首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acyl ureas were discovered as a novel class of inhibitors for glycogen phosphorylase, a molecular target to control hyperglycemia in type 2 diabetics. This series is exemplified by 6-{2,6-Dichloro- 4-[3-(2-chloro-benzoyl)-ureido]-phenoxy}-hexanoic acid, which inhibits human liver glycogen phosphorylase a with an IC(50) of 2.0 microM. Here we analyze four crystal structures of acyl urea derivatives in complex with rabbit muscle glycogen phosphorylase b to elucidate the mechanism of inhibition of these inhibitors. The structures were determined and refined to 2.26 Angstroms resolution and demonstrate that the inhibitors bind at the allosteric activator site, where the physiological activator AMP binds. Acyl ureas induce conformational changes in the vicinity of the allosteric site. Our findings suggest that acyl ureas inhibit glycogen phosphorylase by direct inhibition of AMP binding and by indirect inhibition of substrate binding through stabilization of the T' state.  相似文献   

2.
3.
The first synthesis of the single isomers (3R,4R,5R); (3S,4S,5S): (3R,4R,5S) and (3S,4S,5R) of 5-hydroxymethyl-piperidine-3,4-diol from Arecolin is reported, including the synthesis of a series of N-substituted derivatives of the (3R,4R,5R)-isomer (Isofagomine). The inhibitory effect of these isomers as well as of a series of N-substituted derivatives of the (3R,4R,5R)-isomer and selected hydroxypiperidine analogues on liver glycogen phosphorylase (GP) showed that the (3R,4R,5R) configuration was essential for obtaining an inhibitory effect at submicromolar concentration. The results also showed that all three hydroxy groups should be present and could not be substituted, nor were extra OH groups allowed if sub-micromolar inhibition should be obtained. Some inhibitory effect was retained for N-substituted derivatives of Isofagomine; however, N-substitution always resulted in a loss of activity compared to the parent compound, IC50 values ranging from 1 to 100 microM were obtained for simple alkyl, arylalkyl and benzoylmethyl substituents. Furthermore, we found that it was not enough to assure inhibitory effect to have the (R,R,R) configuration. Fagomine, the (2R,3R,4R)-2-hydroxymethylpiperidine-3,4-diol analogue, showed an IC50 value of 200 microM compared to 0.7 microM for Isofagomine. In addition, Isofagomine was able to prevent basal and glucagon stimulated glycogen degradation in cultured hepatocytes with IC50 values of 2-3 microM.  相似文献   

4.
The T-state crystal structure of the glucose-phosphorylase b complex has been used as a model for the design of glucose analogue inhibitors that may be effective in the regulation of blood glucose levels. Modeling studies indicated room for additional atoms attached at the C1-beta position of glucose and some scope for additional atoms at the C1-alpha position. Kinetic parameters were determined for alpha-D-glucose: Ki = 1.7 mM, Hill coefficient n = 1.5, and alpha (synergism with caffeine) = 0.2. For beta-D-glucose, Ki = 7.4 mM, n = 1.5, and alpha = 0.4. More than 20 glucose analogues have been synthesized and tested in kinetic experiments. Most were less effective inhibitors than glucose itself and the best inhibitor was alpha-hydroxymethyl-1-deoxy-D-glucose (Ki = 1.5 mM, n = 1.3, alpha = 0.4). The binding of 14 glucose analogues to glycogen phosphorylase b in the crystal has been studied at 2.4-A resolution and the structure have been refined to crystallographic R values of less than 0.20. The kinetic and crystallographic studies have been combined to provide rationalizations for the apparent affinities of glucose and the analogues. The results show the discrimination against beta-D-glucose in favor of alpha-D-glucose is achieved by an additional hydrogen bond made in the alpha-glucose complex through water to a protein group and an unfavorable environment for a polar group in the beta pocket. The compound alpha-hydroxymethyl-1-deoxy-D-glucose has an affinity similar to that of glucose and makes a direct hydrogen bond to a protein group. Comparison of analogues with substituent atoms that have flexible geometry (e.g., 1-hydroxyethyl beta-D-glucoside) with those whose substituent atoms are more rigid (e.g., beta-azidomethyl-1-deoxyglucose or beta-cyanomethyl-1-deoxyglucose) indicates that although all three compounds make similar polar interactions with the enzyme, those with more rigid substituent groups are better inhibitors. In another example, alpha-azidomethyl-1-deoxyglucose was a poor inhibitor. In the crystal structure the compound made several favorable interactions with the enzyme but bound in an unfavorable conformation, thus providing an explanation for its poor inhibition. Attempts to utilize a contact to a buried aspartate group were partially successful for a number of compounds (beta-aminoethyl, beta-mesylate, and beta-azidomethyl analogues). The beta pocket was shown to bind gentiobiose (6-O-beta-D-glucopyranosyl-D-glucose), indicating scope for binding of larger side groups for future studies.  相似文献   

5.
Caffeine, an allosteric inhibitor of glycogen phosphorylase a (GPa), has been shown to act synergistically with the potential antidiabetic drug (-)(S)-3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarboxylate (W1807). The structure of GPa complexed with caffeine and W1807 has been determined at 100K to 2.3 A resolution, and refined to a crystallographic R value of 0.210 (Rfree = 0.257). The complex structure provides a rationale to understand the structural basis of the synergistic inhibition between W1807 and caffeine. W1807 binds tightly at the allosteric site, and induces substantial conformational changes both in the vicinity of the allosteric site and the subunit interface which transform GPa to the T'-like state conformation already observed with GPa-glucose-W1807 complex. A disordering of the N-terminal tail occurs, while the loop of polypeptide chain containing residues 192-196 and residues 43'-49', from the symmetry related subunit, shift to accommodate W1807. Caffeine binds at the purine inhibitor site by intercalating between the two aromatic rings of Phe285 and Tyr613 and stabilises the location of the 280s loop in the T state conformation.  相似文献   

6.
Interventions such as glycogen depletion, which limit myocardial anaerobic glycolysis and the associated proton production, can reduce myocardial ischemic injury; thus it follows that inhibition of glycogenolysis should also be cardioprotective. Therefore, we examined whether the novel glycogen phosphorylase inhibitor 5-Chloro-N-[(1S,2R)-3-[(3R,4S)-3,4-dihydroxy-1-pyrrolidinyl)]-2-hydroxy-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide (ingliforib; CP-368,296) could reduce infarct size in both in vitro and in vivo rabbit models of ischemia-reperfusion injury (30 min of regional ischemia, followed by 120 min of reperfusion). In Langendorff-perfused hearts, constant perfusion of ingliforib started 30 min before regional ischemia and elicited a concentration-dependent reduction in infarct size; infarct size was reduced by 69% with 10 microM ingliforib. No significant drug-induced changes were observed in either cardiac function (heart rate, left ventricular developed pressure) or coronary flow. In open-chest anesthetized rabbits, a dose of ingliforib (15 mg/kg loading dose; 23 mg.kg(-1).h(-1) infusion) selected to achieve a free plasma concentration equivalent to an estimated EC(50) in the isolated hearts (1.2 microM, 0.55 microg/ml) significantly reduced infarct size by 52%, and reduced plasma glucose and lactate concentrations. Furthermore, myocardial glycogen phosphorylase a and total glycogen phosphorylase activity were reduced by 65% and 40%, respectively, and glycogen stores were preserved in ingliforib-treated hearts. No significant change was observed in mean arterial pressure or rate-pressure product in the ingliforib group, although heart rate was modestly decreased postischemia. In conclusion, glycogen phosphorylase inhibition with ingliforib markedly reduces myocardial ischemic injury in vitro and in vivo; this may represent a viable approach for both achieving clinical cardioprotection and treating diabetic patients at increased risk of cardiovascular disease.  相似文献   

7.
The synthesis of carbohydrate-based glycogen phosphorylase inhibitors is attractive for potential applications in the treatment of type 2 diabetes. A titanium-mediated synthesis led to a benzoylated C-glucosylated cyclopropylamine intermediate, which underwent a benzoyl migration to afford the corresponding 2-hydroxy-C-glycoside. X-ray crystallographic studies revealed a unit cell composed of four molecules as pairs of dimers connected through two hydrogen bonds. The deprotection of the benzoate esters under Zemplén conditions afforded a glycogen phosphorylase inhibitor candidate displaying weak inhibition toward glycogen phosphorylase (16% at 2.5 mM).  相似文献   

8.
CP320626, a potential antidiabetic drug, inhibits glycogen phosphorylase in synergism with glucose. To elucidate the structural basis of synergistic inhibition, we determined the structure of muscle glycogen phosphorylase b (MGPb) complexed with both glucose and CP320626 at 1.76 A resolution, and refined to a crystallographic R value of 0.211 (R(free)=0.235). CP320626 binds at a novel allosteric site, which is some 33 A from the catalytic site, where glucose binds. The high resolution structure allows unambiguous definition of the conformation of the 1-acetyl-4-hydroxy-piperidine ring supported by theoretical energy calculations. Both CP320626 and glucose promote the less active T-state, thereby explaining their synergistic inhibition. Structural comparison of MGPb--glucose--CP320626 complex with liver glycogen phosphorylase a (LGPa) complexed with a related compound (CP403700) show that the ligand binding site is conserved in LGPa.  相似文献   

9.
3,4-Dichloroisocoumarin (3,4-DCI) is a highly reactive, mechanism-based inhibitor of serine proteases. We show here that glycogen phosphorylase b is also inactivated by this inhibitor, in a mechanism that parallels the inactivation of serine proteases, but involving multiple sites of covalent modification. Such a process may compromise studies in which 3,4-DCI is used to arrest proteolysis of a second native protein which may itself be modified.  相似文献   

10.
N-acetyl-beta-D-glucopyranosylamine (NAG) is a potent inhibitor (Ki=32 microM) of glycogen phosphorylase b (GPb), and has been employed as a lead compound for the structure-based design of new analogues, in an effort to utilize its potential as a hypoglycaemic agent. Replacement of the acetamido group by azidoacetamido group resulted in an inhibitor, N-azidoacetyl-beta-D-glucopyranosylamine (azido-NAG), with a Ki value of 48.7 microM, in the direction of glycogen synthesis. In order to elucidate the mechanism of inhibition, we determined the ligand structure in complex with GPb at 2.03 A resolution, and the structure of the fully acetylated derivative in the free form. The molecular packing of the latter is stabilized by a number of bifurcated hydrogen bonds of which the one involving a bifurcated C-H...N...H-C type hydrogen bonding is rather unique in organic azides. Azido-NAG can be accommodated in the catalytic site of T-state GPb at approximately the same position as that of NAG and stabilizes the T-state conformation of the 280 s loop by making several favourable contacts to residues of this loop. The difference observed in the Ki values of the two analogues can be interpreted in terms of desolvation effects, subtle structural changes of protein residues and changes in water structure.  相似文献   

11.
  • 1.1. A novel glycogen phosphorylase inhibitor was partially purified from crayfish hepatopancreas.
  • 2.2. The inhibitor was found only in two species of crayfish examined, and not in lobster, fresh and salt water clams, mussels or cockroaches.
  • 3.3. The inhibitor is a small protein (Mr = 23,000) which did not show proteolytic activity.
  • 4.4. Preliminary kinetic analysis of the inhibitory mechanism indicated that it bound to both glycogen and the glycogen phosphorylase protein.
  • 5.5. Inhibitor binding to glycogen resulted in a competitive inhibition pattern with respect to glycogen phosphorylase (inhibition constant of ca 10 μg/ml).
  • 6.6. The inhibitor also bound glycogen phosphorylase directly with a binding coefficient of 100 μg/ml resulting in a partially non-competitive inhibition pattern with respect to phosphate.
  相似文献   

12.
A new class of diacid analogues that binds at the AMP site not only are very potent but have approximately 10-fold selectivity in liver versus muscle glycogen phosphorylase (GP) in the in vitro assay. The synthesis, structure, and in vitro and in vivo biological evaluation of these liver selective glycogen phosphorylase inhibitors are discussed.  相似文献   

13.
A series of amino acid anthranilamide derivatives identified from a high-throughput screening campaign as novel, potent, and glucose-sensitive inhibitors of human liver glycogen phosphorylase a are described. A solid-phase synthesis using Wang resin was also developed which provided efficient access to a variety of analogues, and resulted in the identification of key structure–activity relationships, and the discovery of a potent exemplar (IC50 = 80 nM). The SAR scope, synthetic strategy, and in vitro results for this series are presented herein.  相似文献   

14.
15.
Novel thiophene C-aryl glucoside SGLT2 inhibitors were designed and synthesized. Two different types of thiophene derivatives were readily prepared. Among the compounds tested, ethylphenyl at the distal ring 71p showed the best in vitro inhibitory activity in this series to date (IC(50)=4.47 nM) against SGLT2.  相似文献   

16.
In the present study a library of twenty six benzenesulfonylureas containing thiophenylpyrazoline moiety has been synthesized. All the compounds were docked against PPAR-γ target. Most of the compounds displayed higher dock score than standard drugs, glibenclamide and rosiglitazone. All the synthesized compounds were primarily evaluated for their antidiabetic effect by oral glucose tolerance test. Further assessment of antidiabetic potential of sixteen active compounds was then done on STZ induced diabetic model. The results of in vivo activity by both the methods were found to be consistent with each other as well as with docking studies. Change in body weight of STZ induced animals post treatment was also assessed at the end of study. In vitro PPAR-γ transactivation assay was performed on active compounds in order to validate docking results and the most active compound 3k was also shown to elevate gene expression of PPAR-γ. Furthermore, the compounds were screened by National Cancer Institute, Bethesda for anticancer effect and two compounds 3h and 3i were selected at one dose level since they exhibited sensitivity towards tumor cell lines (mainly melanoma).  相似文献   

17.
Novel macrocyclic C-aryl glucoside SGLT2 inhibitors were designed and synthesized. Two different synthetic routes of macrocyclization were adopted to prepare novel ansa SGLT2 inhibitors. Among the compounds tested, [1,7]dioxacyclopentadecine macrocycles possessing methylthiophenyl at the distal ring 40 or ethoxyphenyl at the distal ring 23 showed the best in vitro inhibitory activity in this series to date (40, IC(50)=0.778 nM and 23, IC(50)=0.899 nM) against hSGLT2.  相似文献   

18.
Two series of novel thienopyrrole inhibitors of recombinant human liver glycogen phosphorylase a (GPa) which are effective in reducing glucose output from rat hepatocytes are described. Representative compounds have been shown to bind at the dimer interface site of the rabbit muscle enzyme by X-ray crystallography.  相似文献   

19.
A novel inhibitor of liver glycogen phosphorylase, isofagomine, was investigated as a possible inhibitor of the enzyme in the brain and in cultured astrocytes. Additionally, the effect of the drug on norepinephrine (NE) induced glycogen degradation in astrocytes was studied. Astrocytes were cultured from mouse cerebral cortex and homogenates were prepared from the cells as well as from mouse brain. Isofagomine dose-dependently inhibited glycogen phosphorylase when measured in the direction of glycogen degradation in both preparations with IC50 values (mean +/- SEM) of 1.0 +/- 0.1 microM and 3.3 +/- 0.5 microM in brain and astrocyte homogenates, respectively. Moreover, isofagomine at a concentration of 400 microM completely prevented NE induced depletion of glycogen stores and the concomitant lactate production in intact astrocytes. It is suggested that this novel glycogen phosphorylase inhibitor may be a valuable tool to investigate the functional importance of glycogen in astrocytes and in the brain.  相似文献   

20.
5,5-Bis(hydroxymethyl)-2-oxo-[1-(2-trifluoromethyl)-3,3,3- trifluoropropionamido)-1-trifluoromethyl-2,2,2-trifluoroethyl- 1,3,2-dioxaphosphan (CA-423) is an in vitro inhibitor of the Escherichia coli uridine and thymidine phosphorylases. Unlike widely studied nucleoside analogues, this compound binds to the enzymes irreversibly. Its LD50 in mice was 40 mg/kg. Due to the involvement of pyrimidine phosphorylases in carcinogenesis and the relatively low toxicity of CA-423, it is promising for anticancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号