首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fouling-release coatings were prepared from blends of a fluorinated/siloxane copolymer with a poly(dimethyl siloxane) (PDMS) matrix in order to couple the low modulus character of PDMS with the low surface tension typical for fluorinated polymers. The content of the surface-active copolymer was varied in the blend over a broad range (0.15–10 wt % with respect to PDMS). X-ray photoelectron spectroscopy depth profiling analyses were performed on the coatings to establish the distribution of specific chemical constituents throughout the coatings, and proved enrichment in fluorine of the outermost layers of the coating surface. Addition of the fluorinated/siloxane copolymer to the PDMS matrix resulted in a concentration-dependent decrease in settlement of barnacle, Balanus amphitrite, cyprids. The release of young plants of Ulva, a soft fouling species, and young barnacles showed that adhesion strength on the fluorinated/siloxane copolymer was significantly lower than the siloxane control. However, differences in adhesion strength were not directly correlated with the concentration of copolymer in the blends.  相似文献   

2.
Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700?. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.  相似文献   

3.
Surface-active polymers derived from styrene monomers containing siloxane (S), fluoroalkyl (F) and/or ethoxylated (E) side chains were blended with an elastomer matrix, either poly(dimethyl siloxane) (PDMS) or poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), and spray-coated on top of PDMS or SEBS preformed films. By contact angle and X-ray photoelectron spectroscopy measurements, it was found that the surface-active polymer preferentially populated the outermost layers of the coating, despite its low content in the blend. However, the self-segregation process and the response to the external environment strongly depended on both the chemistry of the polymer and the type of matrix used for the blend. Additionally, mechanical testing showed that the elastic modulus of SEBS-based coatings was one order of magnitude higher than that of the corresponding PDMS-based coatings. The coatings were subjected to laboratory bioassays with the marine alga Ulva linza. PDMS-based coatings had superior fouling-release properties compared to the SEBS-based coatings.  相似文献   

4.
Fluorine-free mixed amphiphilic block copolymers with mixtures of short side groups of polydimethyl siloxane (PDMS) and polyethylene glycol (PEG) were synthesized and studied for their ability to influence the surface properties and control the adhesion of marine organisms to coated surfaces. The settlement (attachment) and strength of adhesion of two different marine algae, the green seaweed Ulva and the diatom Navicula, were evaluated against the surfaces. It is known that hydrophobic coatings based on polydimethyl siloxane elastomers (PDMSe) are prone to protein adsorption and accumulation of strongly adherent diatom slimes, in contrast to PEG-based hydrophilic surfaces that inhibit protein adsorption and moderate only weak adhesion of diatoms. By incorporating both PDMS and PEG side chains into the polymers, the effect of incorporating both polar and non-polar groups on fouling-release could be studied. The dry surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The ability of these mixed amphiphilic polymers to reconstruct in water was examined using underwater bubble contact angle and dynamic water contact angle experiments. To understand more about surface reconstruction behavior, protein adsorption experiments were carried out with fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) on both dry and pre-soaked surfaces.  相似文献   

5.

Melt‐coated films of poly(fluoroalkylacrylate)s and poly(fluoroalkylmethacrylate)s have been exposed respectively to bacterial cultures (Pseudomonas spp., Alteromonas sp. NCIMB 1534 and Desulphovibrio alaskensis NCIMB 13491), Enteromorpha zoospores and cyprid larvae of Balanus amphitrite Darwin. In all experiments, settlement and development was considerably less on the films than on controls of glass, poly‐(methylmethacrylate), poly(tetrafluoroethene) (ptfe) and polyester/glassf ibre composite. The settled bacteria were also much more weakly attached to the fluoropo‐lymer films than to the controls. Enteromorpha zoospores tended to settle at surface faults/cracks and also showed some sensitivity to the fluorine content of the materials. Cyprids did not settle on ptfe and could find only occasional sights for attachment on the films. Although the fluoropolymers show promise as fouling‐resistant coatings, improvements in film quality are required.  相似文献   

6.
The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M w = 1500 g mol?1) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M w = 300, 475, 1100 g mol?1), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.  相似文献   

7.
Abstract

Poly(dimethylsiloxane) (PDMS) elastomer coatings containing an amphiphilic hydrolyzable diblock copolymer additive were prepared and their potential as marine antifouling and antiadhesion materials was tested. The block copolymer additive consisted of a PDMS first block and a random poly(trialkylsilyl methacrylate (TRSiMA, R?=?butyl, isopropyl)-co-poly(ethyleneglycol) methacrylate (PEGMA) copolymer second block. PDMS-b-TRSiMA block copolymer additives without PEGMA units were also used as additives. The amphiphilic character of the coating surface was assessed in water using the captive air bubble technique for measurements of static and dynamic contact angles. The attachment of macro- and microorganisms on the coatings was evaluated by field tests and by performing adhesion tests to the barnacle Amphibalanus amphitrite and the green alga Ulva rigida. All the additive-based PDMS coatings showed better antiadhesion properties to A. amphitrite larvae than to U. rigida spores. Field tests provided meaningful information on the antifouling and fouling release activity of coatings over an immersion period of 23?months.  相似文献   

8.
The effects of films of two strains of a marine bacterium, Deleya marina (ATCC 25374 and 27129) on the attachment response of cypris larvae of the balanomorph barnacle, Balanus amphitrite, were examined in the laboratory. Tests showed that the cell-surface hydrophobicities of the two bacteria in suspension were different. In contrast, films derived from these cells were both highly wettable (i.e., displayed high surface free energy). Assays (22 hours) compared permanent attachment of larval barnacles to films derived from exponential and stationary phase cells for both bacteria. These films either had no effect or inhibited attachment of both 0-day- and 4-day-old cypris larvae when compared with unfilmed controls. Our data indicate that inhibition of larval barnacle attachment by films of the two bacteria is the result of factors other than surface free energy. Production of chemical barnacle settlement inhibitors by the bacteria is hypothesized.Offprint requests to: J. S. Maki.  相似文献   

9.
A series of eight novel siloxane-polyurethane fouling-release (FR) coatings were assessed for their FR performance in both the laboratory and in the field. Laboratory analysis included adhesion assessments of bacteria, microalgae, macroalgal spores, adult barnacles and pseudobarnacles using high-throughput screening techniques, while field evaluations were conducted in accordance with standardized testing methods at three different ocean testing sites over the course of six-months exposure. The data collected were subjected to statistical analysis in order to identify potential correlations. In general, there was good agreement between the laboratory screening assays and the field assessments, with both regimes clearly distinguishing the siloxane-polyurethane compositions comprising monofunctional poly(dimethyl siloxane) (PDMS) (m-PDMS) as possessing superior, broad-spectrum FR properties compared to those prepared with difunctional PDMS (d-PDMS). Of the seven laboratory screening techniques, the Cellulophaga lytica biofilm retraction and reattached barnacle (Amphibalanus amphitrite) adhesion assays were shown to be the most predictive of broad-spectrum field performance.  相似文献   

10.
Silicones with enhanced protein resistance were prepared by introducing poly(ethylene oxide) (PEO) chains via siloxane tethers (a-c) of varying lengths. Three unique ambifunctional molecules (a-c) having the general formula alpha-(EtO)3Si(CH2)2-oligodimethylsiloxanen-block-poly(ethylene oxide)8-OCH3 (n = 0 (a), 4, (b), and 13 (c)) were prepared via regioselective Rh-catalyzed hydrosilylation. Nine films were subsequently produced by the H3PO4-catalyzed sol-gel cross-linking of a-c each with alpha,omega-bis(Si-OH)polydimethylsiloxane (P, Mn = 3000 g/mol) in varying ratios (1:1, 1:2, and 2:3 molar ratio a, b, or c to P). Films prepared with a 2:3 molar ratio (a-c to P) contained the least amount of un-cross-linked materials, which may migrate to the film surface. For this set of films, surface hydrophilicity and protein resistance increased with siloxane tether length (a-c). These results indicate that PEO was more effectively mobilized to the surface if incorporated into silicones via longer siloxane tethers.  相似文献   

11.
Fluorine-free mixed amphiphilic block copolymers with mixtures of short side groups of polydimethyl siloxane (PDMS) and polyethylene glycol (PEG) were synthesized and studied for their ability to influence the surface properties and control the adhesion of marine organisms to coated surfaces. The settlement (attachment) and strength of adhesion of two different marine algae, the green seaweed Ulva and the diatom Navicula, were evaluated against the surfaces. It is known that hydrophobic coatings based on polydimethyl siloxane elastomers (PDMSe) are prone to protein adsorption and accumulation of strongly adherent diatom slimes, in contrast to PEG-based hydrophilic surfaces that inhibit protein adsorption and moderate only weak adhesion of diatoms. By incorporating both PDMS and PEG side chains into the polymers, the effect of incorporating both polar and non-polar groups on fouling-release could be studied. The dry surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The ability of these mixed amphiphilic polymers to reconstruct in water was examined using underwater bubble contact angle and dynamic water contact angle experiments. To understand more about surface reconstruction behavior, protein adsorption experiments were carried out with fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) on both dry and pre-soaked surfaces.  相似文献   

12.
This study aimed to develop a sensitive and reliable immunoassay by applying a highly functional phospholipid polymer biointerface. We synthesized a phospholipid polymer--poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-p-nitrophenyloxycarbonyl poly(ethylene glycol) methacrylate (MEONP)] (PMBN). MEONP contains active ester groups on the side chains for immobilization of antibodies via oxyethylene. PMBN with different compositions and oxyethylene chain lengths were synthesized; their effects on nonspecific and specific values in the immunoassay were evaluated. MPC units reduce the background by preventing nonspecific protein adsorption. MEONP units could conjugate antibodies and enhance the specific signal. The specific signal was independent of the oxyethylene chain length, but long oxyethylene chains increased the background. Specific signals corresponding to the antigen were observed with the PMBN coating, and a liner standard curve was obtained. The PMBN-coated surface maintained residual activity after long-term storage. This surface affords a low background without requiring blocking treatment and is suitable for immobilized antibodies.  相似文献   

13.
Silicone coatings with enhanced antifouling behavior towards bacteria, diatoms, and a diatom dominated slime were prepared by incorporating PEO-silane amphiphiles with varied siloxane tether lengths (a–c): α-(EtO)3Si(CH2)2-oligodimethylsiloxanen-block-poly(ethylene oxide)8-OCH3 [n = 0 (a), 4 (b), and 13 (c)]. Three modified silicone coatings (A–C) were prepared by the acid-catalyzed sol–gel cross-linking of a–c, respectively, each with a stoichiometric 2:3 M ratio of α, ω-bis(Si–OH)polydimethylsiloxane (Mn = 3,000 g mol?1). The coatings were exposed to the marine bacterium Bacillus sp.416 and the diatom (microalga) Cylindrotheca closterium, as well as a mixed community of Bacillus sp. and C. closterium. In addition, in situ microfouling was assessed by maintaining the coatings in the Atlantic Ocean. Under all test conditions, biofouling was reduced to the highest extent on coating C which was prepared with the PEO-silane amphiphile having the longest siloxane tether length (c).  相似文献   

14.
In laboratory-based biofouling assays, the influence of physico-chemical surface characteristics on barnacle settlement has been tested most frequently using the model organism Balanus amphitrite (= Amphibalanus amphitrite). Very few studies have addressed the settlement preferences of other barnacle species, such as Balanus improvisus (= Amphibalanus improvisus). This study aimed to unravel the effects of surface physico-chemical cues, in particular surface-free energy (SFE) and surface charge, on the settlement of cyprids of B. improvisus. The use of well-defined surfaces under controlled conditions further facilitates comparison of the results with recent similar data for B. amphitrite. Zero-day-old cyprids of B. improvisus were exposed to a series of model surfaces, namely self-assembled monolayers (SAMs) of alkanethiols with varying end-groups, homogenously applied to gold-coated polystyrene (PS) Petri dishes. As with B. amphitrite, settlement of cyprids of B. improvisus was influenced by both SFE and charge, with higher settlement on low-energy (hydrophobic) surfaces and negatively charged SAMs. Positively charged SAMs resulted in low settlement, with intermediate settlement on neutral SAMs of similar SFE. In conclusion, it is demonstrated that despite previous suggestions to the contrary, these two species of barnacle show similar preferences in response to SFE; they also respond similarly to charge. These findings have positive implications for the development of novel antifouling (AF) coatings and support the importance of consistency in substratum choice for assays designed to compare surface preferences of fouling organisms.  相似文献   

15.
M Suwalsky  M Bunster 《Biopolymers》1975,14(6):1197-1204
An X-ray study of the synthetic polypeptide poly(L -homoarginine hydrochloride) has been made to investigate whether, like the chemically related polypeptides poly(L -lysine hydrochloride), poly(L -arginine hydrochloride), and poly(L -ornithine hydrobromide), it can undergo conformational transitions merely from variations in its degree of hydration. X-ray photographs of powder and oriented specimens containing one to 15 molecules of water per L -homoarginine hydrochloride residue showed that this polymer forms only a β-pleated-sheet structure. The pleated sheets, formed by antiparallel polypeptide chains hydrogen-bonded to each other, are piled up along the b axis in an alternating sequence (“sandwich structure”). This structure did not appreciably change with variations of the degree of hydration, and the observed reflections at 56% relative humidity (1.8 molecules of water per residue) could be indexed satisfactorily in terms of a monoclinic unit cell, of space group P21, with a = 9.34 Å, b = 40.07 Å, c = 6.94 Å, and γ = 106°. These dimensions are shown by models to be compatible with the proposed structure, and the calculated density of 1.27 g/cm3 agrees well with the experimental value of 1.29 g/cm3. Removal of the last molecule of water results in a very diffuse pattern, while specimens containing 20 molecules of water per residue show only reflections due to water.  相似文献   

16.
TD Perry  M Zinn  R Mitchell 《Biofouling》2013,29(2):147-153

The marine bacterium, Halomonas marina (ATCC 27129), was shown to inhibit settlement and development of the sessile invertebrates Balanus amphitrite and Bugula neritina. Different bacterial treatments were employed to investigate this interaction. Filmed bacteria and liquid suspensions of whole cells, lysed cells and culture filtrate all reduced settlement of B. amphitrite. Polyurethane coatings containing whole cells were partially inhibitory while lysed cells caused complete inhibition of B. amphitrite larval settlement. In contrast, culture filtrate in a polyurethane matrix stimulated settlement of B. amphitrite larvae. Whole cells, culture filtrate, and lysed cells embedded in a polyurethane coating also controlled B. neritina settlement and maturation.  相似文献   

17.
Five non-ionic dialkylglycerol poly(oxyethylene) ether surfactants, designated 2CmEn (where m, the number of carbons in each alkyl chain = 16 or 18, and n, the number of oxyethylene units = 12, 16 or 17) have been examined for their ability to form vesicles when dispersed in water or in an aqueous solution of 154 mM NaCl, alone or in the presence of 50 mol% cholesterol. Freeze fracture electron microscopy and light scattering showed that regardless of the hydrating fluid, all the non-ionic surfactants, with the exception of 2C16E17 and 2C18E17, formed vesicles in the absence of cholesterol – 2C16E17 and 2C18E17 instead formed micellar aggregates. All surfactants, however, formed vesicles in the presence of 50 mol% cholesterol. Small angle neutron scattering studies of the surfactant vesicles enabled the bilayer thickness and repeat distance (d-spacing) to be determined. The bilayers formed by all the non-ionic surfactants in the absence of cholesterol were surprisingly thin (∼50 Å for the E12 containing surfactants and ∼64 Å for 2C18E16) most likely due to the intrusion of oxyethylene groups into the hydrophobic core of the bilayers. In contrast, however, the non-ionic surfactants exhibited a relatively large d-spacing of around ∼130–150 Å. The addition of 50 mol% cholesterol had a dramatic effect on the thickness of the vesicle bilayer, increasing its size by 10–20 Å, most probably because of an extrusion of oxyethylene from the hydrophobic region of the bilayer and/or a reduction in the tilt on the surfactant alkyl chains. Additionally the presence of cholesterol in a vesicle tended to reduce slightly both the d-spacing and the thickness of the water layer separating the bilayers. The presence of NaCl, even at the low concentrations used in the study, did affect the properties of the bilayer such that it reduced the d-spacing and, in the case of cholesterol-containing systems, also reduced bilayer thickness.  相似文献   

18.
A quantitative genetics approach was used to examine variation in the characteristics of the adhesive plaque of the barnacle Balanus amphitrite Darwin attached to two silicone substrata. Barnacles settled on silicone polymer films occasionally form thick, soft adhesive plaques, in contrast to the thin, hard plaques characteristic of attachment to other surfaces. The proportion of barnacles producing a thick adhesive plaque was 0.31 for Veridian, a commercially available silicone fouling-release coating, and 0.18 for Silastic T-2, a silicone rubber used for mold-making. For both materials, significant variation among maternal families in the proportion of barnacles producing a thick adhesive plaque was observed, which suggests the presence of genetic variation, or maternal environmental effects, for this plaque characteristic. For the Veridian coating, barnacles expressing the thick adhesive plaque also exhibited significantly reduced tenacity. This represents the first reported case for potential genetic control of intraspecific phenotypic variation in the physical characteristics and tenacity of the adhesive of a fouling invertebrate.  相似文献   

19.
Nick Aldred  Guozhu Li  Ye Gao 《Biofouling》2013,29(6):673-683
Zwitterionic polymers such as poly(sulfobetaine methacrylate) (polySBMA) and poly(carboxybetaine methacrylate) (polyCBMA) have demonstrated impressive fouling-resistance against proteins and mammalian cells. In this paper, the effects of these surface chemistries on the settlement and behavior of an ubiquitous fouling organism, the cypris larva of the barnacle Balanus amphitrite (=Amphibalanus amphitrite), were studied in the laboratory. Conventional settlement assays and behavioral analysis of cyprids using Noldus Ethovision 3.1 demonstrated significant differences in settlement and behavior on different surfaces. Cyprids did not settle on the polySBMA or polyCBMA surfaces over the course of the assay, whereas settlement on glass occurred within expected limits. Individual components of cyprid behavior were shown to differ significantly between glass, polySBMA and polyCBMA. Cyprids also responded differently to the two zwitterionic surfaces. On polySBMA, cyprids were unwilling or unable to settle, whereas on polyCBMA cyprids did not attempt exploration and left the surface quickly. In neither case was toxicity observed. It is concluded that a zwitterionic approach to fouling-resistant surface development has considerable potential in marine applications.  相似文献   

20.
The ideal marine antifouling (AF)/fouling-release (FR) coating should be non-toxic, while effectively either resisting the attachment of marine organisms (AF) or significantly reducing their strength of attachment (FR). Many recent studies have shown that amphiphilic polymeric materials provide a promising solution to producing such coatings due to their surface dual functionality. In this work, poly(ethylene glycol) (PEG) of different molecular weights (Mw?=?350, 550) was coupled to a saturated difunctional alkyl alcohol to generate amphiphilic surfactants (PEG-hydrocarbon-OH). The resulting macromolecules were then used as side chains to covalently modify a pre-synthesized PS8?K-b-P(E/B)25?K-b-PI10?K (SEBI or K3) triblock copolymer, and the final polymers were applied to glass substrata through an established multilayer surface coating technique to prepare fouling resistant coatings. The coated surfaces were characterized with AFM, XPS and NEXAFS, and evaluated in laboratory assays with two important fouling algae, Ulva linza (a green macroalga) and Navicula incerta, a biofilm-forming diatom. The results suggest that these polymer-coated surfaces undergo surface reconstruction upon changing the contact medium (polymer/air vs polymer/water), due to the preferential interfacial aggregation of the PEG segment on the surface in water. The amphiphilic polymer-coated surfaces showed promising results as both AF and FR coatings. The sample with longer PEG chain lengths (Mw?=?550?g?mol?1) exhibited excellent properties against both algae, highlighting the importance of the chemical structures on ultimate biological performance. Besides reporting synthesis and characterization of this new type of amphiphilic surface material, this work also provides insight into the nature of PEG/hydrocarbon amphiphilic coatings, and this understanding may help in the design of future generations of fluorine-free, environmentally friendly AF/FR polymeric coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号