首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-terminal region residues, Lys11, Arg13, and Arg24, of the plasma coagulation inhibitor, antithrombin, have been implicated in binding of the anticoagulant polysaccharide, heparin, from the identification of natural mutants with impaired heparin binding or by the X-ray structure of a complex of the inhibitor with a high-affinity heparin pentasaccharide. Mutations of Lys11 or Arg24 to Ala in this work each reduced the affinity for the pentasaccharide approximately 40-fold, whereas mutation of Arg13 to Ala led to a decrease of only approximately 7-fold. All three substitutions resulted in the loss of one ionic interaction with the pentasaccharide and those of Lys11 or Arg24 also in 3-5-fold losses in affinity of nonionic interactions. Only the mutation of Lys11 affected the initial, weak interaction step of pentasaccharide binding, decreasing the affinity of this step approximately 2-fold. The mutations of Lys11 and Arg13 moderately, 2-7-fold, altered both rate constants of the second, conformational change step, whereas the substitution of Arg24 appreciably, approximately 25-fold, reduced the reverse rate constant of this step. The N-terminal region of antithrombin is thus critical for high-affinity heparin binding, Lys11 and Arg24 being responsible for maintaining appreciable and comparable binding energy, whereas Arg13 is less important. Lys11 is the only one of the three residues that is involved in the initial recognition step, whereas all three residues participate in the conformational change step. Lys11 and Arg13 presumably bind directly to the heparin pentasaccharide by ionic, and in the case of Lys11, also nonionic interactions. However, the role of Arg24 most likely is indirect, to stabilize the heparin-induced P-helix by interacting intramolecularly with Glu113 and Asp117, thereby positioning the crucial Lys114 residue for optimal ionic and nonionic interactions with the pentasaccharide. Together, these findings show that N-terminal residues of antithrombin make markedly different contributions to the energetics and dynamics of binding of the pentasaccharide ligand to the native and activated conformational states of the inhibitor that could not have been predicted from the X-ray structure.  相似文献   

2.
V Arocas  S C Bock  S T Olson  I Bj?rk 《Biochemistry》1999,38(31):10196-10204
Heparin greatly accelerates the reaction between antithrombin and its target proteinases, thrombin and factor Xa, by virtue of a specific pentasaccharide sequence of heparin binding to antithrombin. The binding occurs in two steps, an initial weak interaction inducing a conformational change of antithrombin that increases the affinity for heparin and activates the inhibitor. Arg46 and Arg47 of antithrombin have been implicated in heparin binding by studies of natural and recombinant variants and by the crystal structure of a pentasaccharide-antithrombin complex. We have mutated these two residues to Ala or His to determine their role in the heparin-binding mechanism. The dissociation constants for the binding of both full-length heparin and pentasaccharide to the R46A and R47H variants were increased 3-4-fold and 20-30-fold, respectively, at pH 7.4. Arg46 thus contributes only little to the binding, whereas Arg47 is of appreciable importance. The ionic strength dependence of the dissociation constant for pentasaccharide binding to the R47H variant showed that the decrease in affinity was due to the loss of both one charge interaction and nonionic interactions. Rapid-kinetics studies further revealed that the affinity loss was caused by both a somewhat lower forward rate constant and a greater reverse rate constant of the conformational change step, while the affinity of the initial binding step was unaffected. Arg47 is thus not involved in the initial weak binding of heparin to antithrombin but is important for the heparin-induced conformational change. These results are in agreement with a previously proposed model, in which an initial low-affinity binding of the nonreducing-end trisaccharide of the heparin pentasaccharide induces the antithrombin conformational change. This change positions Arg47 and other residues for optimal interaction with the reducing-end disaccharide, thereby locking the inhibitor in the activated state.  相似文献   

3.
The contribution of Arg(129) of the serpin, antithrombin, to the mechanism of allosteric activation of the protein by heparin was determined from the effect of mutating this residue to either His or Gln. R129H and R129Q antithrombins bound pentasaccharide and full-length heparins containing the antithrombin recognition sequence with similar large reductions in affinity ranging from 400- to 2500-fold relative to the control serpin, corresponding to a loss of 28-35% of the binding free energy. The salt dependence of pentasaccharide binding showed that the binding defect of the mutant serpin resulted from the loss of approximately 2 ionic interactions, suggesting that Arg(129) binds the pentasaccharide cooperatively with other residues. Rapid kinetic studies showed that the mutation minimally affected the initial low affinity binding of heparin to antithrombin, but greatly affected the subsequent conformational activation of the serpin leading to high affinity heparin binding, although not enough to disfavor activation. Consistent with these findings, the mutant antithrombin was normally activated by heparin for accelerated inhibition of factor Xa and thrombin. These results support an important role for Arg(129) in an induced-fit mechanism of heparin activation of antithrombin wherein conformational activation of the serpin positions Arg(129) and other residues for cooperative interactions with the heparin pentasaccharide so as to lock the serpin in the activated state.  相似文献   

4.
The anticoagulant sulfated polysaccharide, heparin, binds to the plasma coagulation proteinase inhibitor, antithrombin, and activates it by a conformational change that results in a greatly increased rate of inhibition of target proteinases. Lys125 of antithrombin has previously been implicated in this binding by chemical modification and site-directed mutagenesis and by the crystal structure of a complex between antithrombin and a pentasaccharide constituting the antithrombin-binding region of heparin. Replacement of Lys125 with Met or Gln in this work reduced the affinity of antithrombin for full-length heparin or the pentasaccharide by 150-600-fold at I = 0.15, corresponding to a loss of 25-33% of the total binding energy. The affinity decrease was due both to disruption of approximately three ionic interactions, indicating that Lys125 and two other basic residues of antithrombin act cooperatively in binding to heparin, and to weakened nonionic interactions. The mutations caused a 10-17-fold decrease in the affinity of the initial, weak binding step of the two-step mechanism of heparin binding to antithrombin. They also increased the reverse rate constant of the second, conformational change step by 10-50-fold. Lys125 is thus a major heparin-binding residue of antithrombin, contributing an amount of binding energy comparable to that of Arg129, but less energy than Lys114. It is the first residue identified so far that has a critical role in the initial recognition of heparin by antithrombin, but also appreciably stabilizes the heparin-induced activated state of the inhibitor. These effects are exerted by interactions of Lys125 with the nonreducing end of the heparin pentasaccharide.  相似文献   

5.
Johnson DJ  Huntington JA 《Biochemistry》2003,42(29):8712-8719
Antithrombin is activated as an inhibitor of the coagulation proteases through its specific interaction with a heparin pentasaccharide. The binding of heparin induces a global conformational change in antithrombin which results in the freeing of its reactive center loop for interaction with target proteases and a 1000-fold increase in heparin affinity. The allosteric mechanism by which the properties of antithrombin are altered by its interactions with the specific pentasaccharide sequence of heparin is of great interest to the medical and protein biochemistry communities. Heparin binding has previously been characterized as a two-step, three-state mechanism where, after an initial weak interaction, antithrombin undergoes a conformational change to its high-affinity state. Although the native and heparin-activated states have been determined through protein crystallography, the number and magnitude of conformational changes render problematic the task of determining which account for the improved heparin affinity and how the heparin binding region is linked to the expulsion of the reactive center loop. Here we present the structure of an intermediate pentasaccharide-bound conformation of antithrombin which has undergone all of the conformational changes associated with activation except loop expulsion and helix D elongation. We conclude that the basis of the high-affinity state is not improved interaction with the pentasaccharide but a lowering of the global free energy due to conformational changes elsewhere in antithrombin. We suggest a mechanism in which the role of helix D elongation is to lock antithrombin in the five-stranded fully activated conformation.  相似文献   

6.
Lys(114) of the plasma coagulation proteinase inhibitor, antithrombin, has been implicated in binding of the glycosaminoglycan activator, heparin, by previous mutagenesis studies and by the crystal structure of antithrombin in complex with the active pentasaccharide unit of heparin. In the present work, substitution of Lys(114) by Ala or Met was shown to decrease the affinity of antithrombin for heparin and the pentasaccharide by approximately 10(5)-fold at I 0.15, corresponding to a reduction in binding energy of approximately 50%. The decrease in affinity was due to the loss of two to three ionic interactions, consistent with Lys(114) and at least one other basic residue of the inhibitor binding cooperatively to heparin, as well as to substantial nonionic interactions. The mutation minimally affected the initial, weak binding of the two-step mechanism of pentasaccharide binding to antithrombin but appreciably (>40-fold) decreased the forward rate constant of the conformational change in the second step and greatly (>1000-fold) increased the reverse rate constant of this step. Lys(114) is thus of greater importance for the affinity of heparin binding than any of the other antithrombin residues investigated so far, viz. Arg(47), Lys(125), and Arg(129). It contributes more than Arg(47) and Arg(129) to increasing the rate of induction of the activating conformational change, a role presumably exerted by interactions with the nonreducing end trisaccharide unit of the heparin pentasaccharide. However, its major effect, also larger than that of these two residues, is in maintaining antithrombin in the activated state by interactions that most likely involve the reducing end disaccharide unit.  相似文献   

7.
Arocas V  Turk B  Bock SC  Olson ST  Björk I 《Biochemistry》2000,39(29):8512-8518
The interaction of a well-defined pentasaccharide sequence of heparin with a specific binding site on antithrombin activates the inhibitor through a conformational change. This change increases the rate of antithrombin inhibition of factor Xa, whereas acceleration of thrombin inhibition requires binding of both inhibitor and proteinase to the same heparin chain. An extended heparin binding site of antithrombin outside the specific pentasaccharide site has been proposed to account for the higher affinity of the inhibitor for full-length heparin chains by interacting with saccharides adjacent to the pentasaccharide sequence. To resolve conflicting evidence regarding the roles of Lys136 and Lys139 in this extended site, we have mutated the two residues to Ala or Gln. Mutation of Lys136 decreased the antithrombin affinity for full-length heparin by at least 5-fold but minimally altered the affinity for the pentasaccharide. As a result, the full-length heparin and pentasaccharide affinities were comparable. The reduced affinity for full-length heparin was associated with the loss of one ionic interaction and was caused by both a lower overall association rate constant and a higher overall dissociation rate constant. In contrast, mutation of Lys139 affected neither full-length heparin nor pentasaccharide affinity. The rate constants for inhibition of thrombin and factor Xa by the complexes between antithrombin and full-length heparin or pentasaccharide were unaffected by both mutations, indicating that neither Lys136 nor Lys139 is involved in heparin activation of the inhibitor. Together, these results show that Lys136 forms part of the extended heparin binding site of antithrombin that participates in the binding of full-length heparin chains, whereas Lys139 is located outside this site.  相似文献   

8.
The anticoagulant polysaccharide heparin binds and activates the plasma proteinase inhibitor antithrombin through a pentasaccharide sequence. Lys114, Lys125, and Arg129 are the three most important residues of the inhibitor for pentasaccharide binding. To elucidate to what extent another positively charged side chain can fulfill the role of each of these residues, we have mutated Lys114 and Lys125 to Arg and Arg129 to Lys. Lys114 could be reasonably well replaced with Arg with only an approximately 15-fold decrease in pentasaccharide affinity, in contrast to an approximately 10(5)-fold decrease caused by substitution with an noncharged amino acid of comparable size. However, a loss of approximately one ionic interaction on mutation to Arg indicates that the optimal configuration of the network of basic residues of antithrombin that together interact with the pentasaccharide requires a Lys in position 114. Replacement of Lys125 with Arg caused an even smaller, approximately 3-fold, decrease in pentasaccharide affinity, compared with that of approximately 400-fold caused by mutation to a neutral amino acid. An Arg in position 125 is thus essentially equivalent to the wild-type Lys in pentasaccharide binding. Substitution of Arg129 with Lys decreased the pentasaccharide affinity an appreciable approximately 100-fold, a loss approaching that of approximately 400-fold caused by substitution with a neutral amino acid. Arg is thus specifically required in position 129 for high-affinity pentasaccharide binding. This requirement is most likely due to the ability of Arg to interact with other residues of antithrombin, primarily, Glu414 and Thr44, in a manner that appropriately positions the Arg side chain for keeping the pentasaccharide anchored to the activated state of the inhibitor.  相似文献   

9.
We have previously shown that exosites in antithrombin outside the P6-P3' reactive loop region become available upon heparin activation to promote rapid inhibition of the target proteases, factor Xa and factor IXa. To identify these exosites, we prepared six antithrombin-alpha 1-proteinase inhibitor chimeras in which antithrombin residues 224-286 and 310-322 that circumscribe a region surrounding the reactive loop on the inhibitor surface were replaced in 10-16-residue segments with the homologous segments of alpha1-proteinase inhibitor. All chimeras bound heparin with a high affinity similar to wild-type, underwent heparin-induced fluorescence changes indicative of normal conformational activation, and were able to form SDS-stable complexes with thrombin, factor Xa, and factor IXa and inhibit these proteases with stoichiometries minimally altered from those of wild-type antithrombin. With only one exception, conformational activation of the chimeras with a heparin pentasaccharide resulted in normal approximately 100-300-fold enhancements in reactivity with factor Xa and factor IXa. The exception was the chimera in which residues 246-258 were replaced, corresponding to strand 3 of beta-sheet C, which showed little or no enhancement of its reactivity with these proteases following pentasaccharide activation. By contrast, all chimeras including the strand 3C chimera showed essentially wild-type reactivities with thrombin after pentasaccharide activation as well as normal full-length heparin enhancements in reactivity with all proteases due to heparin bridging. These findings suggest that antithrombin exosites responsible for enhancing the rates of factor Xa and factor IXa inhibition in the conformationally activated inhibitor lie in strand 3 of beta-sheet C of the serpin.  相似文献   

10.
Antithrombin III (ATIII) is the main inhibitor of the coagulation proteases like factor Xa and thrombin. Anticoagulant activity of ATIII is increased by several thousand folds when activated by vascular wall heparan sulfate proteoglycans (HSPGs) and pharmaceutical heparins. ATIII isoforms in human plasma, alpha-ATIII and beta-ATIII differ in the amount of glycosylation which is the basis of differences in their heparin binding affinity and function. Crystal structures and site directed mutagenesis studies have mapped the heparin binding site in ATIII, however the hydrogen bond switch and energetics of interaction during the course of heparin dependent conformational change remains largely unclear. An analysis of heparin bound conformational states of ATIII using PEARLS software showed that in heparin bound intermediate state, Arg 47 and Arg 13 residues make hydrogen bonds with heparin but in the activated conformation Lys 11 and Lys 114 have more hydrogen bond interactions. In the protease bound-antithrombin-pentasaccharide complex Lys 114, Pro 12 and Lys 125 form important hydrogen bonding interactions. The results showed that A-helix and N-terminal end residues are more important in the initial interactions but D-helix is more important during the latter stage of conformational activation and during the process of protease inhibition. We carried out the residue wise Accessible Surface Area (ASA) analysis of alpha and beta ATIII native states and the results indicated major differences in burial of residues from Ser 112 to Ser 116 towards the N-terminal end. This region is involved in the P-helix formation on account of heparin binding. A cavity analysis showed a progressively larger cavity formation during activation in the region just adjacent to the heparin binding site towards the C-terminal end. We hypothesize that during the process of conformational change after heparin binding beta form of antithrombin has low energy barrier to form D-helix extension toward N and C-terminal end as compared to alpha isoform.  相似文献   

11.
Binding of a synthetic, high-affinity heparin pentasaccharide and of intact heparin to both native and elastase-modified human antithrombin III have been examined by 1H-n.m.r. spectroscopy. The pentasaccharide perturbs many protein resonances in the same way as does intact heparin. There are, however, differences that seem to arise both from fewer contacts in the heparin binding-site when the pentasaccharide binds and from dissimilar conformational changes in the protein. The resonance of the H-2 atom of the histidine, considered to be the N-terminal residue and to be located in the heparin binding-site, is strongly perturbed by heparin binding both to native and modified antithrombin. The pentasaccharide has little effect on this histidine in either protein. Resonances from two of the remaining four histidine units are sensitive to longer-range conformational changes, and show differences between binding of the two heparin species both in native and modified ATIII. It is concluded that the pentasaccharide only partly fills the heparin binding-site and does not produce a conformational change identical to that caused by intact heparin. This is particularly significant as regards the mechanism of action of heparin, because the synthetic pentasaccharide activates ATIII towards Factor Xa, but not towards thrombin.  相似文献   

12.
Alignment of the heparin-activated serpins indicates the presence of two binding sites for heparin: a small high-affinity site on the D-helix corresponding in size to the minimal pentasaccharide heparin, and a longer contiguous low-affinity site extending to the reactive center pole of the molecule. Studies of the complexing of antithrombin and its variants with heparin fractions and with reactive center loop peptides including intermolecular loop-sheet polymers all support a 3-fold mechanism for the heparin activation of antithrombin. Binding to the pentasaccharide site induces a conformational change as measured by circular dichroism. Accompanying this, the reactive center becomes more accessible to proteolytic cleavage and there is a 100-fold increase in the kass for factor Xa but only a 10-fold increase for thrombin, to 6.4 x 10(4) M-1 s-1. To obtain a 100-fold increase in the kass for thrombin requires in addition a 4:1 molar ratio of disaccharide to neutralize the charge on the extended low-affinity site. Full activation requires longer heparin chains in order to stabilize the ternary complex between antithrombin and thrombin. Thus, addition of low-affinity but high molecular weight heparin in conjunction with pentasaccharide gives an overall kass of 2.7 x 10(6) M-1 s-1, close to that of maximal heparin activation.  相似文献   

13.
A synthetic tetradecapeptide having the sequence of the region of the antithrombin chain amino-terminal to the reactive bond, i.e. comprising residues P1 to P14, was shown to form a tight equimolar complex with antithrombin. A similar complex has previously been demonstrated between alpha 1-proteinase inhibitor and the analogous peptide of this inhibitor (Schulze, A. J., Baumann, U., Knof, S., Jaeger, E., Huber, R. and Laurell, C.-B. (1990) Eur. J. Biochem. 194, 51-56). The antithrombin-peptide complex had a conformation similar to that of reactive bond-cleaved antithrombin and, like the cleaved inhibitor, also had a higher conformational stability and lower heparin affinity than intact antithrombin. These properties suggest that the peptide bound to intact antithrombin at the same site that the P1 to P14 segment of the inhibitor occupies in reactive-bond-cleaved antithrombin, i.e. was incorporated as a sixth strand in the middle of the major beta-sheet, the A sheet. The extent of complex formation was reduced in the presence of heparin with high affinity for antithrombin, which is consistent with heparin binding and peptide incorporation being linked. Antithrombin in the complex with the tetradecapeptide had lost its ability to inactivate thrombin, but the reactive bond of the inhibitor was cleaved as in a normal substrate. These observations suggest a model, analogous to that proposed for alpha 1-proteinase inhibitor (Engh, R.A., Wright, H.T., and Huber, R. (1990) Protein Eng. 3, 469-477) for the structure of intact antithrombin, in which the A sheet contains only five strands and the P1 to P14 segment of the chain forms part of an exposed loop of the protein. The results further support a reaction model for serpins in which partial insertion of this loop into the A sheet is required for trapping of a proteinase in a stable complex, and complete insertion is responsible for the conformational change accompanying cleavage of the reactive bond of the inhibitor.  相似文献   

14.
The synthetic antithrombin-binding heparin pentasaccharide and a full-length heparin of approximately 26 saccharides containing this specific sequence have been compared with respect to their interactions with antithrombin and their ability to promote inhibition and substrate reactions of antithrombin with thrombin and factor Xa. The aim of these studies was to elucidate the pentasaccharide contribution to heparin's accelerating effect on antithrombin-proteinase reactions. Pentasaccharide and full-length heparins bound antithrombin with comparable high affinities (KD values of 36 +/- 11 and 10 +/- 3 nM, respectively, at I 0.15) and induced highly similar protein fluorescence, ultraviolet and circular dichroism changes in the inhibitor. Stopped-flow fluorescence kinetic studies of the heparin binding interactions at I 0.15 were consistent with a two-step binding process for both heparins, involving an initial weak encounter complex interaction formed with similar affinities (KD 20-30 microM), followed by an inhibitor conformational change with indistinguishable forward rate constants of 520-700 s-1 but dissimilar reverse rate constants of approximately 1 s-1 for the pentasaccharide and approximately 0.2 s-1 for the full-length heparin. Second order rate constants for antithrombin reactions with thrombin and factor Xa were maximally enhanced by the pentasaccharide only 1.7-fold for thrombin, but a substantial 270-fold for factor Xa, in an ionic strength-independent manner at saturating oligosaccharide. In contrast, the full-length heparin produced large ionic strength-dependent enhancements in second order rate constants for both antithrombin reactions of 4,300-fold for thrombin and 580-fold for factor Xa at I 0.15. These enhancements were resolvable into a nonionic component ascribable to the pentasaccharide and an ionic component responsible for the additional rate increase of the larger heparin. Stoichiometric titrations of thrombin and factor Xa inactivation by antithrombin, as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the products of these reactions, indicated that pentasaccharide and full-length heparins similarly promoted the formation of proteolytically modified inhibitor during the inactivation of factor Xa by antithrombin, whereas only the full-length heparin was effective in promoting this substrate reaction of antithrombin during the reaction with thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The serpin, antithrombin, requires allosteric activation by a sequence-specific pentasaccharide unit of heparin or heparan sulfate glycosaminoglycans to function as an anticoagulant regulator of blood clotting proteases. Surprisingly, X-ray structures have shown that the pentasaccharide produces similar induced-fit changes in the heparin binding site of native and latent antithrombin despite large differences in the heparin affinity and global conformation of these two forms. Here we present kinetic evidence for similar induced-fit mechanisms of pentasaccharide binding to native and latent antithrombins and kinetic simulations which together support a three-step mechanism of allosteric activation of native antithrombin involving two successive conformational changes. Equilibrium binding studies of pentasaccharide interactions with native and latent antithrombins and the salt dependence of these interactions suggest that each conformational change is associated with distinct spectroscopic changes and is driven by a progressively better fit of the pentasaccharide in the binding site. The observation that variant antithrombins that cannot undergo the second conformational change bind the pentasaccharide like latent antithrombin and are partially activated suggests that both conformational changes contribute to allosteric activation, in agreement with a recently proposed model of allosteric activation.  相似文献   

16.
Heparin regulates the inhibitory activity of antithrombin. It has been proposed that residues P15 and P14 are expelled from beta-sheet A of antithrombin by heparin binding, permitting better interaction of the reactive center loop with factor Xa. We have made a P14 antithrombin variant (S380E) to create an activated inhibitory form of antithrombin in which P14 is already expelled from beta-sheet A. S380E antithrombin fluorescence is enhanced 35 +/- 5% compared with control antithrombin. There is minimal further increase in antithrombin fluorescence upon heparin binding. The variant has a 5 degrees C lower T(m) than control antithrombin. The variant is an inhibitor of proteinases and has a nearly 200-fold increased basal rate of inhibition of factor Xa, after correction for an increased stoichiometry of inhibition. This is comparable to that of antithrombin activated by high affinity heparin pentasaccharide. Full-length high affinity heparin causes only a 7-fold additional increase in rate and a large increase in stoichiometry of inhibition. In contrast, the basal rate of inhibition of thrombin is similar to that of control antithrombin but is increased 300-fold by heparin. These findings suggest that the native state of the S380E variant exists in a loop-expelled conformation that is consequently highly reactive toward factor Xa.  相似文献   

17.
The binding of pentasaccharide heparin to antithrombin induces a conformational change that is transmitted to the reactive center loop and increases the rate of inhibition of factor Xa by approximately 300-fold. The mechanism of such transmission is not known. To test the role of residues 134-137, which link helix D to beta-sheet A, in this signal transduction, we created variant antithrombins in which we removed amino acids 134-137 stepwise and cumulatively. Although the deletions did not compromise the fundamental ability of antithrombin to bind to heparin or to inhibit target proteinases thrombin and factor Xa, they did largely decouple conformational changes in the heparin-binding site from conformational activation of the reactive center loop. Because the variant with only Ala(134) removed was as compromised as variants with larger deletions, yet the variant with Ser(137) removed was normal, we concluded that the length of the linker is less important than the precise interrelationship between residues in this region and other residues involved in conformational activation of antithrombin.  相似文献   

18.
Petitou M  Casu B  Lindahl U 《Biochimie》2003,85(1-2):83-89
Heparin inhibits blood coagulation by binding to the protease inhibitor antithrombin, thus promoting inactivation of the protease "factors" of the coagulation cascade mechanism. The article provides an overview of the studies, by different research groups, that led to the structural elucidation of the antithrombin-binding region of heparin. These studies were triggered by the finding that only a fraction of heparin molecules were capable of binding with high affinity to antithrombin, and further that this fraction essentially accounted for the anticoagulant activity of the unfractionated material. Oligosaccharides obtained by selective, partial depolymerization of heparin were fractionated on immobilized antithrombin, and the smallest high-affinity molecules recovered were subjected to structural analysis, in conjunction with various modification steps. The results were interpreted in terms of a binding site for antithrombin constituted by a pentasaccharide sequence with an internal unique 3-O-sulfated glucosamine unit, in addition to sugar residues and sulfate groups present elsewhere also in the polysaccharide. The structure/function relations deduced were verified by chemical synthesis of several pentasaccharide variants with the predicted bioactivities.  相似文献   

19.
Oligosaccharides with different affinities for antithrombin were isolated following partial deaminative cleavage of pig mucosal heparin with nitrous acid. The smallest high-affinity component obtained was previously identified as an octasaccharide with the predominant structure: (Formula: see text). The interaction of this octasaccharide, and of deca- and dodecasaccharides containing the same octasaccharide sequence, with antithrombin was studied by spectroscopic techniques. The near-ultraviolet difference spectra, circular dichroism spectra, and fluorescence enhancements induced by adding these oligosaccharides to antithrombin differed only slightly from the corresponding parameters measured in the presence of undegraded high-affinity heparin. Moreover, the binding constants obtained for the oligosaccharides and for high-affinity heparin were similar (1.0-2.9 X 10(7) M-1 at I = 0.3). In contrast, two hexasaccharides corresponding to units 1-6 and 3-8, respectively, of the above sequence showed about a 1000-fold lower affinity for antithrombin, and also induced considerably different spectral perturbations in antithrombin. Since the 1-6 hexasaccharide contains a reducing-terminal anhydromannose residue instead of the N-sulfated glucosamine unit 6 of the intact sequence, these results strongly support our previous conclusion that the N-sulfate group at position 6 is essential to the interaction with antithrombin. The low affinity of the hexasaccharide 3-8 provides further evidence that a pentasaccharide sequence 2-6 constitutes the actual antithrombin-binding region in the heparin molecule. Structural analysis of the various oligosaccharides revealed natural variants with an N-sulfate group substituted for the N-acetyl group at position 2. The preponderance of N-acetyl over N-sulfate groups at this position may be rationalized in terms of the mechanism of heparin biosynthesis, assuming that the D-gluco configuration of unit 3 is an essential feature of the antithrombin-binding region.  相似文献   

20.
The dissociation equilibrium constant for heparin binding to antithrombin III (ATIII) is a measure of the cofactor's binding to and activation of the proteinase inhibitor, and its salt dependence indicates that ionic and non-ionic interactions contribute approximately 40 and approximately 60% of the binding free energy, respectively. We now report that phenylalanines 121 and 122 (Phe-121 and Phe-122) together contribute 43% of the total binding free energy and 77% of the energy of non-ionic binding interactions. The large contribution of these hydrophobic residues to the binding energy is mediated not by direct interactions with heparin, but indirectly, through contacts between their phenyl rings and the non-polar stems of positively charged heparin binding residues, whose terminal amino and guanidinium groups are thereby organized to form extensive and specific ionic and non-ionic contacts with the pentasaccharide. Investigation of the kinetics of heparin binding demonstrated that Phe-122 is critical for promoting a normal rate of conformational change and stabilizing AT*H, the high affinity-activated binary complex. Kinetic and structural considerations suggest that Phe-122 and Lys-114 act cooperatively through non-ionic interactions to promote P-helix formation and ATIII binding to the pentasaccharide. In summary, although hydrophobic residues Phe-122 and Phe-121 make minimal contact with the pentasaccharide, they play a critical role in heparin binding and activation of antithrombin by coordinating the P-helix-mediated conformational change and organizing an extensive network of ionic and non-ionic interactions between positively charged heparin binding site residues and the cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号