共查询到20条相似文献,搜索用时 15 毫秒
1.
Woods J Boegli L Kirker KR Agostinho AM Durch AM Delancey Pulcini E Stewart PS James GA 《Journal of applied microbiology》2012,112(5):998-1006
Aims: The goal of this investigation was to develop an in vitro, polymicrobial, wound biofilm capable of supporting the growth of bacteria with variable oxygen requirements. Methods and Results: The strict anaerobe Clostridium perfringens was isolated by cultivating wound homogenates using the drip‐flow reactor (DFR), and a three‐species biofilm model was established using methicillin‐resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Cl. perfringens in the colony‐drip‐flow reactor model. Plate counts revealed that MRSA, Ps. aeruginosa and Cl. perfringens grew to 7·39 ± 0·45, 10·22 ± 0·22 and 7·13 ± 0·77 log CFU per membrane, respectively. The three‐species model was employed to evaluate the efficacy of two antimicrobial dressings, Curity? AMD and Acticoat?, compared to sterile gauze controls. Microbial growth on Curity? AMD and gauze was not significantly different, for any species, whereas Acticoat? was found to significantly reduce growth for all three species. Conclusions: Using the colony‐DFR, a three‐species biofilm was successfully grown, and the biofilms displayed a unique structure consisting of distinct layers that appeared to be inhabited exclusively or predominantly by a single species. Significance and Impact of the Study: The primary accomplishment of this study was the isolation and growth of an obligate anaerobe in an in vitro model without establishing an artificially anaerobic environment. 相似文献
2.
An in vitro model was developed to assess the effects of topical antimicrobials on taxonomically defined wound biofilms. Biofilms were exposed over seven days to povidone-iodine, silver acetate or polyhexamethylene biguanide (PHMB) at concentrations used in wound dressings. The rank order of tolerance in multi-species biofilms, based on an analysis of the average bacterial counts over time was P. aeruginosa > methicillin-resistant Staphylococcus aureus (MRSA) > B. fragilis > S. pyogenes. The rank order of effectiveness for the antimicrobials in the biofilm model was povidone-iodine > PHMB > silver acetate. None of the test compounds eradicated P. aeruginosa or MRSA from the biofilms although all compounds except silver acetate eliminated S. pyogenes. Antimicrobial effectiveness against bacteria grown in multi-species biofilms did not correlate with planktonic susceptibility. Defined biofilm populations of mixed-species wound pathogens could be maintained in the basal perfusion model, facilitating the efficacy testing of treatments regimens and potential dressings against multi-species biofilms composed of wound isolates. 相似文献
3.
Spencer P Greenman J McKenzie C Gafan G Spratt D Flanagan A 《Journal of applied microbiology》2007,103(4):985-992
AIMS: To develop a perfusion biofilm system to model tongue biofilm microflora and their physiological response to sulfur-containing substrates (S-substrates) in terms of volatile sulfide compound (VSC) production. METHODS AND RESULTS: Tongue-scrape inocula were used to establish in vitro perfusion biofilms which were examined in terms of ecological composition using culture-dependent and independent (PCR-DGGE) approaches. VSC-specific activity of cells was measured by a cell suspension assay, using a portable industrial sulfide monitor which was also used to monitor VSC production from biofilms in situ. Quasi steady states were achieved by 48 h and continued to 96 h. The mean (+/-SEM) growth rate for 72-h biofilms (n=4) was micro=0.014 h(-1) (+/-0.005 h(-1)). Comparison of biofilms, perfusate and original inoculum showed their ecological composition to be similar (Pearson coefficient>0.64). Perfusate and biofilm cells derived from the same condition (co-sampled) were equivalent with regard to VSC-specific activities which were up-regulated in the presence of S-substrates. CONCLUSIONS: The model maintained a stable tongue microcosm suitable for studying VSC production; biofilm growth in the presence of S-substrates up-regulated VSC activity. SIGNIFICANCE AND IMPACT OF THE STUDY: The method is apt for studying ecological and physiological aspects of oral biofilms and could be useful for screening inhibitory agents. 相似文献
4.
Aims: To develop an in vitro flat‐bed perfusion biofilm model that could be used to determine the antimicrobial efficacy of topically applied treatments. Methods and Results: Pseudomonas aeruginosa and Staphylococcus aureus biofilms were grown within continuously perfused cellulose matrices. Enumeration of the biofilm density and eluate was performed at various sampling times, enabling determination of the biofilm growth rate. Two antimicrobial wound dressings were applied to the surface of mature biofilms and periodically sampled. To enable real‐time imaging of biofilm growth and potential antimicrobial kinetics, a bioluminescent Ps. aeruginosa biofilm was monitored using low‐light photometry. Target species produced reproducible steady‐state biofilms at a density of c. 107 per biofilm support matrix, after 24‐h perfusion. Test dressings elicited significant antimicrobial effects, producing differing kill kinetic profiles. There was a good correlation between photon and viable count data. Conclusions: The model enables determination of the antimicrobial profile of topically applied treatments against target species biofilms, accurately differentiating bactericidal from bacteriostatic effects. Moreover, these effects could be monitored in real time using bioluminescence. Significance and Impact of the Study: This is the first in vitro biofilm model which can assess the antimicrobial potential of topical therapies in a dynamic growth environment. 相似文献
5.
A model of biofilm detachment 总被引:4,自引:0,他引:4
Stewart PS 《Biotechnology and bioengineering》1993,41(1):111-117
A general mathematical framework for modeling biofilm detachment is presented. The approach is founded on a material balance on biomass that equates the detachment rate to the product of a detachment frequency and a detaching particle mass. The model provides a theoretical basis for deriving many of the empirical detachment rate expressions in common use and can thus lend some insight into their physical and biological significance. By allowing for variation in the detachment frequency with depth in the biofilm, the model permits derivation of detachment expressions that reflect a dependence on chemical or physiological gradients in the biofilm. Analysis of literature data sets from two different biofilm systems suggests, in both cases, that detachment is a growth-associated phenomenon. (c) 1993 John Wiley & Sons, Inc. 相似文献
6.
7.
Oberringer M Meins C Bubel M Pohlemann T 《Biology of the cell / under the auspices of the European Cell Biology Organization》2007,99(4):197-207
BACKGROUND INFORMATION: Different in vitro models, based on co-culturing techniques, can be used to investigate the behaviour of cell types, which are relevant for human wound and soft-tissue healing. Currently, no model exists to describe the behaviour of fibroblasts and microvascular endothelial cells under wound-specific conditions. In order to develop a suitable in vitro model, we characterized co-cultures comprising NHDFs (normal human dermal fibroblasts) and HDMECs (human dermal microvascular endothelial cells). The CCSWMA (co-culture scratch wound migration assay) developed was supported by direct visualization techniques in order to investigate a broad spectrum of cellular parameters, such as migration and proliferation activity, the differentiation of NHDFs into MFs (myofibroblasts) and the expression of endothelin-1 and ED-A-fibronectin (extra domain A fibronectin). The cellular response to hypoxia treatment, as one of the crucial conditions in wound healing, was monitored. RESULTS: The comparison of the HDMEC-NHDF co-culture with the respective mono-cultures revealed that HDMECs showed a lower proliferation activity when co-cultured, but their number was stable throughout a period of 48 h. NHDFs in co-culture were slightly slower at proliferating than in the mono-culture. The MF population was stable for 48 h in the co-culture, as well as in NHDF mono-culture. Co-cultures and HDMEC mono-cultures were characterized by a slower migration rate than NHDF mono-cultures. Hypoxia decreased both cell proliferation and migration in the mono-cultures, as well as in the co-cultures, indicating the general suitability of the assay. Exclusively, in co-cultures well-defined cell clusters comprising HDMECs and MFs formed at the edges of the in vitro wounds. CONCLUSIONS: On the basis of these results, the CCSWMA developed using co-cultures, including HDMECs, NHDFs and MFs, proved to be an effective tool to directly visualize cellular interaction. Therefore, it will serve in the future to evaluate the influence of wound-healing-related factors in vitro, as shown for hypoxia in the present study. 相似文献
8.
感染是影响慢性难愈性创面愈合最常见的原因,由于多种细菌混合感染、耐药性产生、生物膜的形成使其治疗成为难题.其中,细菌生物膜形成是导致创面的难以愈合的重要因素之一.本文就慢性难愈合创面中细菌生物膜的形成机制、特征、生态学、对伤口愈合的影响以及可能的治疗对策等作一综述. 相似文献
9.
In a dermal wound model, consisting of human skin fibroblasts in collagen matrix, continuous sinusoidal electrical current stimulation elicited a maximum increase of [3H]thymidine relative to control at 41 mV/m amplitude, 10 Hz. In this paper we elaborate cell cycle kinetics, using the same parameters. Labeling occurred over 4-h intervals beginning at 12 to 20 h after onset of electric exposure. The results suggest a significant increase in [3H]thymidine incorporation over an 8-h period extending from 16–24 hours after stimulus initiation. Bioelectromagnetics 19:68–74, 1998. © 1998 Wiley-Liss, Inc. 相似文献
10.
The objective of this study was to develop an optimized assay for Salmonella Typhi biofilm that mimics the environment of the gallbladder as an experimental model for chronic typhoid fever. Multi-factorial assays are difficult to optimize using traditional one-factor-at-a-time optimization methods. Response surface methodology (RSM) was used to optimize six key variables involved in S. Typhi biofilm formation on cholesterol-coated polypropylene 96-well microtiter plates. The results showed that bile (1.22%), glucose (2%), cholesterol (0.05%) and potassium chloride (0.25%) were critical factors affecting the amount of biofilm produced, but agitation (275 rpm) and sodium chloride (0.5%) had antagonistic effects on each other. Under these optimum conditions the maximum OD reading for biofilm formation was 3.4 (λ600 nm), and the coefficients of variation for intra-plate and inter-plate assays were 3% (n?=?20) and 5% (n?=?8), respectively. These results showed that RSM is an effective approach for biofilm assay optimization. 相似文献
11.
Agostinho AM Hartman A Lipp C Parker AE Stewart PS James GA 《Journal of applied microbiology》2011,111(5):1275-1282
Aims: To develop an in vitro model (Colony/drip‐flow reactor – C/DFR) for the growth and analysis of methicillin‐resistant Staphylococcus aureus (MRSA) biofilms. Methods and Results: Using the C/DFR model, biofilms were grown on the top of polycarbonate filter membranes inoculated with a clinical isolate of MRSA, placed on absorbent pads in the DFR and harvested after 72 h. The biofilms varied from 256 to 308 μm in thickness with a repeatability standard deviation of 0·22. Testing of antimicrobial agents was also performed where C/DFR biofilms were grown in parallel with conventional colony biofilms. A saline solution (control), 1% silver sulfadiazine solution, and 0·25% Dakin’s solution were used to treat the biofilms for 15 min. Microscopic evaluation of biofilm morphology and thickness was conducted. The Dakins solution in both models produced statistically significantly higher log reductions than silver sulfadiazine treatment. Conclusions: The C/DFR biofilms were thick and repeatable and exhibited higher resistance to Dakins solution than the treated colony biofilms. Significance and Impact of the Study: The C/DFR can be used as a tool for examining complex biofilm physiology as well as for performing comparative experiments that test wound care products and novel antimicrobials. 相似文献
12.
Markus Böl Roland B. Möhle Marian Haesner Thomas R. Neu Harald Horn Rainer Krull 《Biotechnology and bioengineering》2009,103(1):177-186
In this work, a three‐dimensional model of fluid–structure interactions (FSI) in biofilm systems is developed in order to simulate biofilm detachment as a result of mechanical processes. Therein, fluid flow past the biofilm surface results in a mechanical load on the structure which in turn causes internal stresses in the biofilm matrix. When the strength of the matrix is exceeded parts of the structure are detached. The model is used to investigate the influence of several parameters related to the mechanical strength of the biofilm matrix, Young's modulus, Reynolds number, and biofilm structure on biofilm detachment. Variations in biofilm strength and flow conditions significantly influence the simulation outcome. With respect to structural properties the model is widely independent from a change of Young's modulus. A further result of this work indicates that the change of biofilm structure due to growth or other processes will significantly change the stress distribution in the biofilm and thereby the detachment rate. An increase of the mechanical load by increasing fluid flow results in a flat surface of the remaining biofilm structure. It is concluded that the change of structure during biofilm development is the key determinant in terms of the detachment behavior. Biotechnol. Bioeng. 2009;103: 177–186. © 2008 Wiley Periodicals, Inc. 相似文献
13.
Biodegradation of 3,4-dichloroaniline in a fluidized bed bioreactor and a steady-state biofilm Kinetic model 总被引:3,自引:0,他引:3
Livingston AG 《Biotechnology and bioengineering》1991,38(3):260-272
Mixed culture of microorganisms immobilized onto Celite diatomaceous earth particles were used to degrade 3,4-dichloroaniline (34DCA) in a three-phase draft tube fluidized bed bioreactor. Biodegradation was confirmed as the dominant removal mechanism by measurements of the concomitant chloride ion evolution. Degradation efficiencies of 95% were obtained at a reactor retention time of 1.25 h. A mathematical model was used to describe the simultaneous diffusion and reaction of 34DCA and oxygen in the biofilms on the particles in the reactor. The parameters describing freely suspended cell growth on 34DCA were obtained in batch experiments. The model was found to describe the system well for three out of four steady states and to predict qualitatively the experimentally observed transition in the biofilm kinetics from 34DCA to oxygen limitation. 相似文献
14.
目的 研究曲霉生物膜的形成过程和结构特征.方法 我们利用一个曲霉生物膜体外模型研究其形成过程和结构特征.将200 μL浓度为1×10<'5>孢子/mL的受试曲霉(烟曲霉AF293,黄曲霉BMU03940,土曲霉BMU00802,黑曲霉BMU04689)的孢子悬液加到24孔组织培养板中的无菌塑料细胞培养盖玻片上,37℃孵育不同时间(0、2、4、8、10、12、16、18、24、48、72 h),加入25 μmol/L的FUN-1室温避光染色后,用波长488 nm激光激发,通过共聚焦激光扫描显微镜观察曲霉生物膜的形成过程;再用波长为488 am和633 am激光同时激发,将两个波长下的图像叠加后观察曲霉生物膜的活力;利用:XYZ轴成像观察其结构特征.在上述不同的时间点用钙荧光白染色后,用波长为405 nm的紫外光激发,观察曲霉生物膜细胞外基质的产生.结果 烟曲霉AF293在第4 h即开始有散在的孢子黏附于盖玻片上;8 h时孢子开始萌芽,10~12 h菌丝延长形成单细胞层;16~20 h菌丝缠绕形成多层立体结构;24 h形成一个具有复杂的三维立体结构特征的多细胞菌落,菌丝有序排列,细胞外基质弥散的分布在菌丝的周围;48~72 h生物膜逐渐成熟.成熟的烟曲霉生物膜是由细胞外基质包裹的有序排列的菌丝形成的复杂立体结构.黄曲霉BMU03940、土曲霉BMU00802、黑曲霉BMU04689与烟曲霉AF293有类似的生物膜发育阶段,包括黏附、孢子萌芽、菌丝延长、菌丝有序排列形成三维立体结构.结论 烟曲霉、黄曲霉、土曲霉和黑曲霉在体外都能形成典型的生物膜,它的形成过程和结构特征与其他真菌生物膜类似. 相似文献
15.
Jeong-Woo Choi Juhong Min Won-Hong Lee Sang Back Lee 《Biotechnology and Bioprocess Engineering》1999,4(1):58-58
A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate,
biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted
of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause
the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and
the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the
gas phase. The difference of settling velocity along the column height due to the distributions of size and number of bioparticle
was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along
the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained
from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with
experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated
based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration
was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected
by the superficial gas velocity.
An erratum to this article can be found online at . 相似文献
16.
17.
Ohtera K Luo ZP Couvreur PJ An KN 《In vitro cellular & developmental biology. Animal》2001,37(7):414-418
Summary Until now researchers have used a monolayer of cultured cells to investigate cell motility toward an injured cell. However,
we suspect that, when using this method, adjacent cells move to the free space due to relief of contact inhibition. The current
study was designed to investigate the cell motility nearby an injured cell in varying cell connectivity. A lowpower laser
beam was used to damage one cell selectively with the silver coating beads. After injury, we observed the cell motility in
three different cell types: (1) those immediately adjacent to the injured cell, 92) those removed from the injured cell by
interposition of another cell, and (3) those removed from the injured cell by free space. The cells that are in direct contact
with the injured cell moved toward the injured cell within 1.5–3.0 h. Indirectly connected cells and cells with no contact,
on the other hand, showed no significant movement toward the injured cell. This suggests that the cell motility toward the
cell injury is not only due to relief of contact inhibition but might also be caused by cell-to-cell signaling via cell connection.
The current method will provide a tool to create a cell injury without damaging adjacent cells. 相似文献
18.
A membrane-aerated biofilm reactor (MABR) was developed to degrade acetonitrile (ACN) in aqueous solutions. The reactor was
seeded with an adapted activated sludge consortium as the inoculum and operated under step increases in ACN loading rate through
increasing ACN concentrations in the influent. Initially, the MABR started at a moderate selection pressure, with a hydraulic
retention time of 16 h, a recirculation rate of 8 cm/s and a starting ACN concentration of 250 mg/l to boost the growth of
the biofilm mass on the membrane and to avoid its loss by hydraulic washout. The step increase in the influent ACN concentration
was implemented once ACN concentration in the effluent showed almost complete removal in each stage. The specific ACN degradation
rate achieved the highest at the loading rate of 101.1 mg ACN/g-VSS h (VSS, volatile suspended solids) and then declined with
the further increases in the influent ACN concentration, attributed to the substrate inhibition effect. The adapted membrane-aerated
biofilm was capable of completely removing ACN at the removal capacity of up to 21.1 g ACN/m2 day, and generated negligible amount of suspended sludge in the effluent. Batch incubation experiments also demonstrated
that the ACN-degrading biofilm can degrade other organonitriles, such as acrylonitrile and benzonitrile as well. Denaturing
gradient gel electrophoresis studies showed that the ACN-degrading biofilms contained a stable microbial population with a
low diversity of sequence of community 16S rRNA gene fragments. Specific oxygen utilization rates were found to increase with
the increases in the biofilm thickness, suggesting that the biofilm formation process can enhance the metabolic degradation
efficiency towards ACN in the MABR. The study contributes to a better understanding in microbial adaptation in a MABR for
biodegradation of ACN. It also highlights the potential benefits in using MABRs for biodegradation of organonitrile contaminants
in industrial wastewater. 相似文献
19.
Adam P Robertsa Jonathan Prattena Michael Wilsona Peter Mullanya 《FEMS microbiology letters》1999,177(1):63-66
A tetracycline resistance profile was established from a microcosm dental plaque in a constant depth film fermenter. The fermenter was inoculated with a Bacillus subtilis strain which contained the conjugative transposon, Tn5397, which confers tetracycline resistance upon its host. After 6 hour and 24 hour the tetracycline resistance profile of the biofilm was redetermined and a tetracycline resistant Streptococcus species was isolated. A molecular analysis of this strain confirmed that Tn5397 was present in the genomic DNA of the isolate. These data represent the first report, to our knowledge, of intergeneric transfer of a conjugative transposon in a mixed species biofilm and demonstrates the ability of conjugative transposons to disseminate antibiotic resistance genes in a mixed species environment. 相似文献
20.
Dennis Triglia Sonia Sherard Braa Christine Yonan Gail K. Naughton 《In vitro cellular & developmental biology. Animal》1991,27(3):239-244
Summary A new three-dimensional human skin model consisting of several layers of actively dividing and metabolically active human neonatal foreskin-derived fibroblasts and epidermal keratinocytes grown on nylon mesh has been used to assess the in vitro toxicity of test agents from various classes. Utilizing a slight modification of the published neutral red viability assay for endpoint determination, we have assayed and obtained dose-dependent toxicity curves for test agents from the following classes: detergents (n=15), alcohols (n=5), metal chlorides (n=10), perfumes and colognes (n=5), shampoos (n=4), conditioners (n=3), moisturizers (n=3), pesticides (n=3), and antimicrobial preservatives (n=4). Limited comparisons to in vivo ocular irritancy data with alcohols and detergents are encouraging. We have demonstrated the utility of this metabolically active dermal substrate containing naturally secreted collagen and other extracellular matrix proteins along with the neutral red viability assay for assessing the toxicity of a number of test agents from a variety of different classes with broad industrial applications. 相似文献