首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a liquid culture of human bone marrow, the development of fibroblast colonies takes place on days 6 to 9. Twenty percent fetal calf serum is used as the stimulus for fibroblast colony growth. Human bone marrow cells are plated as 2 × 105 cells in the culture. Normal human bone marrow yields 47 ± 4 fibroblasts colonies per 2 × 105 cells plated. Bone marrow fibroblast cultures using agar or methylcellulose restrict colony formation. Marked colony suppression was observed in acute leukemia, and a discrete colony number was observed in hypoplastic anemia. This fibroblast culture method should be applied to a larger number of patients to determine whether it has a pathognomonic value and clinical significance.  相似文献   

2.
BALB/c or DBA/2 mice were infected with Abelson murine leukemia virus (A-MuLV), pseudotype Molony murine leukemia virus (M-MuLV). Infection of these mice with 104 focus-forming units of A-MuLV (M-MuLV) induced overt leukemia, detectable grossly or microscopically in 90% of the mice at 20–38 days. However, these methods did not detect leukemia at 17 days or before. Bone marrow cells from A-MuLV-infected leukemic or preleukemic mice were placed in tissue culture in a soft agarose gel. Cells from leukemic or preleukemic BALB/c mice grew to form colonies of 103 cells or more, composed of lymphoblasts, whereas marrow cells from normal uninfected mice did not. Cells from these colonies grew to form ascitic tumors after intraperitoneal inoculation into pristane-primed BALB/c recipient. Colony-forming leukemia cells could be detected in the marrow of A-MuLV-infected mice as early as 8 days after virus incoluation. The number of colony-forming leukemia cells increased as a function of time after virus inoculation. Colony-forming leukemia cells require other cells in order to replicate in tissue culture. Normal bone marrow cells, untreated or after treatment with mitomycin-C, provide this “helper” function. Only in the presence of untreated or mitomycin-C treated helper cells was the number of colonies approximately proportional to the number of leukemia cells plated. Marrow cells from leukemic BALB/c mice form more colonies than those from leukemic DBA/2 mice. The number of colonies formed per 103 microscopically identifiable leukemia cells plated was determined to be 2–3 for leukemic BALB/c mice and 0.3 for DBA/2 mice. Cocultivation of leukemic DBA/2 marrow cells with mitomycin-C treated normal BALB/c cells did not increase the number of colonies formed by the DBA/2 leukemic cells. Thus, the decreased ability of DBA/2 leukemia cells to form colonies appears to be a property of the leukemia cell population.  相似文献   

3.
We develop “autologous bone marrow cell infusion (ABMi) therapy” for the treatment of human decompensated liver cirrhosis and confirm the efficacy and safety of this treatment in multicenter clinical studies. With the goal of further expanding the applications of ABMi, we first cultured human bone marrow cells and then determined whether a cell fraction found to be effective in improving liver fibrosis can be amplified. Cells harvested after two passages (P2 cells) consistently contained approximately 94 % mesenchymal stem cells (MSCs); conversely, the cells harvested after only medium change (P0 cells) contained many macrophages. MSCs (2.8?×?108) in P2 cells were harvested from 3.8?×?108 bone marrow-derived mononuclear cells after 22 days. DNA-chip analysis also showed during the culturing step that bone marrow-derived cells decreased with macrophage phenotype. The infused 5?×?105 P2 cells significantly improved liver fibrosis in the nonobese diabetic/severe combined immunodeficient (NOD-SCID) mouse carbon tetrachloride (CCl4) liver cirrhosis model and induced the expression of matrix metalloproteinase (MMP)-9 and suppressed expressions of alpha smooth muscle actin (αSMA), tumor necrosis factor alpha (TNFα) and transforming growth factor beta (TGFβ) in the liver. Cultured human bone marrow-derived cells (P2 cells) significantly inhibited liver fibrosis. The increase of MMP-9 and suppressed activation of hepatic stellate cells (HSCs) through the regulation of humoral factors (TNFα and TGFβ) contribute to the improvement of liver fibrosis by MSCs comprising about 94 % of P2 cells. MSCs in cultured human bone marrow-derived mono-nuclear cells (BM-MNCs) proliferate sufficiently in cell therapy, so we believe our cultured bone marrow-derived cell therapy can lead to expanded clinical applications and enable outpatient therapy.  相似文献   

4.
《Cytotherapy》2023,25(4):442-450
Background aimsHematopoietic stem cell transplantation using bone marrow as the graft source is a common treatment for hematopoietic malignancies and disorders. For allogeneic transplants, processing of bone marrow requires the depletion of ABO-mismatched red blood cells (RBCs) to avoid transfusion reactions. Here the authors tested the use of an automated closed system for depleting RBCs from bone marrow and compared the results to a semi-automated platform that is more commonly used in transplant centers today. The authors found that fully automated processing using the Sepax instrument (Cytiva, Marlborough, MA, USA) resulted in depletion of RBCs and total mononuclear cell recovery that were comparable to that achieved with the COBE 2991 (Terumo BCT, Lakewood, CO, USA) semi-automated process.MethodsThe authors optimized the fully automated and closed Sepax SmartRedux (Cytiva) protocol. Three reduction folds (10×, 12× and 15×) were tested on the Sepax. Each run was compared with the standard processing performed in the authors’ center on the COBE 2991. Given that bone marrow is difficult to acquire for these purposes, the authors opted to create a surrogate that is more easily obtainable, which consisted of cryopreserved peripheral blood stem cells that were thawed and mixed with RBCs and supplemented with Plasma-Lyte A (Baxter, Deerfield, IL, USA) and 4% human serum albumin (Baxalta, Westlake Village, CA, USA). This “bone marrow-like” product was split into two starting products of approximately 600 mL, and these were loaded onto the COBE and Sepax for direct comparison testing. Samples were taken from the final products for cell counts and flow cytometry. The authors also tested a 10× Sepax reduction using human bone marrow supplemented with human liquid plasma and RBCs.ResultsRBC reduction increased as the Sepax reduction rate increased, with an average of 86.06% (range of 70.85–96.39%) in the 10×, 98.80% (range of 98.1–99.5%) in the 12× and 98.89% (range of 98.80–98.89%) in the 15×. The reduction rate on the COBE ranged an average of 69.0–93.15%. However, white blood cell (WBC) recovery decreased as the Sepax reduction rate increased, with an average of 47.65% (range of 38.9–62.35%) in the 10×, 14.56% (range of 14.34–14.78%) in the 12× and 27.97% (range of 24.7–31.23%) in the 15×. COBE WBC recovery ranged an average of 53.17–76.12%. Testing a supplemented human bone marrow sample using a 10× Sepax reduction resulted in an average RBC reduction of 84.22% (range of 84.0–84.36%) and WBC recovery of 43.37% (range of 37.48–49.26%). Flow cytometry analysis also showed that 10× Sepax reduction resulted in higher purity and better recovery of CD34+, CD3+ and CD19+ cells compared with 12× and 15× reduction. Therefore, a 10× reduction rate was selected for the Sepax process.ConclusionsThe fully automated and closed SmartRedux program on the Sepax was shown to be effective at reducing RBCs from “bone marrow-like” products and a supplemented bone marrow product using a 10× reduction rate.  相似文献   

5.
We studied the effect of vitamin A and its analogues (retinoids) on the clonal growth in vitro of normal human myeloid progenitor cells. Normal human bone marrow cells were cultured in soft gel in the presence of a source of colony-stimulating factor (CSF), and various retinoids, and the number of granulocyte-macrophage colonies (CFU-GM) were scored. The addition of 3 × 10?8 to 3 × 10?6 M retinoic acid to culture plates containing CSF markedly increased the number of myeloid colonies as compared with culture plates containing CSF alone. Maximal stimulation occurred at a concentration of 3 × 10?7 M retinoic acid which increased the mean number of colonies by 213 ± 8 % (±S.E.) over plates containing CSF alone. Retinal or retinyl acetate was less potent than retinoic acid, and retinol (vitamin A) had no effect on colony growth. Retinoic acid had no direct CSF activity nor did it stimulate CSF production by the cultured bone marrow cells. Our studies show for the first time that retinoids can stimulate granulopoiesis in vitro and we suggest that this stimulation may be mediated by increased responsiveness of the granulocyte-macrophage progenitors to the action of CSF.  相似文献   

6.
Summary Enzyme-deficient cell lines, lacking TK or HPRT and therefore unable to grow in HAT medium, may be used as feeder layers to enhance clonal growth of wild-type cells. Low numbers of wild-type test cells may be plated in HAT medium with 5×105 HAT-sensitive feeder cells per Petri dish. The feeder cells remain attached and metabolizing for 1 to 2 weeks, but ultimately die and detach, leaving colonies of test cells. This feeder layer technique is very simple and flexible and could have wide applicability. This work was a byproduct of a project on fusion and hybridization of marsupial and eutherian cells supported by the Australian Research Grants Committee.  相似文献   

7.
The switch from HbA (α2β2A) to HbC (α2β2C) synthesis was induced by injection of erythropoietin into a lamb homozygous for HbA. Serial samples of bone marrow were analyzed to detect the initial commitment of erythroid stem cells (CFU-E) to form colonies which made HbC in vitro, and to detect the initial accumulation of βC-globin mRNA and the onset of HbC synthesis in erythroblasts in vivo. CFU-E-derived erythroid colonies were formed in plasma clot culture at a low erythropoietin concentration, and the relative amounts of βA- and βC-globin synthesized were determined after a 24 hr pulse of 3H-leucine, added after 84 hr in culture. RNA was extracted from nuclei and cytoplasm of “early” and “late” populations of bone marrow erythroblasts which had been fractionated by Ficoll-Hypaque density centrifugation. The concentration of βA- and βC-globin mRNA was determined by annealing to purified synthetic DNAs (cDNAs) complementary to βA and βC mRNA. No βC-globin was synthesized in erythroblasts or in CFU-E-derived erythroid colonies prior to the injection of erythropoietin. An increase in the concentration of CFU-E in the bone marrow and the appearance of βC-globin synthesis in CFU-E-derived colonies were detected 12 hr after the erythropoietin injection. In contrast, βC mRNA was not detected in either “early” or “late” erythroid cells until 36 hr later. The first measurable βC-globin mRNA was accompanied by the appearance of βC-globin synthesis in bone marrow erythroblasts. Our results suggest that the accumulation of βC-globin mRNA is a relatively late event following induction of HbA to HbC switching by erythropoietin. The expansion of the compartment of erythroid stem cells and the commitment of CFU-E to βC-globin synthesis appear to precede the detectable accumulation of βC mRNA by 24–36 hr.  相似文献   

8.
Differentiation of mouse marrow megakaryocyte progenitors (CFUm) was studied in vitro by a colony assay using a plasma clot system. Erythropoietin (EPO) from sheep plasma (6 units/mg protein) in doses from 1 to 5 units/ml induced a linear increase in CFUm to a maximum of 20 colonies/105 cells plated. Human urinary EPO also induced a dose-responsive increase in CFUm, but the maximum was 9 colonies/105 with 2·0 units/ml of EPO and there was a decrease in colonies above that concentration. Thrombocytopoiesis-stimulating factor (TSF) derived from human embryonic kidney culture supernatant fluids induced a dose-responsive increase in CFUm in concentrations from 0·01 to 0·32 mg protein/ml in the absence of added EPO. TSF did not support the growth in vitro of erythroid colonies from mouse marrow (CFUe and BFUe) indicating an absence of EPO activity. In these studies sheep EPO appeared more effective in supporting CFUe growth than human EPO. TSF also had a stimulatory function in megakaryocyte differentiation at a precursor level. Multiple humoral factors play a role in megakaryocytopoiesis in vitro.  相似文献   

9.
In monolayer cultures of guinea-pig bone marrow and spleen the development of discrete fibroblast colonies takes place on days 9–12. The linear increase in the number of colonies with increasing numbers of explanted cells and the distribution of male and female cells in mixed cultures support the view that fibroblast colonies are clones. The concentration of colony-forming cells in bone marrow and spleen is approximately 10-5. Bone marrow culture (but not spleen culture) fibroblasts are capable of spontaneous bone formation in diffusion chambers. Fibroblasts from both bone marrow and spleen cultures are inducible to osteogenesis in diffusion chambers in the presence of transitional epithelium.  相似文献   

10.
A technique involving culture in soft agar was used for the assay of forward mutation of V79 cells to 6-thioguanine (6TG) resistance. The main reason for the use of soft agar was to prevent reduction in recovery of mutants depending on the cell density plated for mutation selection, which is the chief problem in the liquid method, and which results mainly from metabolic co-operation due to cell-to-cell contact.V79 cells grew well in fortified soft agar medium (DMEM + 20% FBS) showing cloning efficiencies (>80%) as high as in liquid culture. Therefore, V79/HGPRT mutagenesis could be assayed quantitatively in soft agar culture.The frequency of 6TG-resistant colonies in agar selective medium increased linearly with increase in concentration of EMS. Toxicity and mutagenic responses were greater in soft agar than in liquid culture.In cultures of untreated and EMS-treated cells, more than 95% of the 6TG-resistant colonies isolated were aminopterin-sensitive.Use of soft agar for selection prevented the reduction in the number of mutants with increase in the size of incula on plating up to 1?2 × 106 cells per 9-cm dish: in liquid culture, even with a lower plating number (2 × 105 cells per 9-cm dish), a notable reduction in numbers of mutants was observed. This character was re-examined in a reconstruction experiment. The results show that, when up to 2 × 106 cells were plated per 9-cm dish, 6TG-resistant cells were almost completely recovered from the soft agar medium, whereas only 10% were recovered from liquid culture.  相似文献   

11.
Marrow culture from mice has been reported to be overgrown by non-mesenchymal cells. In almost all protocols for isolation of murine mesenchymal stem cells (MSCs), high density culture systems have been employed. Since MSCs are colonogenic cells, the initiating cell seeding density may have significant impact on their cultures. This subject was explored in this study. For this purpose, the bone marrow cells from NMRI mice were plated at 2.5 × 106 cells/cm2 and upon confluency were reseeded as either low density (50 cells/cm2) or high density (8 × 104 cells/cm2) cultures. The cells were expanded through an additional subculture and the passage 2 cells as a product of two culture systems were statistically compared with respect to their surface antigen profiles and osteogenic culture mineralization. While low density culture grew with multiple colony formation, there were no distinct colonies in high density cultures. In contrast to high density cultures, passage 2 cells from low density system possessed typical homogenous fibroblastic morphology. Some cells from high density system but not the low density cultures expressed hematopoietic and endothelial cell markers including CD135, CD34, CD31, and Vcam surface antigens. Furthermore, osteogenic cultures from low density system displayed significantly more mineralization than those from high density system. Taken together, it seems that low density culture system resulted in more purified MSC culture than its counterpart as high density culture system.  相似文献   

12.
Based on chelation‐enhanced fluorescence, a new fluorescent coumarin derivative probe 3(1‐(7‐hydroxy‐4‐methylcoumarin)ethylidene)hydrazinecarbodithioate for Hg2+, Ag+ and Ag nanoparticles is reported. Fluorescent probe acts as a rapid and highly selective “off–on” fluorescent probe and fluorescence enhancement by factors 5 to12 times was observed upon selective complexation with Hg2+, Ag+ and Ag nanoparticles. The molar ratio plots indicated the formation of 1:1 complexes between Hg2+ and Ag+ with the probe. The linear response range covers a concentration range 0.1 × 10–5–1.9 × 10–5 mol/L, 0.1 × 10–5–2.3 × 10–5 mol/L and 0.146 × 10–12–2.63 × 10–12 mol/L for Hg2+, Ag+ and Ag nanoparticles, respectively. The interference effect of some anions and cations was also tested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In studies of RNA synthesis by intact cells and cell-free extracts of Streptomyces antibioticus, it has been found that 48 hr cells (producing actinomycin) and cell-free extracts are less efficient than 12 hr cells (not producing actinomycin) and extracts in the synthesis of RNA. Analysis of the products of “in vivo” and “in vitro” RNA synthesis by sucrose gradient centrifugation reveals that both 12 and 48 hr cultures and cell-free extracts synthesize ribosomal RNA as well as RNA species of higher and lower molecular weights. However, 50–60% of the 3H-uridine labelled RNA synthesized by intact cells sediments as rRNA as compared with only 5–10% of the cell-free product. The addition of 2 × 10?5 M actinomycin D to incubation mixtures for cell-free RNA synthesis does not significantly alter the relative amounts of the various RNA species synthesized by 12 or 48 hr extracts.  相似文献   

14.
When 10–30 × 106 human peripheral lymphocytes are electrophoresed in an upward direction in a vertical column for 1 to 1–1/2 hour at 12 V/cm at pH 7.1, the fastest migrating fraction of 3–10 × 10 lymphocytes consists of 98–100%. non-immunoglobulin-bearing lymphocytes, as determined by immunofluorescence with anti-human immunoglobulin conjugate. The method can be applied to fresh human lymphocytes as well as to lymphocytes that have been frozen and thawed and, if glycerol is added to the buffer as a cryoprotectant, the fast “T” cell fraction can be frozen immediately, to be stored for later use. Similar separations can be obtained with lymphocytes from human tonsils.  相似文献   

15.
《Cytotherapy》2020,22(1):21-26
Isolation of mesenchymal stromal cells (MSCs) from pretreated, hematologic patients is challenging. Especially after allogeneic hematopoietic cell transplantation (HCT), standard protocols using bone marrow aspirates fail to reliably recover sufficient cell numbers. Because MSCs are considered to contribute to processes that mainly affect the outcome after transplantation, such as an efficient lymphohematopoietic recovery, extent of graft-versus-host disease as well as the occurrence of leukemic relapse, it is of great clinical relevance to investigate MSC function in this context. Previous studies showed that MSCs can be isolated by collagenase digestion of large bone fragments of hematologically healthy patients undergoing hip replacement or knee surgeries. We have now further developed this procedure for the isolation of MSCs from hematologic patients after allogeneic HCT by using trephine biopsy specimens obtained during routine examinations. Comparison of aspirates and trephine biopsy specimens from patients after allogeneic HCT revealed a significantly higher frequency of clonogenic MSCs (colony-forming unit–fibroblast [CFU-F]) in trephine biopsy specimens (mean, 289.8 ± standard deviation 322.5 CFU-F colonies/1 × 106 total nucleated cells versus 4.2 ± 9.9; P < 0.0001). Subsequent expansion of functional MSCs isolated from trephine biopsy specimen was more robust and led to a significantly higher yield compared with control samples expanded from aspirates (median, 1.6 × 106; range, 0–2.3 × 107 P0 MSCs versus 5.4 × 104; range, 0–8.9 × 106; P < 0.0001). Using trephine biopsy specimens as MSC source facilitates the investigation of various clinical questions.  相似文献   

16.
The BALB/3T3 clone A31 mouse embryo cell line has been used by many investigators as a model “normal” “fibroblast” line for a variety of in vitro studies. It has been shown, however, that these cells are not “normal” because they will produce tumors within 2–4 months if 3 × 104 cells are implanted subcutaneously in BALB/c mice attached to 0.2 × 5 × 10-mm plastic plates. Previous studies also suggested that these cells were not fibroblasts because they gave rise to tumors with the characteristics of vascular endothelium not fibroblasts. We now report that BALB/3T3 (clone A31), BALB/3T3-T, a proadipocyte subclone of clone A31 cells, and six recent subclones of BALB/3T3-T cells show additional differentiation patterns when tumors derived by implantation of these cells attached to plastic plates are examined. Differentiation into pericytes, chondrocytes, and fibroblasts was observed. We conclude that the BALB/3T3 clone A31 cell line and related lines are multipotent mesenchymal cells which are capable of differentiation into a variety of cell types.  相似文献   

17.
The processes involved in the regulation of bone cell metabolism are complex, including those implicated in bone cell coupling. This study was undertaken to develop a model that would permit real-time interaction between osteoclastic cells and osteoblasts in vitro. Osteogenic bone marrow stromal cells were isolated from 18-day-old embryonic chickens, while osteoclastic cells were isolated from laying White Leghorn hens on calcium-deficient diets. Osteoclastic cells (5×105) were seeded onto mineral thin films and suspended above osteogenic cells (1×104) already plated on the bottoms of tissue culture plate wells. The data showed that after 4 days of incubation there was up to a fivefold (P<0.05) reduction in all measured parameters of osteogenesis (mineralization, alkaline phosphatase activity and type I collagen production) in osteogenic cultures grown in the presence of osteoclastic cells. Similarly, osteoclastic cell-induced mineral resorption was reduced up to threefold (P<0.05). Co-culture effects on cellular responses could be manipulated by known antiresorptive agents (e.g., pamidronate) altering either the source or the age of osteoclastic cells. The results indicate that the co-culture model may be useful in the study of bone cell interactions.  相似文献   

18.
Summary The role of choleragen (CT) and epidermal growth factor (EGF) has been examined in relation to the control of growth and differentiation of adult human cervical epithelial (HCE) cells derived from the ectocervix. Cervical biopsies derived from hysterectomy specimens were trypsin disaggregated and HCE cells were plated at 5×103/cm2 in the presence of 2×104/cm2 lethally irradiated Swiss 3T3 fibroblasts. Cultures were grown in Liebovitz medium supplemented with 10% fetal bovine serum and hydrocortisone. Epidermal growth factor at 10 ng/ml and choleragen at 10−10 M were added to cultures either singly or in combination. DNA replication in these cultures was measured autoradiographically after exposing cells to tritiated thymidine for 2 h. Differentiation was assessed histochemically by determining glycogen accumulation using the periodic acid Schiff technique. Choleragen increased colony plating efficiency by at least a factor of two but had no effect on colony size Epidermal growth factor did not increase plating efficiency but did increase colony size. In EGF treated colonies DNA replication occurred throughout the colony compared to CT treated colonies in which replication was restricted to the periphery. In the absence of EGF, population doublings achieved in culture did not exceed 32 and glycogen accumulation was evident in cells early in culture life. Colonies treated with EGF exhibited glycogen accumulation late in culture life and the EGF treated cells achieved at least 50 population doublings in culture. The results are discussed in relation to the role of EGF and choleragen on cell differentiation.  相似文献   

19.
A method based on the tyndallization procedure is described for isolation of Bacillus popilliae var. rhopaea spores from the soil. A soil suspension is diluted with a germinating medium, which promotes the germination of most spores except B. popilliae var. rhopaea, and is treated with a series of seven heat shocks (70°C for 20 min) at hourly intervals. This treatment reduced the number of contaminant spores by over 95%. The suspension is then plated out onto “J” medium which allows the germination and growth of all surviving spores including the milky disease spores. The plates are incubated anaerobically at 28°C for 7 days before the characteristic small transparent colonies of B. popilliae var. rhopaea are counted. In testing the method it was revealed that about 15% of the milky disease spores in the soil produced visible colonies, and that a spore concentration of over 1.2 × 105 spores/g dry wt of soil could be quantified. This concentration of spores produces only 3% infection in Rhopaea verreauxi larvae. The method may be applicable to other varieties of B. popilliae which will grow on “J” medium.  相似文献   

20.
The development of both slide-grown and non-substrate bound colonies ofE. viridula (Thecata-Leptomedusae) ranging in size from 1 to 50 hydranths was investigated under various temperature conditions. The majority of slide-grown colonies reached a larger final size than non-substrate bound ones, in 20°, 25° and 29° C. Raising the temperature did not stimulate propagation of hydranths as expected. Most of the colonies transferred to 25° or 29° C finally were even smaller than those reared at 20° C. This was partially due to resorption of several hydranths about 9 days after the temperature rise; the influence of “physiological competition” between development of new hydranths and budding of medusae on colony growth is discussed. Transfer from higher to lower temperatures affected colony growth negatively. Raising the temperature from 20° to 25° or 29° C initiated formation of gonozooids from the distal part of hydranth stalks and development of medusa buds in both types of colonies. With the exception of slide-grown colonies transferred to 25° C, also young medusae were budded off. There was a remarkable coincidence in predominance of colony growth in slide-grown colonies and of medusa budding in non-substrate bound cultures. In the latter, medusa buds developed 1 to 2 days earlier. Most buds did not differentiate into liberated medusae, but were resorbed. Transformation of medusa buds into hydranths was not observed. In the clone ofE. viridula, onset of medusa budding did not depend on a “minimal colony size”. Even single hydranths were able to produce medusa buds after transfer to higher temperatures; budded off medusae were recorded from non-substrate bound colonies with an initial size of 3 hydranths. In slide-grown cultures, medusa buds developed into colonies with an initial size of only 3 hydranths. No hydranth propagation prior to medusa budding occurred in these cases. After raising temperature from 25° to 29° C medusa buds were observed in nonsubstrate bound colonies only; a small number of medusae were budded off from some of these colonies. Lowering the temperature from 29° or 25° to 20° C caused resorption of existing medusa buds. In several non-substrate bound colonies, transfer from 29° to 25° C induced development of gonozooids with medusa buds and, in some cases, of young medusae. Incubation with the alkylating cytostaticTrenimon and transfer from 20° to 25° C caused irreversible resorption of all hydranths when 4 × 10?2 mg/ml were administered for 10 mins. Thereafter, only development of stolonial structures was observed. With one exception, the colonies treated with 4 × 10?3 mg/ml, and all others submitted to 4 × 10?4 mgTrenimon/ml were able to produce new hydranths and also medusa buds; some of the colonies first had to overcome a degressive phase. Treatment with 4 × 10?2 mg destroyed all interstitial cells (I-cells). Incubation with 1 × 10?3 or 1 × 10?4 mg/ml left the I-cells at least partially intact. It is concluded that I-cells are indispensable for hydranth and medusan morphogenesis inE. viridula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号