首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Physical cleaning and/or chemical cleaning have been generally used to control biofouling in the reverse osmosis (RO) process. However, conventional membrane cleaning methods to control biofouling are limited due to the generation of by-products and the potential for damage to the RO membranes. In this study, supercritical carbon dioxide (SC CO2) treatment, an environmentally friendly technique, was introduced to control biofouling in the RO process. SC CO2 (100 bar at 35°C) treatment was performed after biofouling was induced on a commercial RO membrane using Pseudomonas aeruginosa PA01 GFP as a model bacterial strain. P. aeruginosa PA01 GFP biofilm cells were reduced on the RO membrane by >8 log within 30 min, and the permeate flux was sufficiently recovered in a laboratory-scale RO membrane system without any significant damage to the RO membrane. These results suggest that SC CO2 treatment is a promising alternative membrane cleaning technique for biofouling in the RO process.  相似文献   

2.
This study is focused on the fabrication and characterization of titanium oxide (TiO2) NPs. Afterwards; the interaction of TiO2 NPs with human hemoglobin (Hb) was investigated by FTIR spectroscopy, fluorescence spectroscopy, and molecular docking studies. Also, the cytotoxic effect of fabricated TiO2 NPs against human white blood cells (WBCs) was considered by MTT assay. The antibacterial effect of synthesized NPs was examined on Pseudomonas aeruginosa (ATCC 27853); Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923). TEM and DLS investigations showed that the synthesized TiO2 NPs have a narrow nano-sized distribution. XRD pattern of the fabricated NPs exhibited that the TiO2 NPs contain anatase phase. Similarity in amide I and II signal intensities showed that secondary structure of the adsorbed Hb is preserved. The intrinsic fluorescence study revealed that the fluorescence quenching of Hb was done by complex formation between Hb and TiO2 NPs trough the hydrogen bond and van der Waals interactions. Synchronous fluorescence spectroscopy determined that interaction of TiO2 NPs with Hb did not unfold the Hb structure in the vicinity of the Tyr and Trp residues. Molecular docking study depicted that Glu-95, Thr-134 and Tyr-140 are involved in the formation of hydrophilic bonds. MTT data and antibacterial assays indicated that TiO2 NPs endow distinguished antibacterial activities against Gram-negative and Gram positive strains at safe concentrations. This study may reveal that fabricated TiO2 NP can be used as a safe and potent antibacterial agent.

Communicated by Ramaswamy H. Sarma  相似文献   


3.
Controversial and inconsistent results on the eco-toxicity of TiO2 nanoparticles (NPs) are commonly found in recorded studies and more experimental works are therefore warranted to elucidate the nanotoxicity and its underlying precise mechanisms. Toxicities of five types of TiO2 NPs with different particle sizes (10∼50 nm) and crystal phases were investigated using Escherichia coli as a test organism. The effect of water chemistry on the nanotoxicity was also examined. The antibacterial effects of TiO2 NPs as revealed by dose-effect experiments decreased with increasing particle size and rutile content of the TiO2 NPs. More bacteria could survive at higher solution pH (5.0–10.0) and ionic strength (50–200 mg L−1 NaCl) as affected by the anatase TiO2 NPs. The TiO2 NPs with anatase crystal structure and smaller particle size produced higher content of intracellular reactive oxygen species and malondialdehyde, in line with their greater antibacterial effect. Transmission electron microscopic observations showed the concentration buildup of the anatase TiO2 NPs especially those with smaller particle sizes on the cell surfaces, leading to membrane damage and internalization. These research results will shed new light on the understanding of ecological effects of TiO2 NPs.  相似文献   

4.
Xiang Shen  Yiping Zhao 《Biofouling》2013,29(8):991-1003
Biofouling of membrane surfaces by the attachment of microorganisms is one of the major obstacles for ensuring the effectiveness of membrane separation processes. This work presents the construction of a zwitterionic PVDF membrane surface with improved resistance to biofouling. An amphiphilic copolymer of poly(vinylidene fluoride)-graft-poly(N,N-dimethylamino-2-ethylmethacrylate) (PVDF-g-PDMAEMA) was first synthesized via radical graft copolymerization and then the flat membrane was cast with immersed phase inversion. The PDMAEMA side chains tended to aggregate on the membrane surface, pore surface and internal pore channel surface, and were converted with 1,3-propane sultone (1,3-PS) to yield a zwitterionic membrane surface. A higher conversion of PDMAEMA chains and distribution of zwitterions were obtained using a longer treatment time. A biofouling assay indicated that incorporation of zwitterions suppressed the adsorption of extracellar polymer substances and the adhesion of Escherichia coli bacterial cells to the membrane surface, endowing the membrane with a high flux recovery and biofouling resistance in the filtration process.  相似文献   

5.
Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans. Titanium dioxide nanoparticles (TiO2 NPs) are used in food industry in a variety of products and it was reported that daily exposure to these nanomaterials is very high. Anti-listerial activity of TiO2 NPs was investigated only with UV-irradiated nanomaterials, based on generation of reactive oxigen species (ROS) with antibacterial effect after UV exposure. Since both Listeria monocytogenes and TiO2 NPs are veicolated with foods, this study explores the interaction between Listeria monocytogenes and non UV-irradiated TiO2 NPs, with special focus on biofilm formation and intestinal cell interaction. Scanning electron microscopy and quantitative measurements of biofilm mass indicate that NPs influence both production and structural architecture of listerial biofilm. Moreover, TiO2 NPs show to interfere with bacterial interaction to intestinal cells. Increased biofilm production due to TiO2 NPs exposure may favour bacterial survival in environment and its transmission to animal and human hosts.  相似文献   

6.
Abstract

This research aimed to mitigate fouling in membrane bioreactors (MBR) through concurrent usage of zinc oxide as an antibacterial agent (A) and sodium alginate as a hydrophilic agent (H) within a polyacrylonitrile membrane (PM) structure. The antibacterial polymeric membranes (APM) and antibacterial hydrophilic polymeric membranes (AHPM) synthesized showed a higher porosity, mechanical strength and bacterial inhibition zone, and a lower contact angle in comparison with PM membranes. EDS, SEM and AFM analyses were used to characterize the chemical, structural, and morphological properties of PM, APM, and AHPM. The flux of PM, APM, and AHPM in MBR was 37, 48, and 51?l m?2 h?1 and COD removal was 81, 93.5, and 96.7%, respectively. After MBR operation for 35?days in an urban wastewater treatment, only 50% of the flux of PM was recovered, while the antibacterial and hydrophilic agents yielded a flux recovery of 72.7 and 100% for APM and AHPM, respectively.  相似文献   

7.
BackgroundTherapeutic options against Multi Drug Resistant (MDR) pathogens are limited and the overall strategy would be the development of adjuvants able to enhance the activity of therapeutically available antibiotics. Non-specific outer membrane permeabilizer, like metal-oxide nanoparticles, can be used to increase the activity of antibiotics in drug-resistant pathogens. The study aims to investigate the effect of cerium oxide nanoparticles (CeO2 NPs) on bacterial outer membrane permeability and their application in increasing the antibacterial activity of antibiotics against MDR pathogens.MethodsThe ability of CeO2 NPs to permeabilize Gram-negative bacterial outer membrane was investigated by calcein-loaded liposomes. The extent of the damage was evaluated using lipid vesicles loaded with FITC-dextran probes. The effect on bacterial outer membrane was evaluated by measuring the coefficient of permeability at increasing concentrations of CeO2 NPs. The interaction between CeO2 NPs and beta-lactams was evaluated by chequerboard assay against a Klebsiella pneumoniae clinical isolate expressing high levels of resistance against those antibiotics.ResultsCalcein leakage increases as NPs concentrations increase while no leakage was observed in FITC-dextran loaded liposomes. In Escherichia coli the outer membrane permeability coefficient increases in presence of CeO2 NPs. The antibacterial activity of beta-lactam antibiotics against K. pneumoniae was enhanced when combined with NPs.ConclusionsCeO2 NPs increases the effectiveness of antimicrobials which activity is compromised by drug resistance mechanisms. The synergistic effect is the result of the interaction of NPs with the bacterial outer membrane. The low toxicity of CeO2 NPs makes them attractive as antibiotic adjuvants against MDR pathogens.  相似文献   

8.
Eun-Ho Kim  Mohammed Dwidar 《Biofouling》2014,30(10):1225-1233
This study evaluated the co-application of bacterial predation by Bdellovibrio bacteriovorus and either alum coagulation or powdered activated carbon adsorption to reduce fouling caused by Escherichia coli rich feed solutions in dead-end microfiltration tests. The flux increased when the samples were predated upon or treated with 100 ppm alum or PAC, but co-treatment with alum and predation gave the best flux results. The total membrane resistance caused by the predated sample was reduced six-fold when treated with 100 ppm PAC, from 11.8 to 1.98 × 1011 m?1, while irreversible fouling (Rp) was 2.7-fold lower. Treatment with 100 ppm alum reduced the total resistance 14.9-fold (11.8 to 0.79 × 1011 m?1) while the Rp decreased 4.25-fold. SEM imaging confirmed this, with less obvious fouling of the membrane after the combined process. This study illustrates that the combination of bacterial predation and the subsequent removal of debris using coagulation or adsorption mitigates membrane biofouling and improves membrane performance.  相似文献   

9.
In the present work, a bionanocomposite for plant crop protection was prepared by non-toxic biocompatible & biodegradable nanomaterials (Cellulose & TiO2) to utilize its synergistic effects against antimicrobial pathogens. The commercially available microcrystalline cellulose has been reduced to a nanometric scale regime using acid hydrolysis, while the standard TiO2 nano-powder of particle size ~20 nm has been used to prepare their nanocomposite (NC). The antibacterial studies via agar well diffusion method demonstrated that after 72 h of incubation, parent nanomaterials Ncell and TiO2 were not showing any activity against phytopathogens X. campestris pv. campestris, and Clavibacter while the nanocomposite's NC's were still effective depicting both bacteriostatic and bactericidal actions. However, the bacterial growth of biocontrol P. fluorescence was not affected by Ncell, TiO2 NPs and NC after 72 h of incubation. The antifungal testing results via poison food agar assay method suggest that the nanocomposite, along with Ncell and TiO2 NPs, exhibited strong inhibition of fungal growth of Phytophthora Spp at 0.125 mg/ml concentration while for F. graminearum, similar effect was observed at 0.25 mg/ml concentration. The nanocomposite has proved its potential by exhibiting longer & stronger synergistic effects against plant pathogens as a good antimicrobial agent for protection of agricultural crops.  相似文献   

10.
Recent studies demonstrated that titanium dioxide nanoparticles (TiO2 NPs) could significantly promote photosynthesis and plant growth, but its mechanism is still unclear. In this article, we studied the mechanism of light absorption and transfer of chloroplasts of Arabidopsis thaliana caused by TiO2 NPs treated. The results showed that TiO2 NPs could induce significant increases of light-harvesting complex II (LHCII) b gene expression and LHCII II content on the thylakoid membrane in A. thaliana, and the increases in LHCII were higher than the non-nano TiO2 (bulk-TiO2) treatment. Meanwhile, spectroscopy assays indicated that TiO2 NPs obviously increased the absorption peak intensity of the chloroplast in red and blue region, the fluorescence quantum yield near 680 nm, the excitation peak intensity near 440 and 480 nm and/or near 650 and 680 nm of the chloroplast. TiO2 NPs treatment could reduce F 480/F 440 ratio and increase F 650/F 680 ratio and accelerate the rate of whole chain electron transport and oxygen evolution of the chloroplast. However, the photosynthesis improvement of the non-nanoTiO2 treatment was far less effective than TiO2 NPs treatment. Taken together, TiO2 NPs could promote the light absorption of chloroplast, regulate the distribution of light energy from PS I to PS II by increasing LHCII and accelerate the transformation from light energy to electronic energy, water photolysis, and oxygen evolution.  相似文献   

11.
Abstract

Various quorum quenching (QQ) media have been developed to mitigate membrane biofouling in a membrane bioreactor (MBR). However, most are expensive, unstable and easily trapped in hollow fibre membranes. Here, a sol-gel method was used to develop a mesoporous silica medium entrapping a QQ bacterial strain (Rhodococcus sp. BH4). The new silica QQ medium was able to remove quorum sensing signalling molecules via both adsorption (owing to their mesoporous hydrophobic structure) and decomposition with an enzyme (lactonase), preventing MBR biofouling without affecting the water quality. It also demonstrated a relatively long life span due to its non-biodegradability and its relatively small particle size (<1.0?mm), which makes it less likely to clog in a hollow fibre membrane module.  相似文献   

12.
A new, thin film, biofouling resistant, nanofiltration (NF) membrane was fabricated with two key characteristics, viz. a low rate of silver (Ag) release and long-lasting antibacterial properties. In the new approach, nanoparticles were embedded completely in a polymeric thin-film layer. A comparison was made between the new thin-film composite (TFC), NF membrane and thin-film nanocomposite (TFN), and antibacterial NF membranes. Both types of NF membrane were fabricated by interfacial polymerization on a polysulphone sublayer using m-phenylenediamine and trimesoyl chloride as an amine monomer and an acid chloride monomer, respectively. Energy dispersive X-ray (EDX) microanalysis demonstrated the presence of Ag nanoparticles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the cross-sectional and surface morphological properties of the NF membranes. Permeability and salt rejection were tested using a dead-end filtration cell. Ag leaching from the membranes was measured using inductively coupled mass spectrometry (ICP–MS). Morphological studies showed that the TFC NF membranes had better thin-film formation (a more compact structure and a smoother surface) than TFN NF membranes. Performance experiments on TFC NF membranes revealed that permeability was good, without sacrificing salt rejection. The antibacterial properties of the fabricated membranes were tested using the disk diffusion method and viable plate counts. The antibiofouling properties of the membranes were examined by measuring the quantity of bacterial cells released from the biofilm formed (as a function of the amount of biofilm present). A more sensitive surface was observed compared to that of a typical antibacterial NF membrane. The Ag leaching rates were low, which will likely result in long-lasting antibacterial and biofouling resistant properties.  相似文献   

13.
To achieve the energy‐effective ammonia (NH3) production via the ambient‐condition electrochemical N2 reduction reaction (NRR), it is vital to ingeniously design an efficient electrocatalyst assembling the features of abundant surface deficiency, good dispersibility, high conductivity, and large surface specific area (SSA) via a simple way. Inspired by the fact that the MXene contains thermodynamically metastable marginal transition metal atoms, the oxygen‐vacancy‐rich TiO2 nanoparticles (NPs) in situ grown on the Ti3C2Tx nanosheets (TiO2/Ti3C2Tx) are prepared via a one‐step ethanol‐thermal treatment of the Ti3C2Tx MXene. The oxygen vacancies act as the main active sites for the NH3 synthesis. The highly conductive interior untreated Ti3C2Tx nanosheets could not only facilitate the electron transport but also avoid the self‐aggregation of the TiO2 NPs. Meanwhile, the TiO2 NPs generation could enhance the SSA of the Ti3C2Tx in return. Accordingly, the as‐prepared electrocatalyst exhibits an NH3 yield of 32.17 µg h?1 mg?1cat. at ?0.55 V versus reversible hydrogen electrode (RHE) and a remarkable Faradaic efficiency of 16.07% at ?0.45 V versus RHE in 0.1 m HCl, placing it as one of the most promising NRR electrocatalysts. Moreover, the density functional theory calculations confirm the lowest NRR energy barrier (0.40 eV) of TiO2 (101)/Ti3C2Tx compared with Ti3C2Tx or TiO2 (101) alone.  相似文献   

14.
A 31-amino acid synthetic peptide (NH2-FFSASCVPGADKGQFPNLCRLCAGTGENKCA-COOH) was chemically synthesized based on the amino acid sequence of a region of human lactoferrin homologous to other sequences present in the N- and C-lobes of all members of the transferrin family proteins. The peptide, termed kaliocin-1, and lactoferrin showed a bactericidal effect in assays performed in low-ionic-strength conditions. This is the first time that it is shown that the antimicrobial effect of lactoferrin depends on the extracellular cation concentration. The antimicrobial effect of kaliocin-1 was lower than that of human lactoferrin, but their activities were inhibited by Na+ or K+ in a cation concentration-dependent manner. In addition, the peptide was able to mimic native lactoferrin, inducing K+-efflux and a selective dissipation of the transmembrane electrical potential of Escherichia coli cells without causing extensive damage to the outer and inner bacterial membranes. In contrast, the peptide, but not lactoferrin, was able to permeabilize different ions through liposomal membranes. The hypothetical interaction of kaliocin-1 with a bacterial membrane compound is discussed based in the different ion flux induced on cellular and artificial membranes as well as data from circular dichroism assays. Kaliocin-1 was not cytotoxic and could be a suitable model for the design of analogs able to mimic the antibacterial effect of human lactoferrin.  相似文献   

15.
为了阐明纳米二氧化钛颗粒(TiO2NPs)对生菜(Lactuca sativa)生长的影响,采用自行设计的水培装置探究不同浓度TiO2NPs (300~1 200 mg/L)下,生菜生长和生理生化指标的变化。结果表明,300 mg/L TiO2NPs能促进生菜幼苗的根长、茎长、叶表面积、鲜重和干重;随着TiO2 NPs浓度增大,生菜的生长指标呈现下降趋势,但仍优于对照组。生菜体内的抗氧化酶(SOD、POD)在低TiO2 NPs浓度(300 mg/L)时,活性明显下降;随着TiO2 NPs浓度增大,这两种抗氧化酶活性逐渐增强。因此,生菜对TiO2NPs胁迫具有浓度依赖性,表现为“低促高抑”,且能够通过抗氧化酶系统来减轻TiO2NPs伤害。  相似文献   

16.

The pollution of raw surface and underground water with pharmaceutical compounds has an impact on increasing the resistance of pathogenic microorganisms. Environmental challenges include investigating a novel and cost-effective therapeutic approach for the bactericidal treatment of water supplies. Ethyl acetate extracts from three marine algae (Caulerpa racemosa, Codium fragile, and Cystoseira myrica) obtained from the Red Sea (Hurghada, Egypt) were used for the green synthesis of TiO2 nanoparticles (TiO2-NPs). A highly crystalline nanoparticle structure with a stable tetragonal anatase structure was obtained; the mean concentrations were 2.43 to 6.09?×?108 NPs/mL and the average particle size was 125–131 nm. In ultrapure water, the TiO2-NPs were confirmed to be a stable solution following zeta potential analysis. UV light (λ?=?350 nm) for 2 h was used to activate the TiO2-NPs before the antibacterial activity tests. The application of UV-activated TiO2-NPs for 4 h treatments demonstrated promising bactericidal activity, with a 73.08% reduction in Salmonella typhi and a 91.51% reduction in Enterobacter ludwigii. Antibiofilm activities against the reference strains Salmonella typhi NCTC 12023/ATTC and Morganella morganii ATCC25829 and the bacterial isolates Klebsiella pneumoniae, Enterobacter ludwigii, and Enterococcus faecium were tested. The TiO2-NPs were nontoxic against the human normal cell line RPE1. Regarding the treatment of total and fecal coliform, in addition to fecal streptococci, in raw surface and underground water, the UV-activated TiO2-NPs prepared from the ethyl acetate extracts of Caulerpa racemosa showed high applicability. The present study offered insights into the nature and development of nontoxic and green TiO2-NP formulations for use as modern antibacterial alternatives against coliforms in aquatic systems.

  相似文献   

17.
The potential impact of titanium dioxide nanoparticles (TiO2 NPs) on nitrogen removal from wastewater in activated sludge was investigated using a sequencing batch reactor. The addition of 2–50 mg L?1 of TiO2 NPs did not adversely affect nitrogen removal. However, when the activated sludge was exposed to 100–200 mg L?1 of TiO2 NPs, the effluent total nitrogen removal efficiencies were 36.5 % and 20.3 %, respectively, which are markedly lower than the values observed in the control test (80 %). Further studies showed that the decrease in biological nitrogen removal induced by higher concentrations of TiO2 NPs was due to an inhibitory effect on the de-nitrification process. Denaturing gradient gel electrophoresis profiles showed that 200 mg L?1 of TiO2 NPs significantly reduced microbial diversity in the activated sludge. The effect of light on the antibacterial activity of TiO2 NPs was also investigated, and the results showed that the levels of TiO2-dependent inhibition of biological nitrogen removal were similar under both dark and light conditions. Additional studies revealed that different TiO2 concentrations had a significant effect on dehydrogenase activity, and this effect was most likely the result of decreased microbial activity.  相似文献   

18.
范峰华  郑荣波  刘爽  郭雪莲 《生态学报》2021,41(16):6525-6532
近年来,二氧化钛纳米颗粒(TiO2NPs)环境释放量不断增加,并通过多种途径进入湿地生态系统,不可避免地影响到湿地生态系统环境和功能。然而,关于TiO2NPs对沼泽土壤反硝化作用和氧化亚氮(N2O)排放的影响机及制尚不明确。选择典型沼泽土壤,通过室内培养实验研究土壤理化性质、反硝化酶活性、反硝化速率(DNR)和N2O排放对不同剂量TiO2NPs 0 mg/kg (CK)、10 mg/kg (A10)、100 mg/kg (A100)、1000 mg/kg (A1000)输入的响应,探讨TiO2NPs输入对沼泽土壤反硝化作用和N2O排放影响的内在机制。结果表明:不同剂量TiO2NPs处理显著降低了土壤pH (P<0.05),A10处理显著降低土壤总有机碳(TOC)含量(P<0.01),A1000处理显著降低硝态氮(NO3--N)和亚硝态氮(NO2--N)含量(P<0.05)。TiO2NPs处理抑制硝酸盐还原酶(NAR)活性,促进一氧化氮还原酶(NOR)和氧化亚氮还原酶(NOS)活性(P<0.01),A1000处理先促进后抑制了亚硝酸盐还原酶(NIR)活性(P<0.05)。不同剂量TiO2NPs处理抑制了土壤DNR,促进了N2O排放,TiO2NPs处理通过抑制NIR活性,降低土壤DNR,同时通过促进NOR活性,提高N2O排放。综上,TiO2NPs输入通过影响反硝化还原酶活性改变沼泽土壤反硝化过程,导致沼泽土壤N2O排放增加,改变湿地氮的源、汇功能,影响全球气候变化。为TiO2NPs输入的湿地环境风险评估研究提供理论基础。  相似文献   

19.
One of the main mechanisms of nanoparticle toxicity is known to be the generation of reactive oxygen species (ROS) which primarily damage cell membranes. However, very limited data on membrane effects in anaerobic environments (where ROS could not be the cause of membrane damage) are available. In the following study, rumen anaerobe Ruminococcus flavefaciens 007C was used as a bacterial model to assess the potential effects of Al2O3 and TiO2 nanoparticles on membranes in an anaerobic environment. Fatty acid profiles of cultures after exposure to Al2O3 or TiO2 nanoparticles were analyzed and compared with the profiles of non-exposed cultures or cultures exposed to bulk materials. Analysis revealed dose–effect changes in membrane composition exclusively when cells were exposed to Al2O3 nanoparticles in a concentration range of 3–5 g/L, but were not present in cultures exposed to bulk material. On the other hand, the tested concentrations of nano-TiO2 did not significantly affect the membrane profile of the exposed bacterium. The results suggest the possibility that Al2O3 induces changes in bacterial membranes by direct physical interaction, which was supported by TEM image analysis.  相似文献   

20.
Rhamnolipids were evaluated as biofouling reducing agents in this study. The permeability of the bacterial outer membrane was increased by rhamnolipids while the growth rate of Pseudomonas aeruginosa was not affected. The surface hydrophobicity was increased through the release of lipopolysaccharides and extracellular polymeric substances from the outer cell membrane. Rhamnolipids were evaluated as agents for the prevention and cleaning of biofilms. A high degree of biofilm detachment was observed when the rhamnolipids were used as a cleaning agent. In addition, effective biofilm reduction occurred when rhamnolipids were applied to various species of Gram-negative bacteria isolated from seawater samples. Biofilm reduction using rhamnolipids was comparable to commercially available surfactants. In addition, 20% of the water flux was increased after rhamnolipid treatment (300 μg ml?1, 6 h exposure time) in a dead-end filtration system. Rhamnolipids appear to have promise as biological agents for reducing membrane biofouling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号