首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10?mM) of zinc precursors. These coatings were tested for 5?h under artificial sunlight (1060?W?m?2 or 530?W?m?2) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn2+ ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions.  相似文献   

2.
Marine biofilm communities that developed on artificial substrata were investigated using molecular and microscopic approaches. Polystyrene, Teflon? and four antifouling (AF) paints were immersed for 2 weeks at two contrasting sites near Toulon on the French Mediterranean coast (Toulon military harbour and the natural protected area of Porquerolles Island). Biofilms comprising bacteria and diatoms were detected on all the coatings. The population structure as well as the densities of the microorganisms differed in terms of both sites and coatings. Lower fouling densities were observed at Porquerolles Island compared to Toulon harbour. All bacterial communities (analysed by PCR-DGGE) showed related structure, controlled both by the sites and the type of substrata. Pioneer microalgal communities were dominated by the same two diatom species, viz. Licmophora gracilis and Cylindrotheca closterium, at both sites, irrespective of the substrata involved. However, the density of diatoms followed the same trend at both sites with a significant effect of all the AF coatings compared to Teflon and polystyrene.  相似文献   

3.
Marine biofilm communities that developed on artificial substrata were investigated using molecular and microscopic approaches. Polystyrene, Teflon® and four antifouling (AF) paints were immersed for 2 weeks at two contrasting sites near Toulon on the French Mediterranean coast (Toulon military harbour and the natural protected area of Porquerolles Island). Biofilms comprising bacteria and diatoms were detected on all the coatings. The population structure as well as the densities of the microorganisms differed in terms of both sites and coatings. Lower fouling densities were observed at Porquerolles Island compared to Toulon harbour. All bacterial communities (analysed by PCR-DGGE) showed related structure, controlled both by the sites and the type of substrata. Pioneer microalgal communities were dominated by the same two diatom species, viz. Licmophora gracilis and Cylindrotheca closterium, at both sites, irrespective of the substrata involved. However, the density of diatoms followed the same trend at both sites with a significant effect of all the AF coatings compared to Teflon and polystyrene.  相似文献   

4.
A flow cell system was developed which allowed the study of bacterial adhesion to solid substrata at well-defined shear rates. In addition, the system enabled the solid surfaces to be coated with a proteinaceous film under exactly the same shear conditions. In this flow cell system, adhesion of three strains of oral streptococci from a phosphate-buffered solution onto three different substrata was studied as a function of time in the absence and presence of a bovine serum albumin (BSA) coating at a shear rate of 21 s-1. To obtain a wide range in surface free energies (gamma) representative strains (gamma b 38-117 mJ m-2) and solid substrata (gamma s 20-109 mJ m-2) were selected. The number of bacteria adhering was counted microscopically. In the absence of a BSA coating a linear relation was found between the number of bacteria adhering at saturation (nb,s) and the calculated interfacial free energy of adhesion (delta Fadh) for each of the three strains. In the presence of a BSA coating the number of bacteria adhering was greatly decreased in all cases. However, despite the presence of the BSA coating there was still a linear relation between the number of bacteria adhering at saturation and the interfacial free energy of adhesion, calculated on the basis of the surface free energy of the uncoated substrata. It can be concluded that the bare, uncoated substratum still influenced bacterial adhesion in spite of the marked influence of a BSA coating.  相似文献   

5.
SUMMARY 1. The response of bacterial production (measured as [3H]TdR incorporation rate) to spectral solar radiation was quantified experimentally in an oligotrophic high-mountain lake over 2 years. Bacterial responses were consistent: ultraviolet-B (UVB) was harmful, whereas ultraviolet-A (UVA) + photosynthetically active radiation (PAR) and PAR enhanced bacterial activity. Full sunlight exerted a net stimulatory effect on bacterial activity in mid-summer but a net inhibitory effect towards the end of the ice-free period.
2. Experiments were undertaken to examine whether the bacterial response pattern depended on the presence of algae and/or was modulated by the availability of a limiting inorganic nutrient (phosphorus, P). In the absence of algae, [3H]TdR incorporation rates were significantly lower than when algae were present under all light treatments, and the consistent bacterial response was lost. This suggests that the bacterial response to spectral solar radiation depends on fresh-C released from algae, which determines the net stimulatory outcome of damage and repair in mid-summer.
3. In the absence of algae, UVB radiation inhibited bacteria when they were strongly P-deficient (mean values of N : P ratio: 46.1), whereas it exerted no direct effect on bacterial activity when they were not P-limited.
4. P-enrichment of lake water markedly altered the response of bacteria to spectral solar radiation at the end of ice-free period, when bacteria were strongly P-deficient. Phosphorus enrichment suppressed the inhibitory effect of full sunlight that was observed in October, both in whole lake water (i.e. including algae) and in the absence of algae. This indicates that the bacterial P-deficiency, measured as the cellular N : P ratio, was partly responsible for the net inhibitory effect of full sunlight, implying a high bacterial vulnerability to UVB.  相似文献   

6.
Titanium dioxide (TiO2)reflects ultraviolet light, and so could beexpected to protect the occlusion bodies (OBs)of nucleopolyhedroviruses (NPVs) fromdegradation by sunlight. However, in thepresence of sunlight and water, TiO2catalyzes the formation of hydrogen peroxide,which can degrade OBs. We tested microfineTiO2 that had been photostabilized(particles were coated to prevent catalyticactivity), as a UV protectant for the OBs ofthe NPV of Helicoverpa zea (Boddie). Inthe absence of UV, activity of the OBs wasreduced by nonphotostabilized TiO2 but wasunaffected by photostabilized TiO2 or byzinc oxide (ZnO). None of these materialsinfluenced larval feeding rates. Undersimulated sunlight, photostabilizedTiO2 protected the OBs to a greater degreethan did ZnO. Photostabilized TiO2 wascompatible with a viral enhancer, thefluorescent brightener Blankophor HRS. Undersimulated sunlight, both materials increasedactivity of the OBs, relative to OBs withneither material, in a largely additive manner. In bioassays of foliage collected from fieldplots of lima bean plants sprayed with OBs withor without one or both of these materials,TiO2 increased persistence of the OBs, butBlankophor HRS had no significant effect.  相似文献   

7.
The ZnO particle with varieties of morphology was prepared from ice-cube of zinc ammonium complex at boiling water surface in 1 min induction of thermal shock. The zinc ammonium complex in ice cube was developed using zinc acetate and biologically activated ammonia in 1 hr and kept in the freezer. Temperature gradient behaviour of the water medium during thermal shock was captured by the thermal camera and thermometer. Morphology study revealed a variety of flower-like ZnO particles with variable size from 1.0 to 2.5 μm. Further, ZnO particle morphologies were tuned by adding trisodium citrate and hexamine to obtain uniform spherical (2–3 μm) and flower (3–4 μm) shapes, respectively. XRD patterns revealed that all ZnO samples are of a hexagonal structure. Photocatalytic inactivation of E. coli has been investigated using various particle morphologies of ZnO in an aqueous solution/overcoated glass slide under sunlight. The photo-inactivation of E. coli by ZnO particles in suspension condition was better when compared to a coated glass slide method. AFM study confirmed the destruction of bacterial cell wall membrane by the photocatalytic effect. The particles morphology of photocatalyst is well dependent on antibacterial activity under sunlight.  相似文献   

8.
The high incidence of coral disease in shallow coastal marine environments suggests seawater depth and coastal pollution have an impact on the microbial communities inhabiting healthy coral tissues. A study was undertaken to determine how bacterial communities inhabiting tissues of the coral Montastraea annularis change at 5 m, 10 m and 20 m water depth in varying proximity to the urban centre and seaport of Willemstad, Cura?ao, Netherlands Antilles. Analyses of terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA gene sequences show significant differences in bacterial communities of polluted and control localities only at the shallowest seawater depth. Furthermore, distinct differences in bacterial communities were found with increasing water depth. Comparisons of TRFLP peaks with sequenced clone libraries indicate the black band disease cyanobacterium clone CD1C11 is common and most abundant on healthy corals in less than 10 m water depth. Similarly, sequences belonging to a previously unrecognized group of likely phototrophic bacteria, herein referred to as CAB-I, were also more common in shallow water. To assess the influence of environmental and physiologic factors on bacterial community structure, canonical correspondence analysis was performed using explanatory variables associated with: (i) light availability; (ii) seawater pollution; (iii) coral mucus composition; (iv) the community structure of symbiotic algae; and (v) the photosynthetic activity of symbiotic algae. Eleven per cent of the variation in bacterial communities was accounted for by covariation with these variables; the most important being photosynthetically active radiation (sunlight) and the coral uptake of sewage-derived compounds as recorded by the delta(15)N of coral tissue.  相似文献   

9.
Yoshikuni Hodoki 《Hydrobiologia》2005,534(1-3):193-204
The effects of solar ultraviolet radiation (UVR) on the development of a periphyton community were studied in an outdoor artificial stream apparatus. Algal biomass, species composition, and bacterial cell density were measured under full sunlight and non-UVR (photosynthetically active radiation [PAR]-only) conditions. Attachment of algae was detected on days 6–9. Although the chlorophyll-a concentration under non-UVR conditions was 2–4 times that under full sunlight (PAR + UVR) throughout the experiment, neither net algal growth rate nor species composition differed significantly between the two light conditions. The relative carotenoid pigment contents of attached algae in the PAR + UVR condition were 1.1–1.3 times those in the non-UVR condition. Rates of increase of bacterial cell densities under the PAR + UVR condition were depressed by solar UVR for the first few days, although there were no apparent differences in the rates of increase between the light conditions later in the experiment. The small effect of UVR on the development of this periphyton community may be attributable to low UV flux at this study site and to the experimental conditions under which the algae were kept: a high physiological state with high nutrient conditions. Attached bacteria and algae that colonize substrata first are likely to be sensitive to solar UVR, and the negative effects of UVR are mitigated by the development of a periphyton community.  相似文献   

10.
Effect of sunlight on survival of indicator bacteria in seawater.   总被引:35,自引:21,他引:14       下载免费PDF全文
The stability of the natural populations of fecal coliforms and fecal streptococci in raw sewage diluted 1:1,000 in seawater or phosphate-buffered water at 24 +/- 2 degrees C was markedly affected by the absence or presence of sunlight. In the absence of sunlight, these bacteria survived for days, whereas in the presence of sunlight 90% of the fecal coliforms and fecal streptococci were inactivated within 30 to 90 min and 60 to 180 min, respectively. The bactericidal effect of sunlight was shown to penetrate glass, translucent polyethylene, and at least 3.3 m of clear seawater, suggesting that the visible rather than the ultraviolet light spectrum of sunlight was primarily responsible for the observed bactericidal effect. However, these same sewage-borne bacteria were relatively resistant to the bactericidal effect of sunlight when diluted in fresh mountain stream waters. These results indicate that the presence of sunlight is a major factor controlling the survival of fecal coliforms and fecal streptococci in seawater.  相似文献   

11.
2D materials are of particular interest in light‐to‐heat conversion, yet challenges remain in developing a facile method to suppress their light reflection. Herein, inspired by the black scales of Bitis rhinoceros, a generalized approach via sequential thermal actuations to construct biomimetic 2D‐material nanocoatings, including Ti3C2Tx MXene, reduced graphene oxide (rGO), and molybdenum disulfide (MoS2) is designed. The hierarchical MXene nanocoatings result in broadband light absorption (up to 93.2%), theoretically validated by optical modeling and simulations, and realize improved light‐to‐heat performance (equilibrium temperature of 65.4 °C under one‐sun illumination). With efficient light‐to‐heat conversion, the bioinspired MXene nanocoatings are next incorporated into solar steam‐generation devices and stretchable solar/electric dual‐heaters. The MXene steam‐generation devices require much lower solar‐thermal material loading (0.32 mg cm?2) and still guarantee high steam‐generation performance (1.33 kg m?2 h?1) compared with other state‐of‐the‐art devices. Additionally, the mechanically deformed MXene structures enable the fabrication of stretchable and wearable heaters dual‐powered by sunlight and electricity, which are reversibly stretched and heated above 100 °C. This simple fabrication process with effective utilization of active materials promises its practical application value for multiple solar–thermal technologies.  相似文献   

12.
Species interactions between two types of sessile benthic invertebrates, the zebra mussel (Dreissena polymorpha) and freshwater sponges (Porifera), were evaluated in Michigan City IN Harbor in southern Lake Michigan during 1996. The study objective was to define whether competition plays a role in structuring benthic communities using experimental techniques commonly employed in marine systems. Sponges were uninhibited by zebra mussel presence and overgrew zebra mussel shells on hard vertical substrata. In contrast, zebra mussels did not overgrow sponge colonies, but did show an ability to re-capture hard substrata if relinquished by the sponge. The negative affect of sponges on zebra mussels through overgrowth and recruitment suggests interactions that could eventually displace zebra mussels from these benthic communities. However, seasonal reduction of sponge biomass from autumn through winter appears to allow the zebra mussel a periodic respite from overgrowth, preventing exclusion of zebra mussels from the community and allowing these two taxa to co-exist.  相似文献   

13.
A bubble contact angle method was used to determine interfacial free-energy characteristics of polystyrene substrata in the presence and absence of potential surface-conditioning proteins (bovine glycoprotein, bovine serum albumin, fatty acid-free bovine serum albumin), a bacterial culture supernatant, and a bacterial exopolymer. Clean petri dish substrata gave a contact angle of 90°, but tissue culture dish substrata were more hydrophilic, giving an angle of 29° or less. Bubble contact angles at the surfaces exposed to the macromolecular solutions varied with the composition and concentration of the solution. Modification by pronase enzymes of the conditioning effect of proteins depended on the nature of both the substratum and the protein, as well as the time of addition of the enzyme relative to the conditioning of the substratum. The effects of dissolved and substratum-adsorbed proteins on the attachment of Pseudomonas sp. strain NCMB 2021 to petri dishes and tissue culture dishes were consistent with changes in bubble contact angles (except when proteins were adsorbed to tissue culture dishes before attachment) as were alterations in protein-induced inhibition of bacterial attachment to petri dishes by treatment with pronase. Differences between the attachment of pseudomonads to petri dishes and tissue culture dishes suggested that different mechanisms of adhesion are involved at the surfaces of these two substrata.  相似文献   

14.
An increasing number of deep-sea studies have highlighted the importance of deep-sea biofouling, especially in relation to the protection of deep-sea instruments. In this study, the microbial communities developed on different substrata (titanium, aluminum, limestone, shale and neutrino telescope glass) exposed for 155 days at different depths (1500?m, 2500?m, 3500?m and 4500 m) and positions (vertical and horizontal) in the Eastern Mediterranean Deep Sea were compared. Replicated biofilm samples were analyzed using a Terminal Restriction Fragment Length Polymorphisms (T-RFLP) method. The restriction enzymes CfoI and RsaI produced similar total numbers (94, 93) of different T-RFLP peaks (T-RFs) along the vertical transect. In contrast, the mean total T-RF number between each sample according to substratum type and depth was higher in more samples when CfoI was used. The total species richness (S) of the bacterial communities differed significantly between the substrata, and depended on the orientation of each substratum within one depth and throughout the water column (ANOVA). T-RFLP analyses using the Jaccard similarity index showed that within one depth layer, the composition of microbial communities on different substrata was different and highly altered among communities developed on the same substratum but exposed to fouling at different depths. Based on Multidimensional Scaling Analyses (MDS), the study suggests that depth plays an important role in the composition of deep-sea biofouling communities, while substratum type and orientation of substrata throughout the water column are less important. To the authors' knowledge, this is the first study of biofilm development in deep waters, in relation to the effects of substratum type, orientation and depth.  相似文献   

15.
Surface modification techniques that create surfaces capable of killing adherent bacteria are promising solutions to infections associated with implantable medical devices. Antimicrobial (AM) peptoid oligomers (ampetoids) that were designed to mimic helical AM peptides were synthesised with a peptoid spacer chain to allow mobility and an adhesive peptide moiety for easy and robust immobilisation onto substrata. TiO(2) substrata were modified with the ampetoids and subsequently backfilled with an antifouling (AF) polypeptoid polymer in order to create polymer surface coatings composed of both AM (active) and AF (passive) peptoid functionalities. Confocal microscopy images showed that the membranes of adherent E. coli cells were damaged after 2-h exposure to the modified substrata, suggesting that ampetoids retain AM properties even when immobilised on substrata.  相似文献   

16.
Hwang G  Kang S  El-Din MG  Liu Y 《Biofouling》2012,28(6):525-538
Extracellular polymeric substances (EPS) significantly influence bacterial adhesion to solid surfaces, but it is difficult to elucidate the role of EPS on bacterial adhesion due to their complexity and variability. In the present study, the effect of EPS on the initial adhesion of B. cepaciaepacia PC184 and P. aeruginosa PAO1 on glass slides with and without an EPS precoating was investigated under three ionic strength conditions. The surface roughness of EPS coated slides was evaluated by atomic force microscopy (AFM), and its effect on initial bacterial adhesion was found to be trivial. X-ray photoelectron spectroscopy (XPS) studies were performed to determine the elemental surface compositions of bacterial cells and substrata. The results showed that an EPS precoating hindered bacterial adhesion on solid surfaces, which was largely attributed to the presence of proteins in the EPS. This observation can be attributed to the increased steric repulsion at high ionic strength conditions. A steric model for polymer brushes that considers the combined influence of steric effects and DLVO interaction forces is shown to adequately describe bacterial adhesion behaviors.  相似文献   

17.
AIMS: To determine the impact of protozoan grazing on the population dynamics of a multispecies bacterial biofilm community. METHODS AND RESULTS: Grazing by Acanthamoeba castellanii and the ciliate Colpoda maupasi upon biofilm and planktonic communities, composed of Klebsiella pneumoniae, Pseudomonas fluorescens and Staphylococcus epidermidis was investigated. Biofilms were formed using glass coverslips, held in a carousel device, as substrata for biofilm formation or in glass flow cells. The predatory effects of the amoeba were generally confined to the biofilm, where grazing rates corresponded to losses from the biofilm equivalent to ca 30,000 biofilm cells cm(-2) h(-1), with the amoeba becoming an integral part of the community. C. maupasi reduced the thickness of mature multispecies biofilms at steady-state from 500 to <200 microm. CONCLUSIONS: We report that the presence of the protozoa A. castellanii and C. maupasi markedly influence population dynamics within defined biofilm communities. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study dispels the popular opinion that biofilms are protected against predation by protozoa. A. castellanii clearly has the capacity to graze mixed biofilm communities and to become integrally associated with them, whereas the ciliate C. maupasi reduced biofilm thickness by up to 60%.  相似文献   

18.
Surface modification techniques that create surfaces capable of killing adherent bacteria are promising solutions to infections associated with implantable medical devices. Antimicrobial (AM) peptoid oligomers (ampetoids) that were designed to mimic helical AM peptides were synthesised with a peptoid spacer chain to allow mobility and an adhesive peptide moiety for easy and robust immobilisation onto substrata. TiO2 substrata were modified with the ampetoids and subsequently backfilled with an antifouling (AF) polypeptoid polymer in order to create polymer surface coatings composed of both AM (active) and AF (passive) peptoid functionalities. Confocal microscopy images showed that the membranes of adherent E. coli cells were damaged after 2-h exposure to the modified substrata, suggesting that ampetoids retain AM properties even when immobilised on substrata.  相似文献   

19.
The ability of marine invertebrate larvae to delay their metamorphosis in the absence of adequate environmental cues has been reported for numerous sedentary and sessile species. In the present study, the effect of various substrata and the presence of conspecific adults on the metamorphosis of a mobile species, the crab Chasmagnathus granulata, was evaluated. The duration of the megalopa stage in experiments with six different substrata and in the presence or absence of conspecific adults was compared in a laboratory study. In addition, the influence of natural substrata was compared with that of artificial substrata of similar grain size or texture. In a further experiment, the two most effective cues (natural mud and conspecific adults) were tested as single vs. combined factors. Natural mud and unidentified chemical cues from conspecific adults had the strongest accelerating effects on development duration to metamorphosis. With the exception of nylon threads (artificial filamentous substratum), none of the artificial substrata had a significant effect on the duration of the megalopa stage. Simultaneous exposure to natural mud and water containing chemical cues from conspecific adults accelerated metamorphosis more than each of these factors separately. Megalopae that were reared without a substratum (control) delayed their metamorphosis by 29% (about 3 days) compared with those in simultaneous contact with natural mud and rearing water of adult conspecifics. The results indicate that the metamorphosis of the megalopa of C. granulata is influenced by the presence or absence of environmental stimuli that are associated with the preferred adult habitat.  相似文献   

20.
An increasing number of deep-sea studies have highlighted the importance of deep-sea biofouling, especially in relation to the protection of deep-sea instruments. In this study, the microbial communities developed on different substrata (titanium, aluminum, limestone, shale and neutrino telescope glass) exposed for 155 days at different depths (1500 m, 2500 m, 3500 m and 4500 m) and positions (vertical and horizontal) in the Eastern Mediterranean Deep Sea were compared. Replicated biofilm samples were analyzed using a Terminal Restriction Fragment Length Polymorphisms (T-RFLP) method. The restriction enzymes CfoI and RsaI produced similar total numbers (94, 93) of different T-RFLP peaks (T-RFs) along the vertical transect. In contrast, the mean total T-RF number between each sample according to substratum type and depth was higher in more samples when CfoI was used. The total species richness (S) of the bacterial communities differed significantly between the substrata, and depended on the orientation of each substratum within one depth and throughout the water column (ANOVA). T-RFLP analyses using the Jaccard similarity index showed that within one depth layer, the composition of microbial communities on different substrata was different and highly altered among communities developed on the same substratum but exposed to fouling at different depths. Based on Multidimensional Scaling Analyses (MDS), the study suggests that depth plays an important role in the composition of deep-sea biofouling communities, while substratum type and orientation of substrata throughout the water column are less important. To the authors’ knowledge, this is the first study of biofilm development in deep waters, in relation to the effects of substratum type, orientation and depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号