首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the G protein-coupled receptors (GPCRs) share a similar seven-transmembrane domain structure, only a limited number of amino acid residues is conserved in their protein sequences. One of the most highly conserved sequences is the NPXXY motif located at the cytosolic end of the transmembrane region-7 of many GPCRs, particularly of those belonging to the family of the rhodopsin/beta-adrenergic-like receptors. Exchange of Tyr(305) in the corresponding NPLVY sequence of the bradykinin B(2) receptor (B(2)R) for Ala resulted in a mutant, termed Y305A, that internalized [(3)H]bradykinin (BK) almost as rapidly as the wild-type (wt) B(2)R. However, receptor sequestration of the mutant after stimulation with BK was clearly reduced relative to the wt B(2)R. Confocal fluorescence microscopy revealed that, in contrast to the B(2)R-enhanced green fluorescent protein chimera, the Y305A-enhanced green fluorescent protein chimera was predominantly located intracellularly even in the absence of BK. Two-dimensional phosphopeptide analysis showed that the mutant Y305A constitutively exhibited a phosphorylation pattern similar to that of the BK-stimulated wt B(2)R. Ligand-independent Y305A internalization was demonstrated by the uptake of rhodamine-labeled antibodies directed to a tag sequence at the N terminus of the mutant receptor. Co-immunoprecipitation revealed that Y305A is precoupled to G(q/11) without activating the G protein because the basal accumulation rate of inositol phosphate was unchanged as compared with wt B(2)R. We conclude, therefore, that the Y305A mutation of B(2)R induces a receptor conformation which is prone to ligand-independent phosphorylation and internalization. The mutated receptor binds to, but does not activate, its cognate heterotrimeric G protein G(q/11), thereby limiting the extent of ligand-independent receptor internalization.  相似文献   

2.
Beta-arrestins are multifunctional adaptors that bind agonist-activated G protein-coupled receptors (GPCRs), mediate their desensitization and internalization, and control the rate at which receptors recycle back at the plasma membrane ready for subsequent stimulation. The activation of the bradykinin (BK) type 2 receptor (B2R) results in the rapid desensitization and internalization of the receptor. Little is known, however, about the role of beta-arrestin in regulating the intracellular trafficking and the resensitization of the B2R. Using confocal microscopy, we show that BK stimulation of COS-7 cells expressing B2R induces the colocalization of the agonist-activated receptor with beta-arrestin into endosomes. Fluorescent imaging and ligand binding experiments also reveal that upon agonist removal, beta-arrestin rapidly dissociates from B2R into endosomes, and that receptors return back to the plasma membrane, fully competent for reactivating B2R signaling as measured by NO production upon a second BK challenge. However, when the receptor is mutated in its C-terminal domain to increase its avidity for beta-arrestin, B2R remains associated with beta-arrestin into endosomes, and receptors fail to recycle to the plasma membrane postagonist wash. Similarly, the recycling of receptors is prevented when a beta-arrestin mutant exhibiting increased avidity for agonist-bound GPCRs is expressed with B2R. Stabilizing receptor/beta-arrestin complexes into endosomes results in the dampening of the BK-mediated NO production. These results provide evidence for the involvement of beta-arrestin in the intracellular trafficking of B2R, and highlight the importance of receptor recycling in reestablishing B2R signaling.  相似文献   

3.
The intracellular (IC) face of the G-protein coupled receptors (GPCR), bradykinin (BK) B2 and angiotensin (AT) 1a, is similar in sequence homology and in size. Both receptors are known to link to Galphai and Galphaq but differ markedly in a number of physiologic actions, particularly with respect to their hemodynamic action. We made single as well as multiple, global replacements within the IC of BKB2R with the corresponding regions of the AT1aR. When stably transfected into Rat-1 cells, these hybrid receptors all bound BK with high affinity. Single replacement of the intracellular loop 2 (IC2) or the distal 34 residues of the C-terminus (dCt) with the corresponding regions of AT1aR resulted in chimera, which turned over phosphotidylinositol (PI) and released arachidonic acid (ARA) as WT BKB2R. In contrast, incorporation of the AT1aR IC3 in a single replacement abolished signal transduction. However, the simultaneous exchange of IC2 and IC3 of BKB2R with AT1aR resulted in a receptor responding to BK with PI turnover and ARA release approximately 4-fold greater than WT BKB2R. Likewise, the simultaneous replacement of IC2 and dCt resulted in a 2.8- and 1.6-fold increase in PI turnover and ARA release, respectively. In contrast, the dual replacement of IC3 and dCt could not overcome the deleterious effects of the IC3 replacement, resulting in very low PI activation and ARA release. Replacement of all three IC domains (IC2, IC3, and dCt) resulted in PI closer to that of AT1aR than BKB2R. The uptake of the receptor chimeras was similar to that of WT BKB2R with the exception of the IC3/dCt dual mutant, which exhibited very poor internalization (18% at 60'). When transfected into Rat-1 cells, the AT1aR markedly increased the expression of connective tissue growth factor (CTGF) mRNA, while BK slightly decreased it. The dual IC2/dCt and triple IC2/IC3/dCt hybrids both upregulated CTGF mRNA in response to BK. These results show that the IC face of the BKB2R can be exchanged with that of AT1aR, producing hybrid receptors, which take on the functional characteristics of AT1aR. The characterization of the chimera with stepwise replacement of the IC domains should allow for assignment of specific roles to the individual loops and C-terminus in the signaling and internalization of the BKB2R and facilitate the generation of a receptor with BKB2R binding and AT1aR function.  相似文献   

4.
Primary cultures of cells from late pregnant rat myometrium contain B2 kinin receptors through which bradykinin (BK) stimulates inositol phosphate (InsP) formation and arachidonic acid (20:4) release. Equilibrium binding at 4 degrees C revealed that [3H]BK identified a maximal number of cell surface B2 kinin receptor binding sites on rat myometrial cells of 308 +/- 78 fmol/10(6) cells with apparently a single equilibrium dissociation constant of 1.8 +/- 0.2 nM. At 37 degrees C, [3H]BK binding was associated with a time-dependent decrease in the reversibility of the binding. This decrease was due in part to formation of slowly dissociating cell surface receptor [3H]BK binding and in part to internalization of the receptor-bound [3H]BK. Exposure of labeled cells to BK resulted in dose-dependent increases in [3H]InsP3, [3H]InsP2 ([3H]Ins(1,4)P2), and [3H]InsP1 ([3H]Ins(1)P1) formation and [3H]20:4 release. Pretreatment with 100 ng/mL pertussis toxin did not perturb BK stimulation of [3H]InsP formation but partially (approximately 30%) inhibited BK stimulation of [3H]20:4 release. BK stimulation of [3H]20:4 release was directly proportional to the number of receptor sites occupied by BK. In contrast, stimulation of [3H]InsP formation required a threshold level of receptor occupancy, which decreased as a function of time of BK exposure. These results show that BK interacts with B2 kinin receptors on rat myometrial cells with apparently a single affinity through which BK stimulates [3H]InsP formation and [3H]20:4 release. BK stimulation of [3H]InsP formation requires a threshold BK concentration, which decreases with time, and we suggest that the decrease is due to a time-dependent formation of a BK receptor binding state from which BK slowly dissociates.  相似文献   

5.
Determinants for desensitization and sequestration of G protein-coupled receptors often contain serine or threonine residues located in their C-termini. The sequence context, however, in which these residues have to appear, and the receptor specificity of these motifs are largely unknown. Mutagenesis studies with the B(2) bradykinin receptor (B(2)wt), stably expressed in HEK 293 cells, identified a sequence distal to N338 (NSMGTLRTSI, including I347 but not the basally phosphorylated S348) and in particular the TSI sequence therein, as a major determinant for rapid agonist-inducible internalization and the prevention of receptor hypersensitivity. Chimeras of the noninternalizing B(1) bradykinin receptor (B(1)wt) containing these B(2)wt sequences sequestered poorly, however, suggesting that additional motifs more proximal to N338 are required. In fact, further substitution of the B(1)wt C-terminus with corresponding B(2)wt regions either at C330(7.71) following putative helix 8 (B(1)CB(2)) or at the preceding Y312(7.53) in the NPXXY sequence (B(1)YB(2)) resulted in chimeras displaying rapid internalization. Intriguingly, however, exchange performed at K322(7.63) within putative helix 8 generated a slowly internalizing chimera (B(1)KB(2)). Detailed mutagenesis analysis generating additional chimeras identified the change of V323 in B(1)wt to serine (as in B(2)wt) as being responsible for this effect. The slowly internalizing chimera as well as a B(1)wt point-mutant V323S displayed significantly reduced inositol phosphate accumulation as compared to B(1)wt or the other chimeras. The slow internalization of B(1)KB(2) was also accompanied by a lack of agonist-induced phosphorylation, that in contrast was observed for B(1)YB(2) and B(1)CB(2), suggesting that putative helix 8 is either directly or indirectly (e.g. via G protein activation) involved in the interaction between the receptor and receptor kinases.  相似文献   

6.
The binding of bradykinin (BK) to B2 receptor triggers the internalization of the agonist-receptor complex. To investigate the mechanisms and the receptor structures involved in this fundamental process of receptor regulation, the human B2 receptor was mutated within its cytoplasmic tail by complementary strategies of truncation, deletion, and amino acid substitution. Ligand binding, signal transduction, internalization as well as phosphorylation were studied for the mutated receptors expressed in COS, CHO, and HEK 293 cells. Truncation of 44 out of 55 amino acid residues of the receptor's cytoplasmic tail corresponding to positions 321-364 did not alter the kinetics of BK binding and the receptor coupling to phospholipase C and phospholipase A2. By contrast, truncations after positions 320 and 334, deletions within the segment covering positions 335-351, as well as alanine substitution of serine and threonine residues within segment 335-351 diminished the internalization capacity of the mutant receptors. Mutants with a markedly reduced internalization potential failed to produce BK-induced receptor phosphorylation suggesting that phosphorylation may be involved in receptor internalization. The mutagenesis approaches converged at the conclusion that three serines in positions 339, 346, and 348 and two threonines in positions 342 and 345, contained in a sequence segment that is highly conserved between species, have a critical role in the ligand-dependent internalization and phosphorylation of kinin receptors and can intervene in these processes in an alternative manner. However, mutants lacking these residues were still sensitive to dominant-negative forms of beta-arrestin and dynamin, suggesting the existence of additional receptor structure(s) involved in the receptor sequestration through clathrin-coated vesicles.  相似文献   

7.
In past reports we illustrated the importance of Y131, Y322, and T137 within the intracellular (IC) face of the rat bradykinin B2 receptor (rBKB2R) for signal transduction and receptor maintenance (Prado et al. [1997] J. Biol. Chem. 272:14638-14642; Prado et al. [1998] J. Biol. Chem. 273:33548-33555). In this report, we mutate the remaining hydroxyl possessing residues located within the rBKB2R IC region. Exchange of S139A (IC2) or T239V (IC3) did not affect BK activated phosphatidylinositol (PI) turnover or receptor internalization. Chimeric exchange of the last 34 amino acids of BKB2R C-terminus with the corresponding 34 amino acids of the rat angiotensin II AT1a receptor (rAT1aR), both containing an S/T cluster, resulted in a mutant with normal endocytosis and BK activated PI turnover. A more selective chimera of these S/T clusters, with an exchange of BKB2R (333-351) with a rAT1aR fragment (326-342), resulted in a receptor with a retarded internalization but a normal BK activated PI turnover. Subsequent mutation of rBKB2R T344V showed little change in receptor uptake but a pronounced loss of BK activated PI turnover. The mutation of S335A, S341A, S348A, and S350A resulted in very poor receptor internalization and loss of activated PI turnover. Closer examination of this serine cluster illustrated that the replacement of S348A led to poor internalization; whereas the retention of S348 and mutation of S341A resulted in a receptor with a much greater internalization than WT. These and other results suggest that the presence of S348 promotes internalization while the presence of S341 dampens it. Conversely, S341 and S350 proved important for receptor signaling. In sum, our results illustrate that the distal C-terminus including its S/T cluster is important for both rBKB2R internalization and signal transduction. Individual S/T residues within this cluster appear involved in either signal transmission or receptor uptake capacity. However, replacement of the entire distal tail region with the corresponding rAT1aR sequence, also containing an S/T cluster, enables the BKB2R/AT1aR chimera to act in a very similar manner to wild type rBKB2R.  相似文献   

8.
Stewen P  Outi S  Tuulikki N  Frej F 《Life sciences》2004,74(23):2839-2852
We demonstrated bradykinin receptors in human endothelial cells and studied whether bradykinin receptors might be regulated by cyclic AMP. Messenger RNA for bradykinin B(1) and B(2) receptors was detected with real-time PCR and B(2) receptor protein was confirmed by immunoblotting. Saturation binding experiments with increasing concentrations of (125)I-[Tyr(8)]-bradykinin (25-700 pM) were made to determine maximal binding capacity and dissociation constant. However, saturation binding experiments suggested one class of binding sites, maximal binding capacity of 39.3 +/- 1.3 fmol/mg protein and dissociation constant of 352 +/- 27 pM. Competition studies with bradykinin B(1) and B(2) receptor antagonists showed that binding was competed by a B(1) antagonist, and when internalization was inhibited with hypertonic buffer, by both B(1) and B(2) antagonists. Stimulating cells with dibutyryl-cAMP, cholera toxin and forskolin for 24 h increased (125)I-[Tyr(8)]-bradykinin (90 pM) binding with approximately 50%. Saturation binding experiments with dibutyryl-cAMP stimulated cells showed, that the dissociation constant was altered from 352 +/- 27 pM in non-stimulated cells, to 203 +/- 18 pM (P < 0.001) in stimulated cells, while maximal binding capacity remained unchanged. Binding was competed similarly by the B(1) antagonist in stimulated and control cells. These results suggest, that the dibutyryl-cAMP stimulated increase in (125)I-[Tyr(8)]-bradykinin binding is probably due to increased B(1) receptor affinity with no change in receptor capacity. In conclusion, bradykinin B(1) and B(2) receptor mRNA was shown in human endothelial cells. Binding studies suggest that bradykinin receptors are competable with bradykinin antagonists. Adenylate cyclase activators probably increase bradykinin B(1) receptor affinity, without changing capacity, and thus increase bradykinin binding.  相似文献   

9.
Transfection of cells with expression vectors is one of the most important tools used to assess the effects of receptor mutations on ligand-induced receptor sequestration. Most transfection methods give rise to transiently or stably transfected clones with a wide range of receptor expression levels that may also depend on the mutations made. It is, therefore, important to determine how the regulation of the receptors depends on their numbers per cell. In Chinese hamster ovary (CHO) and human embryonic kidney (HEK)-293 cells expressing high levels of B(2) kinin receptors, we observed poor sequestration indicated by <20% reduction in cell surface receptor number after 10 min of stimulation with 1 microM bradykinin (BK) compared with >70% in low-expressing cells. Whereas the rate of [(3)H]BK internalization (internalized [(3)H]BK in percentage of total bound [(3)H]BK) in low-expressing cells was independent of the ligand-concentration used, in high-expressing cells a strong rate decrease was observed with higher (>1 nM) concentrations. Lower ligand concentrations, however, led to internalization rates identical to those obtained in low-expressing cells. Transiently transfected HEK and COS-7 cells showed results similar to those of stably high-expressing cells. Our results demonstrate the difficulty in determining the internalization pattern of (mutated) B(2) kinin receptors, and possibly of G protein-coupled receptors in general, using a sequestration assay in high-expressing cells or transiently transfected cells with high numbers of receptors per transfected cell. However, the receptor (mutant)-specific internalization rate can be measured, provided that the ligand concentrations used are below a threshold at which the internalization rate is still independent of the ligand concentration.  相似文献   

10.
Yu J  Polgar P  Lubinsky D  Gupta M  Wang L  Mierke D  Taylor L 《Biochemistry》2005,44(14):5295-5306
The role of the first intracellular loop (IC1) in the function of the rat bradykinin B2 receptor (BKB2R) was probed. On the basis of the bovine rhodopsin X-ray structure, the BKB2R IC1 consists of six residues: (60)HKTNCT. Exchange of this sequence with the bradykinin B1 receptor IC1 (PRRQLN) resulted in a chimera which bound bradykinin and signaled as wild-type (WT) BKB2R. In contrast, a chimera containing the IC1 of rat angiotensin II type Ia receptor (AT1aR) (YMKLKT) did not bind BK nor signal in response to BK at a concentration as high as 5 microM. ELISA illustrated that this receptor was still processed and inserted into the plasma membrane. Employing portions of the IC1, we observed that (60)HKT of BKB2R could be exchanged as a group with either the BKB1R (PRR) or AT1aR (YMK) with no change in receptor binding or signaling activities. When only the YM of AT1aR replaced the HK of BKB2R, leaving the N-terminal portion of IC1 without a positively charged residue, binding and signaling were reduced by more than 70%. When only N63 was replaced with the corresponding leucine of AT1aR, binding and signaling were ablated. In fact, replacement of the entire IC1 with the AT1aR except for N63 resulted in binding and signaling as WT BKB2R. However, N63 could be replaced by glutamine (in BKB1R) or aspartate and continued to function as WT BKB2R. NMR data indicated that the BKB2R IC1 extends beyond the bovine rhodopsin prototype to include HKTNCTVAEI. When E68 was exchanged with a serine (in AT1aR), ligand binding decreased by 60% and PI turnover decreased by 69%. Molecular modeling points to a strict requirement for a hydrophilic residue at position 63 (N) at the middle of the IC1 and a Coulombic charge interaction between the positive charges (H60 and K61) at the N-terminus and a negative charge (E68) at the C-terminus of the IC1.  相似文献   

11.
The gene encoding a putative G protein-coupled receptor (HG10) was cloned from human genomic DNA by low stringency PCR and found to be homologous to the recently described rat bradykinin B2 receptor. The receptor was expressed in xenopus oocytes and stably transfected CHO cell lines. Binding studies demonstrated that HG10 encodes a high affinity BK receptor with an apparent Kd of 150 pM. Displacement by BK agonists and antagonists allowed the characterization of the receptor as a B2 subtype. Functional coupling to the Ca(2+)-phosphatidylinositol cascade was demonstrated in transfected CHO cells where inositol phosphates accumulation and intracellular calcium concentration were elevated in response to BK stimulation. The agonistic and antagonistic properties of BK analogs do not match strictly the pharmacological profile described for the rat or guinea pig B2 receptor subtypes or the putative B3 subtype. This discrepancy is attributed either to species variability or to differences in the coupling efficiency of receptors to the transduction cascade in different cell types. From our results, the existence of B3 receptors and of B2 subtypes appears questionable.  相似文献   

12.
13.
Sustained activation of G protein-coupled receptors results in an attenuation of cellular responses, a phenomenon termed desensitization. Whereas mechanisms for rapid desensitization of ligand-receptor-G protein-effector systems are relatively well characterized, much less is known about long-term adaptation processes that occur in the continuous presence of an agonist. Here we have studied the fate of endogenously expressed bradykinin B(2) receptors on human fibroblasts during prolonged agonist treatment. Stimulation with bradykinin for up to 24 h resulted in a 50% reduction of surface binding sites that was paralleled by a similar decrease of total B(2) receptor protein followed by Western blotting using monoclonal antibodies to the B(2) receptor. Whereas B(2) receptor mRNA levels did not change during 24 h of agonist treatment, B(2) receptor de novo synthesis was attenuated by 35-50%, indicating translational control of B(2) receptor levels. Furthermore, the half-life of B(2) receptor protein was shortened by 20-40% as shown by (35)S-labeled pulse-chase and immunoprecipitation experiments. This study demonstrates that bradykinin B(2) receptor expression during long-term agonist treatment is primarily regulated on the (post)translational level, i.e., by attenuation of de novo synthesis and by reduction of receptor stability.  相似文献   

14.
Large species differences have been previously observed in the pharmacology of bradykinin (BK) B2 receptor antagonists. We investigated the effect of two novel non-peptide antagonists, compound 9 (a benzodiazepine peptidomimetic related to icatibant) and the thiosemicarbazide bradyzide on the rabbit B2 receptor (contractility of the jugular vein, competition of [3H]BK binding to a B2 receptor-green fluorescent protein (B2R-GFP) conjugate, subcellular distribution of B2R-GFP). While compound 9 is about 9000-fold less potent than icatibant, it shares with the latter peptide drug a selective, insurmountable and largely irreversible antagonist behavior against BK and the capacity to translocate B2R-GFP from the membrane into the cells. Bradyzide, reportedly very potent at rodent B2 receptors, was a competitive and reversible antagonist of moderate potency at the rabbit B2 receptor (contractility pA2 6.84, binding competition IC50 5 nM). The C-terminal region of icatibant, reproduced by compound 9, is likely to be important in the non-equilibrium behavior of icatibant. Bradyzide, a non-peptide antagonist developed on different structural grounds, is competitive at the rabbit B2 receptor.  相似文献   

15.
The mechanisms regulating the opposing physiological actions of bradykinin (BK) and angiotensin II (AngII) are not well understood. Here we investigate signaling interactions between these two effectors. Connective tissue growth factor (CTGF) expression in IMR-90, human lung fibroblasts, is used as the endpoint target. In these cells the BK B2 receptor (BKB2R) is expressed constitutively, while no binding of AngII is detected. An inducible expression system is used to insert AngII receptor 1 (AT1R) and to obtain a signal level in response to AngII at the magnitude of BK. AngII and BK activate G protein-coupled targets, arachidonate release from cellular phospholipid stores, and intracellular phosphatidylinositol turnover equally. Both activate ERK, JNK, and p38 equally. However, AngII activates, whereas BK inactivates, RhoA. AngII induces a rapid (1 h) CTGF mRNA expression. RhoA siRNA and RhoA activation inhibitor, Y-27632, markedly reduce the AngII effect. Simultaneous treatment with BK and AngII attenuates the AT1R action. Additionally, BK in the absence of AngII lowers CTGF mRNA expression below basal levels over a span of 4 h. An AT1R/BKB2R chimera lacking heterotrimeric G protein coupling continues to activate MAP kinases to the same extent as wild-type (WT) AT1R and BKB2R. However, the increase of CTGF mRNA expression by this mutant is low, almost identical with that obtained by the simultaneous treatment of the WT AT1R-expressing cells with BK and AngII. In this context the chimeric receptor displays the characteristics of both receptors. These data demonstrate that, in human lung fibroblasts, BK modulates the action of AngII through the small G protein RhoA, but in a Galphai/Galphaq-independent manner.  相似文献   

16.
17.
Prolonged or repeated agonist activation of G-protein-coupled receptors (GPCRs) initiates their desensitization and internalization, rendering them unresponsive to agonist activation. We analyzed how gangliosides and chondroitin sulfate affect B2 bradykinin (BK) receptors (B2Rs). Gangliosides and chondroitin sulfate did not stimulate intracellular Ca(2+) release from B2R-expressing CHO-K1 cells, but repeated exposure desensitized B2Rs to BK stimulation. Microscopic observation of DsRed-fused B2Rs revealed that several gangliosides and chondroitin sulfate C (CSC) effectively internalized B2Rs. Ganglioside-CSC treatment of B2R mutant-expressing cells failed to desensitize and internalize the mutant receptors. As this mutant lacks the first extracellular domain and cannot activate GPCR kinase (GRK), gangliosides and CSC likely initiate B2R desensitization and endocytosis through GRK-mediated B2R phosphorylation.  相似文献   

18.
We examined the effect of insulin treatment on HTC cells transfected with large numbers of either normal insulin receptors (HTC-IR) or insulin receptors defective in tyrosine kinase (HTC-IR/M-1030). In both HTC-IR and HTC-IR/M-1030 cells, 20 h of insulin treatment (1 microM) at 37 degrees C resulted in a 65% decrease in the number of binding sites with a reciprocal 6-fold increase in affinity. In contrast, treatment with 10 nM insulin (20 h, 37 degrees C) also increased receptor affinity but had a smaller effect on the number of binding sites. 125I-Insulin binding to soluble receptors from HTC-IR and HTC-IR/M-1030 cells pretreated with insulin showed results similar to those obtained in intact cells. In both HTC-IR and HTC-IR/M-1030 cells, insulin enhanced insulin receptor degradation. In HTC-IR/M-1030 cells a 1-h incubation with insulin did not change receptor number and had only a small effect on receptor affinity; also there was no effect of insulin after a 20-h incubation at 15 degrees C. Inhibiting protein synthesis by pretreatment with cycloheximide (100 microM) did not block either the decrease in receptor number or the increase in receptor affinity. Both HTC-IR and HTC-IR/M-1030 cells exhibited a very slow rate of insulin and insulin receptor internalization and no differences were seen in this parameter when HTC-IR cells were compared to HTC-IR/M-1030 cells. These studies indicate, therefore, that in cells expressing kinase-defective insulin receptors, insulin down-regulates insulin receptor number via enhanced receptor degradation, and up-regulates receptor affinity. These effects were time- and temperature-dependent, but not dependent on new protein synthesis, and suggest that activation of tyrosine kinase may not be a prerequisite for certain mechanisms whereby insulin regulates its receptor.  相似文献   

19.
Prolonged agonist stimulation results in down-regulation of most G protein-coupled receptors. When we exposed baby hamster kidney cells stably expressing the human beta1-adrenergic receptor (beta 1AR) to agonist over a 24-h period, we instead observed an increase of approximately 30% in both beta 1AR binding activity and immune-detected receptors. In contrast, beta 2AR expressed in these cells exhibited a decrease of > or =50%. We determined that the basal turnover rates of the two subtypes were similar (t(1/2) approximately 7 h) and that agonist stimulation increased beta 2AR but not beta 1AR turnover. Blocking receptor trafficking to lysosomes with bafilomycin A1 had no effect on basal turnover of either subtype but blocked agonist-stimulated beta 2AR turnover. As beta 1AR mRNA levels increased in agonist-stimulated cells, beta 1AR up-regulation appeared to result from increased synthesis with no change in degradation. To explore the basis for the subtype differences, we expressed chimeras in which the C termini had been exchanged. Each chimera responded to persistent agonist stimulation based on the source of its C-tail; beta 1AR with a beta 2AR C-tail underwent down-regulation, and beta 2AR with a beta 1AR C-tail underwent up-regulation. The C-tails had a corresponding effect on agonist-stimulated receptor phosphorylation and internalization with the order being beta 2AR > beta 1AR with beta 2AR C-tail > beta 2AR with a beta 1AR C-tail > beta 1AR. As internalization may be a prerequisite for down-regulation, we addressed this possibility by co-expressing each subtype with arrestin-2. Although beta 1AR internalization was increased to that of beta 2AR, down-regulation still did not occur. Instead, beta 1AR accumulated inside the cells. We conclude that in unstimulated cells, both subtypes appear to be turned over by the same mechanism. Upon agonist stimulation, both subtypes are internalized, and beta 2AR but not beta 1AR undergoes lysosomal degradation, the fate of each subtype being regulated by determinants in its C-tail.  相似文献   

20.
Depending on their interaction with intracellular proteins, G protein-coupled receptors (GPCR) often display different affinities for agonists at 37 degrees C. Determining the affinity at that temperature is often difficult in intact cells as most GPCRs are internalized after activation. When sequestration of the B2 bradykinin receptor (B2R) was inhibited by either 0.5 M sucrose or phenylarsine oxide (PAO), a shift in the affinity was detected when the incubation temperature was raised from 4 degrees C to 37 degrees C or lowered from 37 degrees C to 4 degrees C. In contrast, binding of the antagonist [3H]NPC 17731 was temperature-independent. B2R mutants displayed different affinity shifts allowing conclusions on the role of the involved amino acids. By inhibiting receptor sequestration it was possible to determine also dissociation of [3H]BK and of [3H]NPC 17731 from intact cells at 37 degrees C. Surprisingly, both dissociation rates were markedly enhanced by the addition of unlabeled ligand, most likely via prevention of reassociation of dissociated [3H]ligand. This suggests that dissociated [3H]ligand cannot move freely away from the receptor. In summary, our data demonstrate that inhibition of receptor internalization either by PAO or sucrose provides an excellent method to study receptor function and the effects of mutations in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号