diet of the predator. We used goldfish (Carassius auratus) as our test species; goldfish exposed to predation risk significantly increase their body depth to length ratio, which gives them a survival advantage against gape‐limited predators. We exposed shallow‐bodied and deep‐bodied goldfish to the odour of pike (Esox lucius) fed either form of goldfish. Deep‐bodied goldfish displayed lower intensity antipredator responses than shallow‐bodied ones, consistent with the hypothesis that individuals with morphological defences should exhibit less behavioural modification than those lacking such defences. Moreover, both shallow‐ and deep‐bodied goldfish displayed their strongest antipredator responses when exposed to the odour of pike fed conspecifics of their own morphology, indicating that goldfish are able to differentiate the morphology of conspecifics through predator diet cues. For a given individual, predator threat increases as the prey become more like the individual eaten, revealing a surprising level of sophistication of chemosensory assessment by prey fish.  相似文献   

11.
This study examines indirect effects in a trophic system with three levels, consisting of two prey species, a top predator, and an intermediate predator. Qualitative data showed that the activity of both the top predator Aeshna juncea (Odonata) and the active prey Heterocope saliens, (Copepoda) caused bouts of swimming in the sedentary prey Sida crystallina (Cladocera). These swimming bouts caused encounters, reactions, attacks and captures of S. crystallina by the intermediate predator Coenagrion hastulatum (Odonata). Quantitative data showed that C. hastulatum had a higher encounter frequency and a higher attack frequency on the sedentary prey when the active prey was present. This result was an effect of encounters between the two prey which increased swimming activity of the sedentary S. crystallina. The results suggest that interactions between prey 1 and prey 2, and between prey and predators, could influence the structure of natural communities.  相似文献   

12.
Extant procyonids only inhabit the Americas and are represented by six genera (Procyon, Nasua, Nasuella, Bassaricyon, Potos, and Bassariscus); all of them, except Bassariscus, are present in South America. The first records correspond to the early Miocene in North America (NA) and the late Miocene in South America (SA). Cyonasua was the first carnivoran to enter SA from NA, before the Great American Biotic Interchange, and went extinct in the early middle Pleistocene. This extinct procyonid is recorded in several localities of Argentina, and also in Venezuela. Paleobiological studies of procyonids are interesting from evolutionary and biogeographical viewpoints. In this study, the pectoral girdle and forelimb of 10 specimens of Cyonasua are described and compared with extant South American procyonids using a qualitative approach. Additionally, four functional morphology indexes were calculated for them and compared with an ecologically diverse sample of living carnivorans. Results indicate that Cyonasua most resembles Nasua nasua and Procyon cancrivorus, even though the extinct procyonid possessed peculiar features. Cyonasua had robust and relatively short forelimb bones, with strong stabilized joints, and movements associated with the sagittal plane, which suggest a tendency toward terrestrial habits, related to their ability to resist relatively high bending and shearing stresses. However, some features indicate a freedom in their range of movements, with moderate supination ability, compatible with climbing. When combined with previous analyses of dietary habits and estimated body mass, the morphology of Cyonasua would be well suited for digging and prey manipulation, allowing them to prey on small and relatively large-sized vertebrates, as well as to avoid some of the predators that were dominant in the Cenozoic of South America.  相似文献   

13.
Evidence suggests the great hammerhead shark, Sphyrna mokarran, is vulnerable to a variety of anthropogenic stressors, and is an understudied species of shark due to its cryptic nature and wide-ranging movements. While recognized as both a pelagic-coastal and a highly mobile predator, minimal anecdotal evidence exist describing shallow water habitat use by this species. This report describes six cases in which a great hammerhead shark utilizes an inshore shallow water flats environment (<1.5?m in depth), five of which involve prey capture. These observations permitted identification of two novel behaviors that may allow great hammerheads to inhabit these shallow habitats: a (1) prey-capture technique termed ‘grasp-turning’ that involves burst swimming at tight turning angles while grasping prey and (2) a post-predation recovery period whereby the shark maintains head-first orientation into the current that may facilitate respiration and prey consumption. These behavioral observations provide insights into the natural history of this species.  相似文献   

14.
The effect of feeding behaviour on the prey capture efficiency of young-of-the-year European perch and roach was investigated in laboratory experiments using planktonic crustaceans possessing different escape abilities—Daphnia sp. and Cyclops sp. Two sets of experiments were performed. In the first set, the feeding efficiency and behaviour of 270 fish individuals were determined by stomach content analyses and video record evaluations. In the second set of experiments, analysis of attack-effort, which was evaluated as attack-distance and repeated strikes, was undertaken. Except for situations in which Daphnia was offered at high densities, the feeding efficiency of perch was significantly higher compared to roach in all other combinations of prey types and densities. Roach consumed significantly less prey compared to perch when feeding exclusively on the evasive Cyclops and when it was offered in a 1:1 ratio mixture with Daphnia. The mean swimming speed was similar in both fish species, but behavioural differences were evident during prey search and capture. Perch swam through the aquaria in short and fast movements that were interrupted by many stops. Roach exhibited rather continuous swimming that was punctuated by slowdowns instead of stops. The perch attacks were very intensive and repeated strikes occurred, particularly when feeding on evasive Cyclops. On the other hand, roach revealed strong schooling behaviour restricting the fish during inspection of the experimental aquaria. The distinct differences in feeding efficiency between perch and roach were demonstrated to be closely related to differences in their feeding behaviour. Discontinuous searching for prey, vigorous attacks, occurrence of repeated strikes and the absence of schooling increased perch prey capture efficiency, particularly when foraging on evasive copepods.  相似文献   

15.
It is well known that slow and fast muscles are used for long-term sustained movement and short bursts of activity, respectively, in adult animal behaviors. However, the contribution of the slow and fast muscles in early animal movement has not been thoroughly explored. In wild-type zebrafish embryos, tactile stimulation induces coilings consisting of 1–3 alternating contractions of the trunk and tail at 24 hours postfertilization (hpf) and burst swimming at 48 hpf. But, embryos defective in flightless I homolog (flii), which encodes for an actin-regulating protein, exhibit normal coilings at 24 hpf that is followed by significantly slower burst swimming at 48 hpf. Interestingly, actin fibers are disorganized in mutant fast muscle but not in mutant slow muscle, suggesting that slower swimming at 48 hpf is attributable to defects of the fast muscle tissue. In fact, perturbation of the fast muscle contractions by eliminating Ca2+ release only in fast muscle resulted in normal coilings at 24 hpf and slower burst swimming at 48 hpf, just as flii mutants exhibited. In contrast, specific inactivation of slow muscle by knockdown of the slow muscle myosin genes led to complete loss of coilings at 24 hpf, although normal burst swimming was retained by 48 hpf. These findings indicate that coilings at 24 hpf is mediated by slow muscle only, whereas burst swimming at 48 hpf is executed primarily by fast muscle. It is consistent with the fact that differentiation of fast muscle follows that of slow muscle. This is the first direct demonstration that slow and fast muscles have distinct physiologically relevant contribution in early motor development at different stages.  相似文献   

16.

Small‐scale zooplankton swimming behaviors can affect aquatic predator‐prey interactions. Difficulties in controlling prey swimming behavior however, have restricted the ability to test hypotheses relating differences in small‐scale swimming behavior to frequency of predation by fish. We report here a Virtual Plankton (VP) system that circumvents this problem by allowing the observation of fish “preying"on computer‐generated prey images whose size, shape, color and swimming behavior can be precisely controlled. Two experiments were performed in which bluegill sunfish (Lepomis macrochirus) were given a choice of either two VP images, one of which moved twice as fast as the other, or six VP, one of which moved either faster (1.25 x, 1.5 x or 2 x ) or slower (0.5 x) than the other five. Current predator‐prey models based on encounter probabilities and prey visibility predict that moving faster increases predation risk and conversely, moving slower decreases predation risk. In agreement with existing predator‐prey models, in both experiments, fish chose faster moving VP significantly more often than their slower moving neighbors. Contrary to the predictions of existing models, in the second experiment with six VP, the rate at which fish chose a prey image moving half as fast as the five surrounding images did not differ significantly from the rate predicted by chance(l/6). These results suggest that current fish‐zooplankton predation models would benefit by the incorporation of small‐scale swimming behavior and assessments of its influence on overall prey visibility.  相似文献   

17.
Balaenid whales perform long breath-hold foraging dives despite a high drag from their ram filtration of zooplankton. To maximize the volume of prey acquired in a dive with limited oxygen supplies, balaenids must either filter feed only occasionally when prey density is particularly high, or they must swim at slow speeds while filtering to reduce drag and oxygen consumption. Using digital tags with three-axis accelerometers, we studied bowhead whales feeding off West Greenland and present here, to our knowledge, the first detailed data on the kinematics and swimming behaviour of a balaenid whale filter feeding at depth. Bowhead whales employ a continuous fluking gait throughout the bottom phase of foraging dives, moving at very slow speeds (less than 1 m s−1), allowing them to filter feed continuously at depth. Despite the slow speeds, the large mouth aperture provides a water filtration rate of approximately 3 m3 s−1, amounting to some 2000 tonnes of water and prey filtered per dive. We conclude that a food niche of dense, slow-moving zooplankton prey has led balaenids to evolve locomotor and filtering systems adapted to work against a high drag at swimming speeds of less than 0.07 body length s−1 using a continuous fluking gait very different from that of nekton-feeding, aquatic predators.  相似文献   

18.
When a marine mammal dives, breathing and locomotion are mechanically uncoupled, and its locomotor muscle must power swimming when oxygen is limited. The morphology of that muscle provides insight into both its oxygen storage capacity and its rate of oxygen consumption. This study investigated the m. longissimus dorsi, an epaxial swimming muscle, in the long duration, deep‐diving pygmy sperm whale (Kogia breviceps) and the short duration, shallow‐diving Atlantic bottlenose dolphin (Tursiops truncatus). Muscle myoglobin content, fiber type profile (based upon myosin ATPase and succinate dehydrogenase assays), and fiber size were measured for five adult specimens of each species. In addition, a photometric analysis of sections stained for succinate dehydrogenase was used to create an index of mitochondrial density. The m. longissimus dorsi of K. breviceps displayed significantly a) higher myoglobin content, b) larger proportion of Type I (slow oxidative) fibers by area, c) larger mean fiber diameters, and d) lower indices of mitochondrial density than that of T. truncatus. Thus, this primary swimming muscle of K. breviceps has greater oxygen storage capacity, reduced ATP demand, and likely a reduced rate of oxygen consumption relative to that of T. truncatus. The locomotor muscle of K. breviceps appears able to ration its high onboard oxygen stores, a feature that may allow this species to conduct relatively long duration, deep dives aerobically. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
The mechanical basis of prey capture and behaviour of Phyllorhiza punctata von Lendenfeld, 1884, as with most members of the Order Rhizostomeae, has not been described. Free-swimming medusae were videotaped in order to quantitatively describe the feeding process of P. punctata. Kinematic data demonstrated that adult medusae were surrounded by relatively high Re (102–103) flows while swimming. Therefore, momentum dominated these flows and the motions of particles entrained in the fluid surrounding swimming P. punctata. Artemia salina nauplii entrained within these flows contacted two principle capture surfaces: the oral arm cylinder and the underside of the subumbrellar surface. Prey were ingested by small polyp-like mouthlets located on these surfaces. Ingestion followed capture at these sites. P. punctata's body morphology is highly modified to channel flows into these capture surfaces and feeding is dependent upon this pattern. Swimming activity, and hence the creation of flows used for prey capture, is continuous, as is feeding, and plays a central role in this medusa's foraging behaviour.  相似文献   

20.
Priyadarshana  Tilak  Asaeda  Takashi  Manatunge  Jagath 《Hydrobiologia》2001,442(1-3):231-239
In the littoral zones of lakes, aquatic macrophytes produce considerable structural variation that can provide protection to prey communities by hindering predator foraging activity. The swimming and feeding behaviour of a planktivore, Pseudorasbora parva(Cyprinidae) on its prey (Daphnia pulex) was studied in a series of laboratory experiments with varying densities (0, 350, 700, 1400, 2100 and 2800 stems m–2) of simulated submerged vegetation. Prey availability was varied from 0.5, 1.0, 2.0, 5.0, 10.0 and 25.0 prey l–1. As the stem density increased, the predator's swimming speed and the number of prey captured decreased relative to feeding in open water. A good relation existed between the number of successful prey captures and swimming speed with the average stem distance to fish body length ratio (D). An abrupt reduction in feeding and swimming was recorded when D was reduced to values less than one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号