首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thioredoxin reductase (TrxR) isoenzymes, TrxR1 in cytosol or nucleus and TrxR2 in mitochondria, are essential mammalian selenocysteine (Sec)-containing flavoenzymes with a unique C-terminal -Gly-Cys-Sec-Gly active site. TrxRs are often overexpressed in a number of human tumors, and the reduction of their expression in malignant cells reverses tumor growth, making the enzymes attractive targets for anticancer drug development. Gambogic acid (GA), a natural product that has been used in traditional Chinese medicine for centuries, demonstrates potent anticancer activity in numerous types of human cancer cells and has entered phase II clinical trials. We discovered that GA may interact with TrxR1 to elicit oxidative stress and eventually induce apoptosis in human hepatocellular carcinoma SMMC-7721 cells. GA primarily targets the Sec residue in the antioxidant enzyme TrxR1 to inhibit its Trx-reduction activity, leading to accumulation of reactive oxygen species and collapse of the intracellular redox balance. Importantly, overexpression of functional TrxR1 in cells attenuates the cytotoxicity of GA, whereas knockdown of TrxR1 sensitizes cells to GA. Targeting of TrxR1 by GA thus discloses a previously unrecognized mechanism underlying the biological action of GA and provides useful information for further development of GA as a potential agent in the treatment of cancer.  相似文献   

2.
Mammalian thioredoxin reductase (TrxR) catalyzes the reduction of oxidized thioredoxin in a NADPH-dependent manner, and contains a selenocysteine residue near the C-terminus. Glutathione peroxidase (GPx) is one of the primary antioxidant enzymes that scavenge hydrogen peroxide and organic hydroperoxides. Both TrxR and GPx play an important role in protecting against oxidative stress. Cyclophosphamide (CTX), one of the most widely prescribed antineoplastic drugs, could cause cystitis. We found that 4 h after a bolus dose of CTX (30, 90, 150, 300 and 450 mg/kg) were administrated intraperitoneally, TrxR activity was significantly decreased in a dose-dependent manner, by 32%, 44%, 68%, 87% and 99%, respectively, in comparison with control group. When fixing CTX dose at 150 mg/kg, TrxR activity changed over time, significantly reduced to 68% of the activity in comparison with control tissue at 2 h, and gradually recovered to normal level within 24 h. In addition, we found that GPx activity was induced significantly after 4h. The results of the present study suggest that marked suppression of TrxR activity could be involved in the mechanism of CTX-induced cystitis, bladder may have a protective system against tissue damage by CTX via upregulation of TrxR and GPx, which is an adaptive response to oxidative stress.  相似文献   

3.
Selenium (Se) is a crucial element exerting antioxidant and neuroprotective effects in different toxic models. It has been suggested that Se acts through selenoproteins, of which thioredoxin reductase (TrxR) is relevant for reduction of harmful hydroperoxides and maintenance of thioredoxin (Trx) redox activity. Of note, the Trx/TrxR system remains poorly studied in toxic models of degenerative disorders. Despite previous reports of our group have demonstrated a protective role of Se in the excitotoxic/pro-oxidant model induced by quinolinic acid (QUIN) in the rat striatum (Santamaría et al., 2003, 2005), the precise mechanism(s) by which Se is inducing protection remains unclear. In this work, we characterized the time course of protective events elicited by Se as pretreatment (Na(2)SO(3), 0.625 mg/kg/day, i.p., administered for 5 consecutive days) in the toxic pattern produced by a single infusion of QUIN (240 nmol/μl) in the rat striatum, to further explore whether TrxR is involved in the Se-induced protection and how is regulated. Se attenuated the QUIN-induced early reactive oxygen species formation, lipid peroxidation, oxidative damage to DNA, loss of mitochondrial reductive capacity and morphological alterations in the striatum. Our results also revealed a novel pattern in which QUIN transiently stimulated an early TrxR cellular localization/distribution (at 30 min and 2 h post-lesion, evidenced by immunohistochemistry), to further stimulate a delayed protein activation (at 24 h) in a manner likely representing a compensatory response to the oxidative damage in course. In turn, Se induced an early stimulation of TrxR activity and expression in a time course that "matches" with the reduction of the QUIN-induced oxidative damage, suggesting that the Trx/TrxR system contributes to the resistance of nerve tissue to QUIN toxicity.  相似文献   

4.
5.
The cytosolic and mitochondrial thioredoxin reductases (TrxR1 and TrxR2) and thioredoxins (Trx1 and Trx2) are key components of the mammalian thioredoxin system, which is important for antioxidant defense and redox regulation of cell function. TrxR1 and TrxR2 are selenoproteins generally considered to have comparable properties, but to be functionally separated by their different compartments. To compare their properties we expressed recombinant human TrxR1 and TrxR2 and determined their substrate specificities and inhibition by metal compounds. TrxR2 preferred its endogenous substrate Trx2 over Trx1, whereas TrxR1 efficiently reduced both Trx1 and Trx2. TrxR2 displayed strikingly lower activity with dithionitrobenzoic acid (DTNB), lipoamide, and the quinone substrate juglone compared to TrxR1, and TrxR2 could not reduce lipoic acid. However, Sec-deficient two-amino-acid-truncated TrxR2 was almost as efficient as full-length TrxR2 in the reduction of DTNB. We found that the gold(I) compound auranofin efficiently inhibited both full-length TrxR1 and TrxR2 and truncated TrxR2. In contrast, some newly synthesized gold(I) compounds and cisplatin inhibited only full-length TrxR1 or TrxR2 and not truncated TrxR2. Surprisingly, one gold(I) compound, [Au(d2pype)(2)]Cl, was a better inhibitor of TrxR1, whereas another, [(iPr(2)Im)(2)Au]Cl, mainly inhibited TrxR2. These compounds also inhibited TrxR activity in the cytoplasm and mitochondria of cells, but their cytotoxicity was not always dependent on the proapoptotic proteins Bax and Bak. In conclusion, this study reveals significant differences between human TrxR1 and TrxR2 in substrate specificity and metal compound inhibition in vitro and in cells, which may be exploited for development of specific TrxR1- or TrxR2-targeting drugs.  相似文献   

6.
The selenoprotein thioredoxin reductase (TrxR1) is an essential antioxidant enzyme known to reduce many compounds in addition to thioredoxin, its principle protein substrate. Here we found that TrxR1 reduced ubiquinone-10 and thereby regenerated the antioxidant ubiquinol-10 (Q10), which is important for protection against lipid and protein peroxidation. The reduction was time- and dose-dependent, with an apparent K(m) of 22 microm and a maximal rate of about 12 nmol of reduced Q10 per milligram of TrxR1 per minute. TrxR1 reduced ubiquinone maximally at a physiological pH of 7.5 at similar rates using either NADPH or NADH as cofactors. The reduction of Q10 by mammalian TrxR1 was selenium dependent as revealed by comparison with Escherichia coli TrxR or selenium-deprived mutant and truncated mammalian TrxR forms. In addition, the rate of reduction of ubiquinone was significantly higher in homogenates from human embryo kidney 293 cells stably overexpressing thioredoxin reductase and was induced along with increasing cytosolic TrxR activity after the addition of selenite to the culture medium. These data demonstrate that the selenoenzyme thioredoxin reductase is an important selenium-dependent ubiquinone reductase and can explain how selenium and ubiquinone, by a combined action, may protect the cell from oxidative damage.  相似文献   

7.
Respiring mitochondria produce H(2)O(2) continuously. When production exceeds scavenging, H(2)O(2) emission occurs, endangering cell functions. The mitochondrial peroxidase peroxiredoxin-3 reduces H(2)O(2) to water using reducing equivalents from NADPH supplied by thioredoxin-2 (Trx2) and, ultimately, thioredoxin reductase-2 (TrxR2). Here, the contribution of this mitochondrial thioredoxin system to the control of H(2)O(2) emission was studied in isolated mitochondria and cardiomyocytes from mouse or guinea pig heart. Energization of mitochondria by the addition of glutamate/malate resulted in a 10-fold decrease in the ratio of oxidized to reduced Trx2. This shift in redox state was accompanied by an increase in NAD(P)H and was dependent on TrxR2 activity. Inhibition of TrxR2 in isolated mitochondria by auranofin resulted in increased H(2)O(2) emission, an effect that was seen under both forward and reverse electron transport. This effect was independent of changes in NAD(P)H or membrane potential. The effects of auranofin were reproduced in cardiomyocytes; superoxide and H(2)O(2) levels increased, but similarly, there was no effect on NAD(P)H or membrane potential. These data show that energization of mitochondria increases the antioxidant potential of the TrxR2/Trx2 system and that inhibition of TrxR2 results in increased H(2)O(2) emission through a mechanism that is independent of changes in other redox couples.  相似文献   

8.
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased unsaturated aldehyde levels and reduced antioxidant status play an important role in the pathogenesis of a number of human diseases such as Alzheimer's, atherosclerosis, and diabetes. Mammalian thioredoxin reductase (TR), a central antioxidant enzyme, is a selenoprotein that catalyzes the reduction of oxidized thioredoxin. The findings reported here show that low concentrations of acrolein rapidly inactivate TR, both in vitro and in vivo. These data suggest that acrolein may directly inactivate TR, resulting in an increase in oxidative cellular damage. In addition, we also found that the initial inactivation of TR molecules by acrolein triggers a compensatory signal for inducing TR gene expression in human umbilical vein endothelial cells (HUVEC). The results of the present study suggest that HUVEC may have a protective system against cell damage by acrolein via the upregulation of TR, which is an adaptive response to oxidative stress.  相似文献   

9.
Herein, we report that dihydrolipoic acid and lipoic acid (LA) plus lipoamide dehydrogenase and NADH denitrosate S-nitrosocaspase 3 (CASP-SNO). In HepG2 cells, S-nitroso-l-cysteine ethyl ester (SNCEE) impeded the activity of caspase 3 (CASP-SH), while a subsequent incubation of the cells in SNCEE-free medium resulted in endogenous denitrosation and reactivation of CASP-SH. The latter process was inhibited in thioredoxin reductase-deficient HepG2 cells, in which, however, LA markedly reactivated CASP-SH. The data obtained are discussed with focus on low molecular mass dithiols that mimic the activity of thioredoxin in reactions of protein S-denitrosation.  相似文献   

10.
Although the etiology of sporadic Parkinson disease (PD) is unknown, it is well established that oxidative stress plays an important role in the pathogenic mechanism. The thioredoxin (Trx) and glutaredoxin (Grx) systems are two central systems upholding the sulfhydryl homeostasis by reducing disulfides and mixed disulfides within the cell and thereby protecting against oxidative stress. By examining the expression of redox proteins in human postmortem PD brains, we found the levels of Trx1 and thioredoxin reductase 1 (TrxR1) to be significantly decreased. The human neuroblastoma cell line SH-SY5Y and the nematode Caenorhabditis elegans were used as model systems to explore the potential protective effects of the redox proteins against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. 6-OHDA is highly prone to oxidation, resulting in the formation of the quinone of 6-OHDA, a highly reactive species and powerful neurotoxin. Treatment of human cells with 6-OHDA resulted in an increased expression of Trx1, TrxR1, Grx1, and Grx2, and small interfering RNA for these genes significantly increased the cytotoxic effects exerted by the 6-OHDA neurotoxin. Evaluation of the dopaminergic neurons in C. elegans revealed that nematodes lacking trxr-1 were significantly more sensitive to 6-OHDA, with significantly increased neuronal degradation. Importantly, both the Trx and the Grx systems were also found to directly mediate reduction of the 6-OHDA-quinone in vitro and thus render its cytotoxic effects. In conclusion, our results suggest that the two redox systems are important for neuronal survival in dopamine-induced cell death.  相似文献   

11.
Mammalian thioredoxin reductase (TrxR), a ubiquitous selenocysteine containing oxidoreductase, catalyzes the NADPH-dependent reduction of oxidized thioredoxin (Trx). TrxR has been suggested as a potential target for anticancer drugs development for its overexpression in human tumors and its diverse functions in intracellular redox control, cell growth and apoptosis. Mansonone F (MF) compounds have been shown to exhibit antiproliferative effects, but their complex mechanisms are unknown. In the present study, we have investigated the effects of some synthesized MF analogues on TrxR and HeLa cells. The studies of the mode of inhibition and the interactions of IG3, one of the most potent MF analogues, with TrxR showed MF compounds could be partly reduced by the C-terminal selenolthiol active site, and possibly by the N-terminal dithiol motif and/or FAD domain of TrxR simultaneously, accompanied by redox cycling with the generation of superoxide anion radicals. In addition, MF analogues exhibited the potential to inhibit the growth of HeLa cells and reduce TrxR activity in cell lysates. The cell cycle was arrested in G2/M phase and apoptosis was induced in a dose-dependent manner. Furthermore, our results showed that IG3-treated HeLa cells induced the change of intracellular ROS. Taken together, the reported results here suggest that inhibition of TrxR by MF analogues provides a possible complex mechanism for explaining the anticancer activity of MF compounds.  相似文献   

12.
13.
The mechanism of disulphide reduction by mitochondria   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Cystamine was reduced to the corresponding thiol by rat liver mitochondria, even in the presence of rotenone or antimycin A. 2. The reduction of disulphides was stimulated by the accumulation of NADH or by the addition of NADH to osmotically ;shocked' mitochondria. 3. Energy made available by oxidative phosphorylation was not essential for the reduction of disulphides. 4. Cystamine was not reduced during the oxidation of NADH by ultrasonically treated particles, which had lost their capacity for oxidation of alpha-oxo acids. 5. In intact mitochondria, arsenite and other inhibitors of vicinal dithiols caused a decrease in the capacity for reduction of disulphides concomitantly with an inhibition of the oxidation of alpha-oxo acids. 6. Isolated lipoamide dehydrogenase reduced cystamine at the expense of NADH, provided that lipoic acid was also present. 7. It is concluded that in mitochondria the reduction of cystamine and related disulphides is probably brought about by interaction with reduced lipoic acid, generated by the alpha-oxo acid dehydrogenase complexes during the oxidation of alpha-oxo acids or by reaction of lipoamide dehydrogenase with NADH.  相似文献   

14.
The thioredoxin peptide Trp-Cys-Gly-Pro-Cys-Lys, which contains the redox active dithiol, was found to be reduced by lipoamide in a coupled reaction with lipoamide dehydrogenase and NADH. The reduced peptide in turn was shown to reduce insulin, oxidized lens protein and glyceraldehyde-3-phosphate dehydrogenase. While the peptide is not as effective a catalyst for utilizing pyridine nucleotides to reduce protein disulfides as thioredoxin, it offers a system which may be developed to provide more efficient disulfide reduction. This is particularly relevant since no thioredoxin peptides have been found to be active with thioredoxin reductase.  相似文献   

15.
Abnormally enhanced tissue factor (TF) activity is related to increased thrombosis risk in which oxidative stress plays a critical role. Human cytosolic thioredoxin (hTrx1) and thioredoxin reductase (TrxR), also secreted into circulation, have the power to protect against oxidative stress. However, the relationship between hTrx1/TrxR and TF remains unknown. Here we show reversible association of hTrx1 with TF in human serum and plasma samples. The association is dependent on hTrx1-Cys-73 that bridges TF-Cys-209 via a disulfide bond. hTrx1-Cys-73 is absolutely required for hTrx1 to interfere with FVIIa binding to purified and cell-surface TF, consequently suppressing TF-dependent procoagulant activity and proteinase-activated receptor-2 activation. Moreover, hTrx1/TrxR plays an important role in sensing the alterations of NADPH/NADP+ states and transducing this redox-sensitive signal into changes in TF activity. With NADPH, hTrx1/TrxR readily facilitates the reduction of TF, causing a decrease in TF activity, whereas with NADP+, hTrx1/TrxR promotes the oxidation of TF, leading to an increase in TF activity. By comparison, TF is more likely to favor the reduction by hTrx1-TrxR-NADPH. This reversible reduction-oxidation reaction occurs in the TF extracellular domain that contains partially opened Cys-49/-57 and Cys-186/-209 disulfide bonds. The cell-surface TF procoagulant activity is significantly increased after hTrx1-knockdown. The response of cell-surface TF procoagulant activity to H2O2 is efficiently suppressed through elevating cellular TrxR activity via selenium supplementation. Our data provide a novel mechanism for redox regulation of TF activity. By modifying Cys residues or regulating Cys redox states in TF extracellular domain, hTrx1/TrxR function as a safeguard against inappropriate TF activity.  相似文献   

16.
alpha-Lipoic acid (LA) has been widely studied as an agent for preventing and treating various diseases associated with oxidative disruption of mitochondrial functions. To investigate a related mitochondrial antioxidant, we compared the effects of lipoamide (LM), the neutral amide of LA, with LA for measures of oxidative damage and mitochondrial dysfunction in a human retinal pigment epithelial (RPE) cell line. Acrolein, a major component of cigarette smoke and a product of lipid peroxidation, was used to induce oxidative mitochondrial damage in RPE cells. Overall, using comparable concentrations, LM was more effective than LA at preventing acrolein-induced mitochondrial dysfunction and oxidative stress. Relative to LA, LM improved ATP levels, membrane potentials, and activities of mitochondrial complexes I, II, and V and dehydrogenases that had been decreased by acrolein exposure. LM reduced acrolein-induced oxidant generation, calcium levels, protein oxidation, and DNA damage to a greater degree than LA. And, total antioxidant capacity, glutathione content, glutathione S-transferase, and superoxide dismutase activities and expression of nuclear factor-E2-related factor 2 were increased by LM relative to LA. These results suggest that LM is a more potent mitochondrial-protective agent and antioxidant than LA in protecting RPE from oxidative damage.  相似文献   

17.
The ubiquitously expressed mammalian thioredoxin reductases are selenoproteins that together with NADPH regenerate active reduced thioredoxins and are involved in diverse actions mediated by redox control. Two main forms of mammalian thioredoxin reductases have been isolated, one cytosolic (TrxR1) and one present in mitochondria (TrxR2). Although the principal target for TrxRs is thioredoxin, the cytosolic form can regenerate several important antioxidants such as ascorbic acid, lipoic acid, and ubiquinone. In this study we demonstrate that cytochrome c is a substrate for both TrxR1 and TrxR2. In addition, cells overexpressing TrxR2 are more resistant to impairment of complex III in the mitochondrial respiratory chain upon both antimycin A and myxothiazol treatments, suggesting a complex III bypassing function of TrxR2. Furthermore, we show that cytochrome c is reduced by TrxR2 in vitro, not only by using NADPH as an electron donor but also by using NADH, pointing at TrxR2 as an important redox protein on complex III impairment. These findings may be valuable in understanding respiratory disorders in mitochondrial diseases.  相似文献   

18.
19.
20.
曾昭定  戴爱国  蒋永亮 《生物磁学》2014,(9):1769-1771,1708
硫氧还蛋白系统是由硫氧还蛋白(thioredoxin,Trx),硫氧还蛋白还原酶(thioredoxinreductase,TrxR)和还原型辅酶Ⅱ(NADPH)组成的多功能小分子蛋白系统,广泛表达的硫氧还蛋白作为蛋白质二硫键的还原酶,它参与很多生理过程,并发挥重要生物学功能,包括调节机体的氧化还原反应、抑制细胞凋亡、调节转录因子DNA结合活性以及免疫应答等,其中一重要作用是参与调节细胞氧化还原状态以对抗氧化应激。因此在一些炎症性疾病如慢性阻塞性肺疾病、急性呼吸窘迫综合征、肺间质疾病、哮喘、肺结节病等的发生发展中扮演重要角色,本文对硫氧还蛋白系统在慢性阻塞性肺疾病中的抗氧化作用作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号