首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Japan, the Bordetella pertussis strain Tohama provided by the National Institute of Health, Japan has been used for the production of acellular pertussis (aP) vaccines since 1981. In the present study, in order to verify the genetic consistency of B. pertussis vaccine seed strains, we analyzed the genetic properties of the working seeds obtained from five Japanese vaccine manufacturers, and compared them with those of B. pertussis Tohama reference strains (NIID L-7 and ATCC BAA-589). Genetic analyses with pulsed-field gel electrophoresis and allele typing showed 100% genetic identity among the five seed strains and the Tohama reference strains. In addition, Southern blot analyses revealed the absence of four orthologous genes (BB0537, BB0920, BB1149 and BB4885), which are specifically absent in the strain Tohama, and in the genome of all seed strains tested, suggesting that the regions of difference (RD11–RD14) are absent in their genomes. Consequently, no genetic difference was observed among the working seeds and Tohama reference strains. Our observations indicate that B. pertussis seed strains for Japanese aP vaccine production are genetically comparable with B. pertussis Tohama.  相似文献   

2.
Bordetella pertussis and B. bronchiseptica are genetically very closely related but differ significantly in their virulence properties. Using Representational Difference Analysis (RDA), 11 DNA fragments specific for B. pertussis Tohama I or B. bronchiseptica BB7865 were identified. All B. bronchiseptica BB7865-derived fragments also hybridized with chromosomal DNA from B. parapertussis but not from the B. pertussis strains Tohama I and W28, underlining the close phylogenetic relationship between B. bronchiseptica and B. parapertussis. The B. pertussis type strain BP18323 is a special case, as it contains DNA sequences characteristic for both B. pertussis and B. bronchiseptica. As demonstrated by pulsed-field gel electrophoresis, several of the BB7865-derived fragments are present on a single 30-kb XbaI fragment. Based on the sequences of putative coding regions, four of these fragments may code for proteins involved in carbohydrate metabolism or transport. In agreement with this notion, a mutant for one of these loci synthesizes a significantly altered lipopolysaccharide that lacks the O-specific side chains. The analysis of the corresponding genomic region in various Bordetella species showed that this locus is present in B. bronchiseptica and B. parapertussis but not in B. pertussis. This confirms that the RDA approach has identified a novel strain-specific LPS biosynthesis locus which accounts for the differences between the LPS structures elaborated by different Bordetella species. Received: 24 February 1999 / Accepted: 17 May 1999  相似文献   

3.
Bordetella pertussis and B. bronchiseptica are genetically very closely related but differ significantly in their virulence properties. Using Representational Difference Analysis (RDA), 11 DNA fragments specific for B. pertussis Tohama I or B. bronchiseptica BB7865 were identified. All B. bronchiseptica BB7865-derived fragments also hybridized with chromosomal DNA from B. parapertussis but not from the B. pertussis strains Tohama I and W28, underlining the close phylogenetic relationship between B. bronchiseptica and B. parapertussis. The B. pertussis type strain BP18323 is a special case, as it contains DNA sequences characteristic for both B. pertussis and B. bronchiseptica. As demonstrated by pulsed-field gel electrophoresis, several of the BB7865-derived fragments are present on a single 30-kb XbaI fragment. Based on the sequences of putative coding regions, four of these fragments may code for proteins involved in carbohydrate metabolism or transport. In agreement with this notion, a mutant for one of these loci synthesizes a significantly altered lipopolysaccharide that lacks the O-specific side chains. The analysis of the corresponding genomic region in various Bordetella species showed that this locus is present in B. bronchiseptica and B. parapertussis but not in B. pertussis. This confirms that the RDA approach has identified a novel strain-specific LPS biosynthesis locus which accounts for the differences between the LPS structures elaborated by different Bordetella species.  相似文献   

4.
Aim: To characterize Bordetella pertussis vaccine strains in comparison with current circulating bacteria. Methods and Results: Genomic and proteomic analyses of Bp137 were performed in comparison with other vaccine strains used in Latin America (Bp509 and Bp10536) and with the clinical Argentinean isolate Bp106. Tohama I strain was used as reference strain. Pulse‐field gel electrophoresis (PFGE) and pertussis toxin promoter (ptxP) sequence analysis revealed that Bp137 groups with Bp509 in PFGE group III and contains ptxP2 sequence. Tohama I (group II) and Bp10536 (group I) contain ptxP1 sequence, while Bp106 belongs to a different PFGE cluster and contains ptxP3. Surface protein profiles diverged in at least 24 peptide subunits among the studied strains. From these 24 differential proteins, Bp10536 shared the expression of ten proteins with Tohama I and Bp509, but only three with Bp137. In contrast, seven proteins were detected exclusively in Bp137 and Bp106. Conclusions: Bp137 showed more features in common with the clinical isolate Bp106 than the other vaccine strains here included. Significance and Impact of the Study: The results presented show that the old strains included in vaccines are not all equal among them. These findings together with the data of circulating bacteria should be taken into account to select the best vaccine to be included in a national immunization programme.  相似文献   

5.
Mechanisms for the undesired persistence of Bacillus species in paper machine slimes were investigated. Biofilm formation was measured for industrial Bacillus isolates under paper machine wet-end-simulating conditions (white water, pH 7, agitated at 45°C for 1–2 days). None of the 40 tested strains of seven Bacillus species formed biofilm on polished stainless steel or on polystyrene surfaces as a monoculture. Under the same conditions, Deinococcus geothermalis E50051 covered all test surfaces as a patchy thick biofilm. The paper machine bacilli, however, formed mixed biofilms with D. geothermalis E50051 as revealed by confocal microscopy. Biofilm interactions between the bacilli and the deinococci varied from synergism to antagonism. Synergism in biofilm formation of D. geothermalis E50051 was strongest with Bacillus coagulans D50192, and with the type strains of B. coagulans, B. amyloliquefaciens or B. pumilus. Two B. licheniformis, one B. amyloliquefaciens, one B. pumilus and four B. cereus strains antagonized biofilm production by D. geothermalis. B. licheniformis D50141 and the type strain of B. licheniformis were the strongest antagonists. These bacteria inhibited deinococcal growth by emitting heat-stable, methanol-soluble metabolite(s). We conclude that the persistence of Bacillus species in paper machine slimes relates to their ability to conquer biofilms formed by primary colonizers, such as D. geothermalis. Journal of Industrial Microbiology & Biotechnology (2001) 27, 343–351. Received 17 April 2001/ Accepted in revised form 16 July 2001  相似文献   

6.

A urinary tract infection (UTI) is a multi-factorial disease including cystitis, pyelonephritis, and pyelitis. After Escherichia coli, Proteus mirabilis is the most common UTI-associated opportunistic pathogen. Antibiotic resistance of bacteria and infection recurrence can be connected to biofilm formation by P. mirabilis. In this study, human and sheep isolates of P. mirabilis were investigated for antibiotic sensitivity using an antibiotic disk test. Co-aggregation of the tested potential probiotic bacilli, Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933, with the isolated pathogen was also evaluated. Then, the anti-biofilm activity of naturally derived metabolites, such as subtilin and subtilosin, in the bacilli-free supernatants was assessed against biofilms of P. mirabilis isolates. The isolated pathogens were sensitive to 30 μg of amikacin and 5 μg of ciprofloxacin but resistant to other tested antibiotics. After 24 h, auto-aggregation of B. amyloliquefaciens B-1895 was at 89.5% and higher than auto-aggregation of B. subtilis KATMIRA1933 (59.5%). B. amyloliquefaciens B-1895 strongly co-aggregated with P. mirabilis isolates from human UTIs. Cell-free supernatants of B. amyloliquefaciens B-1895 and B. subtilis KATMIRA1933 showed higher antimicrobial activity against biofilms of P. mirabilis isolated from humans as compared with biofilms of sheep isolates. According to our knowledge, this is the first report evaluating the anti-biofilm activity of probiotic spore-forming bacilli against clinical and animal UTI isolates of P. mirabilis. Further studies are recommended to investigate the anti-biofilm activity and the mode of action for the antimicrobial substances produced by these bacilli, subtilosin and subtilin.

  相似文献   

7.
The aim of this study was to investigate the frequency, molecular characterization, virulence genes, resistance genes and antimicrobial profile of nosocomial extended spectrum beta lactamase producing Klebsiella species. A total of 22 (12.2%) K. pneumoniae strains were isolated from 180 clinical samples collected from hospitalized patients in Egypt. K. pneumoniae biotypes were B1 (72.8%), B3 (13.6%) and B4 (13.6%). The isolates were classified for the capsular serotypes, 86.4% (20/22) were of K1 serotype, while only two isolates (13.64%) were of K2 serotype. Hypermucoviscous K. pneumoniae isolates accounted for 68.2%. Biofilm formation ability of K. pneumoniae was determined by microtitre plate method. The majority of the isolates (40.9%) were moderate biofilm producers, while 27.3% were strong biofilm producers. All K. pneumoniae strains were positive for fimH and traT genes, while magA was identified in only 63.6% of the isolates. The antibiotic susceptibility profile of the isolates (n = 22) was determined by the disc diffusion technique using 23 different antibiotics. Streptomycin and imipenem are the most effective antibiotics against 22 tested K. pneumoniae isolates with sensitivity rates of 63.64% and 54.54% respectively. All tested K. pneumoniae isolates showed high resistance to amoxicillin∕clavulanate (100%), cefuroxime (100%) and ceftazidime (95.45%). Extended spectrum beta lactamases (ESBL) production and the presence of ESBL-related genes were tested in the isolates. All the isolates tested positive for blaVIM, NDM1 and blaTEM, while only 81.8 %tested positive for the blaSHV gene. Increasing antimicrobial resistance in K. pneumoniae causing nosocomial infections limits the use of antimicrobial agents for treatment. Furthermore, the spread of biofilm, multiple drug resistant and ESBL-producing K. pneumoniae isolates is a public threat for hospitalized patients.  相似文献   

8.
李瑞莲  王倬  杜昱光 《微生物学报》2017,57(8):1206-1218
难治性真菌感染的临床分析发现,病灶感染病原常以生物被膜的形态存在。生物被膜的形成可帮助真菌躲避宿主细胞免疫系统清除和药物的攻击,所造成的持续性感染严重威胁人类健康,因此,认识研究真菌生物被膜及其耐药机理对于防治临床真菌感染有着重大意义。白色念珠菌是一种临床感染常见的条件性致病菌,也是目前真菌生物被膜研究的主要研究模型。白色念珠菌生物被膜主要由多糖、蛋白质和DNA构成,其形成由微生物间的群体感应调控,并受到环境中营养成分及其附着物表面性质影响。研究发现,胞外基质的屏障作用、耐药基因的表达等机制与生物被膜耐药性的产生密切相关。本文就白色念珠菌生物被膜的形成过程、结构组成、形成的影响因素、现有研究模型、耐药机制和治疗策略等几个方面介绍近年来的研究进展。  相似文献   

9.
Biofilm‐grown bacteria are refractory to antimicrobial agents and show an increased capacity to evade the host immune system. In recent years, studies have begun on biofilm formation by Streptococcus pneumoniae, an important human pathogen, using a variety of in vitro model systems. The bacterial cells in these biofilms are held together by an extracellular matrix composed of DNA, proteins and, possibly, polysaccharide(s). Although neither the precise nature of these proteins nor the composition of the putative polysaccharide(s) is clear, it is known that choline‐binding proteins are required for successful biofilm formation. Further, many genes appear to be involved, although the role of each appears to vary when biofilms are produced in batch or continuous culture. Prophylactic and therapeutic measures need to be developed to fight S. pneumoniae biofilm formation. However, much care needs to be taken when choosing strains for such studies because different S. pneumoniae isolates can show remarkable genomic differences. Multispecies and in vivo biofilm models must also be developed to provide a more complete understanding of biofilm formation and maintenance.  相似文献   

10.
Burkholderia pseudomallei is the cause of melioidosis, a fatal tropical infectious disease, which has been reported to have a high rate of recurrence, even when an intensive dose of antibiotics is used. Biofilm formation is believed to be one of the possible causes of relapse because of its ability to increase drug resistance. EPS in biofilms have been reported to be related to the limitation of antibiotic penetration in B. pseudomallei. However, the mechanisms by which biofilms restrict the diffusion of antibiotics remain unclear. The present study presents a correlation between exopolysaccharide production in biofilm matrix and antibiotic resistance in B. pseudomallei using bpsI, ppk, and rpoS mutant strains. CLSM revealed a reduction in exopolysaccharide production and disabled micro‐colony formation in B. pseudomallei mutants, which paralleled the antibiotic resistance. Different ratios of carbohydrate contents in the exopolysaccharides of the mutants were detected, although they have the same components, including glucose, galactose, mannose, and rhamnose, with the exception being that no detectable rhamnose peak was observed in the bpsI mutant. These results indicate that the correlation between these phenomena in the B. pseudomallei biofilm at least results from the exopolysaccharide, which may be under the regulation of bpsI, ppk, or rpoS genes.  相似文献   

11.
Bloodstream infection by the pathogenic fungus Candida albicans is a major health problem. Candidemia is often associated with medical devices, which can act as substrates for biofilm development. Biofilm‐related infections are relatively difficult to treat because of their resistance to antimicrobial agents. It is therefore important to explore the mechanisms of biofilm formation. Dimorphism is a major contributor to biofilm formation in C. albicans. To determine whether the hypha‐related proteins Pra1 (pH‐regulated antigen) and Zrt1 (zinc transporter) are responsible for biofilm formation, the ability of pra1 and zrt1 deletion mutants to form biofilms was investigated. Biofilm formation by both deletion mutants was less than that of the wild‐type strain. Because Pra1 and Zrt1 are also related to the zinc homeostasis system, the effects of adding zinc on biofilm formation were also examined. Biofilm formation was increased in the presence of zinc. These data suggest that Pra1 and Zrt1 regulate biofilm formation through zinc homeostasis.
  相似文献   

12.
Bacteria are often found in close association with surfaces, resulting in the formation of biofilms. In Staphylococcus aureus (S. aureus), biofilms are implicated in the resilience of chronic infections, presenting a serious clinical problem world-wide. Here, S. aureus biofilms are grown under flow within clinical catheters at 37 °C. The lipid composition and biophysical properties of lipid extracts from these biofilms are compared with those from exponential growth and stationary phase cells. Biofilms show a reduction in iso and anteiso branching compensated by an increase in saturated fatty acids compared to stationary phase. A drastic reduction in carotenoid levels is also observed during biofilm formation. Thermotropic measurements of Laurdan GP and DPH polarization, show a reduction of lipid packing at 37 °C for biofilms compared to stationary phase. We studied the effects of carotenoid content on DMPG and DPPG model membranes showing trends in thermotropic behavior consistent with those observed in bacterial isolates, indicating that carotenoids participate in modulating lipid packing. Additionally, bending elastic constant (kc) measurements using vesicle fluctuation analysis (VFA) show that the presence of carotenoids can increase membrane bending rigidity. The antimicrobial peptide Magainin H2 was less activity on liposomes composed of stationary phase compared to biofilms or exponential growth isolates. This study contributes to an understanding of how Staphylococcus aureus modulates the composition of its membrane lipids, and how those changes affect the biophysical properties of membranes, which in turn may play a role in its virulence and its resistance to different membrane-active antimicrobial agents.  相似文献   

13.
Bordetella holmesii is recognized as the third causative agent of pertussis (whooping cough) in addition to Bordetella pertussis and Bordetella parapertussis. Pertussis caused by B. holmesii is not rare around the world. However, to date, there is no effective vaccine against B. holmesii. We examined the protective potency of pertussis vaccines available in Japan and vaccines prepared from B. holmesii. A murine model of respiratory infection was exploited to evaluate protective potency. No Japanese commercial pertussis vaccines were effective against B. holmesii. In contrast, a wBH vaccine and an aBH vaccine prepared from B. holmesii were both protective. Passive immunization with sera from mice immunized with aBH vaccine established protection against B. holmesii, indicating that B. holmesii‐specific serum antibodies might play an important role in protection. Immuno‐proteomic analysis with sera from mice immunized with aBH vaccine revealed that the sera recognized a BipA‐like protein of B. holmesii. An aBH vaccine prepared from a BipA‐like protein‐deficient mutant strain did not have a protective effect against B. holmesii. Taken together, our results suggest that the BipA‐like protein plays an important role in the protective efficacy of aBH vaccine.  相似文献   

14.
Biofilm formation in bacteria is closely linked with production of exopolysaccharides (EPS). This study examined the quantitative variations in EPS production and biofilm-forming ability among bacteria isolated from the seawater intake point of a power station located on the east coast of India. Of the 233 isolates obtained from the intake site, 71 bacterial isolates displayed different colony morphological characteristics. Thirteen isolates that produced wide and thick mucoid colonies were further tested for their ability to attach and form biofilms by microtitre plate assay and confocal microscopy. EPS production among the selected bacterial isolates ranged from 826 to 1838 μg ml−1. Strain SBT033, which produced the maximum amount of EPS also displayed the maximum biofilm-forming ability among the 13 isolates. This strain was selected for further characterization using biochemical and molecular methods. The pale orange-pigmented isolate was a Gram negative, aerobic, short rod-shaped and grew well only in the presence of 2% NaCl. On the basis of phenotypic characteristics the isolate SBT033 is shown to belong to the genus Pseudoalteromonas. Analysis of 16S rRNA of the isolate revealed 99% homology with Pseudoalteromonas ruthenica.  相似文献   

15.
Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica are three closely related pathogens.They all possess the gene coding for the Bordetella type three secretion system effector A (bteA) toxin that became a focus of interest since it was demonstrated that B. pertussis Japanese non-vaccine-type isolates produce BteA unlike vaccine-type isolates. We thus explored the in-vitro production of BteA in B. pertussis isolates collected in France during periods of different vaccine policy as well as in B. parapertussis and B. bronchiseptica isolates. We also analyzed the in-vivo induction of anti-BteA antibodies after infection with different isolates of the three species.We produced a recombinant His6-tagged BteA (rBteA) protein. Specific rBteA polyclonal serum was prepared which enabled us to screen Bordetella isolates for in-vitro BteA production: 99.0% (293/296) of tested B. pertussis isolates, including French vaccine strains, and 97.5% (79/81) of B. bronchiseptica isolates produced BteA in-vitro but only the latter was capable of inducing an in-vivo immune response. No in-vitro or in-vivo production of BteA was detected by any of the B. parapertussis isolates tested.  相似文献   

16.
Staphylococcus aureus is now amongst the most important pathogenic bacteria responsible for bloodstream nosocomial infections and for biofilm formation on indwelling medical devices. Its increasing resistance to common antibiotics, partly attributed to its ability to form biofilms, is a challenge for the development of new antimicrobial agents. Accordingly, the goal of this study was to evaluate the effect of a coral associated actinomycete (CAA) - 3 on S. aureus biofilms both in vitro and in vivo. Methanolic extracts of CAA-3 showed a reduction in in vitro biofilm formation by S. aureus ATCC 11632, methicillin resistant S. aureus ATCC 33591 and clinical isolates of S. aureus at the biofilm inhibitory concentration (BIC) of 0.1 mg ml?1. Furthermore, confocal laser scanning microscope (CLSM) studies provide evidence of CAA-3 inhibiting intestinal colonisation of S. aureus in the nematode Caenorhabditis elegans. To conclude, this study for the first time, reports CAA as a promising source of anti-biofilm compounds, for developing novel drugs against highly resistant staphylococcal biofilms.  相似文献   

17.
In this study, we examined the biofilm forming ability, the mRNA expression of curli genes and the morphologies of curli fimbriae and biofilms in clinical isolates of Enterobacter cloacae. The csgBA operon was found in 11 (78.6%) of the 14 isolates. The ability of E. cloacae isolates to form biofilms was significantly correlated with the mRNA expression level of the csgA and csgD genes. The curli protein fimbriae appeared as tangled fibers and the curli-proficient strain formed mature biofilms. Our data suggest that the expression of the curli fimbriae play an important role in biofilm formation in E. cloacae.  相似文献   

18.
Tailored nanoparticles offer a novel approach to fight antibiotic‐resistant microorganisms. We analysed biogenic selenium nanoparticles (SeNPs) of bacterial origin to determine their antimicrobial activity against selected pathogens in their planktonic and biofilm states. SeNPs synthesized by Gram‐negative Stenotrophomonas maltophilia [Sm‐SeNPs(?)] and Gram‐positive Bacillus mycoides [Bm‐SeNPs(+)] were active at low minimum inhibitory concentrations against a number of clinical isolates of Pseudomonas aeruginosa but did not inhibit clinical isolates of the yeast species Candida albicans and C. parapsilosis. However, the SeNPs were able to inhibit biofilm formation and also to disaggregate the mature glycocalyx in both P. aeruginosa and Candida spp. The Sm‐SeNPs(?) and Bm‐SeNPs(+) both achieved much stronger antimicrobial effects than synthetic selenium nanoparticles (Ch‐SeNPs). Dendritic cells and fibroblasts exposed to Sm‐SeNPs(?), Bm‐SeNPs(+) and Ch‐SeNPs did not show any loss of cell viability, any increase in the release of reactive oxygen species or any significant increase in the secretion of pro‐inflammatory and immunostimulatory cytokines. Biogenic SeNPs therefore appear to be reliable candidates for safe medical applications, alone or in association with traditional antibiotics, to inhibit the growth of clinical isolates of P. aeruginosa or to facilitate the penetration of P. aeruginosa and Candida spp. biofilms by antimicrobial agents.  相似文献   

19.
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant opportunistic pathogen with a great ability to form biofilms. Herein, the antimicrobial potential of Thymbra capitata essential oil (EO) against MRSA biofilms was investigated. The determination of the minimum inhibitory concentration (MIC) and the minimum lethal concentration (MLC) of the T. capitata EO was first investigated on a group of clinical isolates from septicaemias, diabetic foot ulcers and osteomyelitis. Biofilms were incubated with the EO at the MLC and its anti-biofilm potential was investigated. A strong antimicrobial activity was observed, with MIC and MLC values between 0·32 and 0·64 mg l−1. However, the concentration of EO necessary for the eradication of planktonic cells was insufficient to significantly reduce the biofilm biomass of some isolates. Nevertheless, cell culturability and overall cellular metabolism was strongly reduced in all biofilms tested, only when the EO was tested. Contrary to the tested antibiotics, T. capitata EO showed a significant antimicrobial activity against MRSA biofilms, by reducing cellular metabolism and cellular culturability.  相似文献   

20.
AIMS: To assess the abilities of 105 avian pathogenic Escherichia coli (APEC) and 103 avian faecal commensal E. coli (AFEC) to form biofilms on a plastic surface and to investigate the possible association of biofilm formation with the phylotype of these isolates. METHODS AND RESULTS: Biofilm production was assessed in 96-well microtitre plates using three different media, namely, M63 minimal medium supplemented with glucose and casamino acids, brain-heart infusion broth, and diluted tryptic soy broth. Avian E. coli are highly variable in their ability to form biofilms. In fact, no strain produced a strong biofilm in all three types of media; however, most (75.7% AFEC and 55.2% APEC) were able to form a moderate or strong biofilm in at least one medium. Biofilm formation in APEC seems to be mostly limited to nutrient deplete media; whereas, AFEC are able to form biofilms in both nutrient deplete and replete media. Also, biofilm formation in E. coli from phylogenetic groups B2, D and B1 was induced by nutrient deplete conditions; whereas, biofilm formation by members of phylogenetic group A was strongest in a rich medium. CONCLUSIONS: Biofilm formation by APEC and phylotypes B2, D and B1 is induced by nutrient deplete conditions, while AFEC are able to form biofilms in both nutrient rich and deplete media. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to investigate biofilm formation by a large sample of avian E. coli isolates, and it provides insight into the conditions that induce biofilm formation in relation to the source (APEC or AFEC) and phylogenetic group (A, B1, B2 and D) of an isolate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号