首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With reference to the experimental observations by Yanagida and his co-workers concerning actomyosin interaction during muscle contraction processes, we propose a phenomenological model for the sliding of the myosin head on the actin filament, in which the myosin head is viewed as an active Brownian particle in a periodic, elastic-type potential subject to tilting. The sample paths thus obtained are qualitatively alike to those experimentally recorded. Furthermore, our model is proved to be susceptible of a consistent parameters regulation yielding step frequencies, mean step dwell time and dwell time distribution in excellent agreement with the experimental evidence.  相似文献   

2.
Kinesins are molecular motors that unidirectionally move along microtubules using the chemical energy of ATP. Although the core structure of kinesins is similar to that of myosins, the lever-arm hypothesis, which is widely accepted as a plausible mechanism to explain the behaviors of myosins, cannot be directly applied to kinesins. Masuda has proposed a mechanochemical process called the ‘Driven-by-Detachment (DbD)’ mechanism to explain the characteristic behaviors of myosins, including the backward movement of myosin VI and the loose coupling phenomenon of myosin II. The DbD mechanism assumes that the energy of ATP is mainly used to detach a myosin head from an actin filament by temporarily reducing the affinity of the myosin against the actin. After the affinity is recovered, the detached head has potential energy originating from the attractive force between the myosin and the actin. During the docking process, the potential energy is converted into elastic energy within the myosin molecule, and the intramolecular elastic energy is finally used to produce the power strokes. In the present paper, the DbD mechanism was used to explain the hand-over-hand motion of the conventional kinesin. The neck linker of the kinesin is known to determine the directionality of the motility but, in this paper, it was assumed that the neck linker was not directly engaged in the power strokes, which were driven by the attractive force between the kinesin head and the microtubule. Based on this assumption, simple mechanical simulations showed that the model of a kinesin dimer processively moved along a microtubule protofilament, if the affinity of the kinesin against the microtubule is appropriately controlled. Moreover, if an external force was applied to the center of the kinesin dimer, the dimer moved backward along a microtubule, as observed in experimental motility assays.  相似文献   

3.
Robinson RW  Snyder JA 《Protoplasma》2005,225(1-2):113-122
Summary. The enzymes of importance in moving chromosomes are called motor proteins and include dynein, kinesin, and possibly myosin II. These three molecules are all included in the category of ATPases, in that they have the ability to convert chemical energy into mechanical energy. Both dynein and kinesin have been documented as molecules that “walk” along microtubules in the mitotic spindle, carrying cargo such as chromosomes. Myosin II, analogous to the muscle contraction system, transiently interacts along actin filaments and associates with kinetochore microtubules. In this paper we present evidence that a third ATPase, myosin II, may act as a “thruster” to propel chromosomes during the mitotic process. Double-label immunocytochemistry to actin and myosin II shows that myosin II is localized on chromosome arms at the beginning of mitosis and remains localized to the chromosomes throughout mitosis. Specific staining of myosin II is relegated to the outside of chromosomes with the highest density of staining occurring between the spindle poles and the chromosomes. This specific localization could account for the movement of chromosomes during mitosis, since they segregate towards the spindle poles, along kinetochore microtubules containing actin filaments, after aligning at the equatorial region of the cell at metaphase. We conclude from this study that there is an actomyosin system present in the mitotic spindle and that myosin is attached to chromosome arms and may act as a thruster in moving chromosomes during the mitotic process. Correspondence and reprints: Department of Biological Sciences, University of Denver, 2190 E Iliff Avenue, Denver, CO 80208, U.S.A.  相似文献   

4.
Masuda T 《Bio Systems》2008,93(3):172-180
There is a large superfamily of myosins, which play various fundamental roles in cellular motility. In this superfamily, most of myosins, including myosins II and V, move to the barbed end of an actin filament, whereas myosin VI was found to move in the opposite direction to the pointed end. Although myosin VI has structural differences compared with the other myosins, the mechanism for the reversal of the directionality has not been satisfactorily explained by conventional theories for myosin motility, including the widely accepted lever-arm hypothesis. In this paper, a simple mechanism for determining the directionality is proposed. The mechanism assumes that the driving force for the power stroke is caused by elastic energy stored within a myosin molecule at the joint between the head and the neck. The elastic energy originates from the attractive force between myosin and actin, and accumulates during the docking process. The energy of ATP is used to reduce the attractive force between myosin and actin and to facilitate the dissociation of these molecules. Therefore, it is not directly engaged in the power stroke. With this mechanism, the directionality of the myosin motility is simply determined by the direction of the neck with respect to the head in the dissociated configuration. This structural difference is actually observed in myosin VI. The same mechanism also explains the behavior of a backward moving engineered myosin. Computer simulations demonstrated the feasibility of this working mechanism.  相似文献   

5.
"Twitchin-actin linkage hypothesis" for the catch mechanism in molluscan smooth muscles postulates in vivo existence of twitchin links between thin and thick filaments that arise in a phosphorylation-dependent manner [N.S. Shelud'ko, G.G. Matusovskaya, T.V. Permyakova, O.S. Matusovsky, Arch. Biochem. Biophys. 432 (2004) 269-277]. In this paper, we proposed a scheme for a possible catch mechanism involving twitchin links and regulated thin filaments. The experimental evidence in support of the scheme is provided. It was found that twitchin can interact not only with mussel myosin and rabbit F-actin but also with the paramyosin core of thick filaments, myorod, mussel thin filaments, "natural" F-actin from mussel, and skeletal myosin from rabbit. No difference was revealed in binding of twitchin with mussel and rabbit myosin. The capability of twitchin to interact with all thick filament proteins suggests that putative twitchin links can be attached to any site of thick filaments. Addition of twitchin to a mixture of actin and paramyosin filaments, or to a mixture of Ca(2+)-regulated actin and myosin filaments under relaxing conditions caused in both cases similar changes in the optical properties of suspensions, indicating an interaction and aggregation of the filaments. The interaction of actin and myosin filaments in the presence of twitchin under relaxing conditions was not accompanied by an appreciable increase in the MgATPase activity. We suggest that in both cases aggregation of filaments was caused by formation of twitchin links between the filaments. We also demonstrate that native thin filaments from the catch muscle of the mussel Crenomytilus grayanus are Ca(2+)-regulated. Twitchin inhibits the ability of thin filaments to activate myosin MgATPase in the presence of Ca(2+). We suggest that twitchin inhibition of the actin-myosin interaction is due to twitchin-induced switching of the thin filaments to the inactive state.  相似文献   

6.
Myosin molecules contacting an actin filament in the presence of ATP were found to regulate the filamental fluctuations due to ATP hydrolysis in a communicative manner along the filament. As an evidence of the occurrence of the communication, ATP-activated fluctuating displacements of the filament in the direction perpendicular to its longitudinal axis were identified to propagate at a finite velocity not less than about 0.2 μm/s unidirectionally along the filament.  相似文献   

7.
An actin filament sliding on myosin molecules in the presence of an extremely low concentration of ATP exhibited a staggered movement. Longitudinally sliding movement of the filament was frequently interrupted by its non-sliding, fluctuating movements both in the longitudinal and transversal directions. Intermittent sliding movements of an actin filament indicate establishment of a coordination of ATP-mediated active sites distributed along the filament.  相似文献   

8.
Behaviours of the silane coupling agents in 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)-based polymer bonded explosives (PBXs) were investigated using dissipative particle dynamics simulations. A new and extraordinary coupling mechanism of the silane coupling agent in TATB-based PBXs was revealed, in which the binding between the binders and TATB was improved by making the TATB's affinitive structure units of binders assembling at the interface, whereas the TATB's unaffinitive structure units are bonded together by the silane coupling agent shrinking into the binders. This is quite different from the traditional view, i.e. the coupling agent usually stays at the interface.  相似文献   

9.
Summary The postnatal maturation of regions of the epididymis and intragonadal segment of the deferens duct was studied in the rat by light-and transmission electron microscopy. Maturation of the genital duct starts in the distal cauda epididymidis and ductus deferens after one week of life, and one week later, in the more cranial segments of the epididymis. Epithelial principal cells and peritubular contractile cells are structurally mature 35 days after birth. The synchronous changes of these cells indicate that the same factors control their postnatal maturation. The epithelial principal cells obtain an endocytotic apparatus and long stereocilia, whereas peritubular cells acquire contractile features. These changes are associated with a progressive increase in the immunoreaction for smooth muscle actin in both cell types. Smooth muscle myosin is detected in the apical region of the epithelial cells and the peritubular cell cytoplasm by day one of postnatal development. The differentiation of contractile cells in the wall is accompanied by progressive organization of the pericellular matrix into a continuous basement membrane. Although fibronectin is visible at birth, it is gradually removed from the tubule wall.  相似文献   

10.
Summary Recent confirmations of the presence of myosin in angiosperm pollen tubes indicate that an energy-transducing actomyosin system is involved in the motility system of the vegetative cells. Myosin has been localised by immunofluorescence on the surfaces of vegetative nuclei and generative cells. It has been shown to be associated with individual amyloplasts in grass pollen, and there are indications that it is present on other particulate bodies in the cytoplasm. The organelles in the leading part of the tube move along separate traffic lanes of acropetal and basipetal polarity, known from electron microscopy and phalloidin labelling to contain numbers of fibrils containing aggregates of actin microfilaments; in older segments the movement can be related to single, uniformly polarised, fibrils. Circulatory flow is maintained at the proximal end by the looping of the fibrils in the grain or at callose plugs. Such loops do not occur at the apex, where entering organelles undergo random movement before becoming associated with basipetal streams. Vegetative nuclei and generative cells interact with several fibrils, and it is suggested that they are held in the leading part of the protoplast in unstable equilibrium between acropetal and basipetal forces. Constantly changing form, especially of the vegetative nucleus, is one consequence of these varying stresses. Possible analogies with the intracellular motility system of the giant cells of the Characeae are noted, and it is suggested that lipid globuli and other nonorganellar bodies may be transported in the pollen tube by association with myosin-bearing membranes similar to those involved in endoplasm movement in the characean cells.  相似文献   

11.
We present the first in silico model of the weak binding actomyosin in the initial powerstroke state, representing the actin binding-induced major structural changes in myosin. First, we docked an actin trimer to prepowerstroke myosin then relaxed the complex by a 100-ns long unrestrained molecular dynamics. In the first few nanoseconds, actin binding induced an extra primed myosin state, i.e. the further priming of the myosin lever by 18° coupled to a further closure of switch 2 loop. We demonstrated that actin induces the extra primed state of myosin specifically through the actin N terminus-activation loop interaction. The applied in silico methodology was validated by forming rigor structures that perfectly fitted into an experimentally determined EM map of the rigor actomyosin. Our results unveiled the role of actin in the powerstroke by presenting that actin moves the myosin lever to the extra primed state that leads to the effective lever swing.  相似文献   

12.
Calcium-induced calcium release (CICR) has been observed in cardiac myocytes as elementary calcium release events (calcium sparks) associated with the opening of L-type Ca(2+) channels. In heart cells, a tight coupling between the gating of single L-type Ca(2+) channels and ryanodine receptors (RYRs) underlies calcium release. Here we demonstrate that L-type Ca(2+) channels activate RYRs to produce CICR in smooth muscle cells in the form of Ca(2+) sparks and propagated Ca(2+) waves. However, unlike CICR in cardiac muscle, RYR channel opening is not tightly linked to the gating of L-type Ca(2+) channels. L-type Ca(2+) channels can open without triggering Ca(2+) sparks and triggered Ca(2+) sparks are often observed after channel closure. CICR is a function of the net flux of Ca(2+) ions into the cytosol, rather than the single channel amplitude of L-type Ca(2+) channels. Moreover, unlike CICR in striated muscle, calcium release is completely eliminated by cytosolic calcium buffering. Thus, L-type Ca(2+) channels are loosely coupled to RYR through an increase in global [Ca(2+)] due to an increase in the effective distance between L-type Ca(2+) channels and RYR, resulting in an uncoupling of the obligate relationship that exists in striated muscle between the action potential and calcium release.  相似文献   

13.
Three recent experiments have shown that synaptic connections in the central nervous system that are structurally present but functionally ineffective can be made to recover their effectiveness for exciting neurons. The common features of these experiments are briefly reviewed. A mechanism is proposed requiring three postulates that are each consistent with orthodox physiology. There is an opportunity for a quantitative treatment to test against future experimental results.  相似文献   

14.
Silylative coupling of olefins differs from olefin metathesis. Although in both these reactions ruthenium catalysts play a crucial role and ethylene product is detected, ruthenium-carbene intermediate is formed only in the course of the metathesis reaction. In this study quantum chemical calculations based on the density functional theory (DFT) have been carried out in order to examine the mechanism of the silylative coupling of olefins leading to ethylene elimination. In the first step of the catalytic cycle, a hydrogen atom from the ruthenium catalytic center is transferred preferentially to the carbon atom bound to Si in a vinylsilane. This H transfer is coupled with the formation of Ru-C bond. Next, the rotation around the newly formed C-C single bond occurs so that silicon atom is placed in the vicinity of the ruthenium center. The following step involves the migration of a silyl moiety, and leads to Ru-Si bond formation, coupled with ethylene elimination. The next reaction, that is the insertion of ethylene (alkene) into Ru-Si bond, has an activation barrier almost as high as the reaction of ethylene elimination. However, the posibility of removing gaseous ethylene from the reactive mixture together with the entropic fators suggests that the insertion of alkene that is larger than C2H4 is the rate limiting step in the silylative coupling of olefins. It also suggests that the substituents attached to the silicon atom or the carbon atoms of an alkene by electronic and steric effects may significantly affect silyl migration and thus the effectiveness of the catalytic reaction. Figure Insertion of alkene into Ru-Si bond seems to be rate limiting step in the silylative coupling of olefins Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

15.
河西走廊山地-绿洲-荒漠复合系统耦合的景观生态学机制   总被引:18,自引:1,他引:18  
系统耦合的基础为非生物环境的空间异质性,基本条件为具有类型相同并且相互连通的廓道,系统耦合的景观生态学机制为非生物环境的空间分异和各种干扰导致的景观异质化,各种干扰是系统耦合的介质,系统耦合从本质上可以被看作尺度变大过程中景观组分的融合与性质转换的过程,系统耦合根据干扰的性质可以分为自然耦合和人为耦合2类,自然耦合是人为耦合的基础,系统生态生产力的提高取决于人为耦合的优化过程。  相似文献   

16.
A generalized Gierer-Meinhardt model has been used to account for the transplantation experiments in Hydra. In this model, a cross inhibition between the two organizing centres (namely, head and foot) are assumed to be the only mode of interaction in setting up a stable morphogen distribution for the pattern formation in Hydra.  相似文献   

17.
Dr. Uzi Nur 《Chromosoma》1962,13(3):249-271
Summary The supernumerary chromosomes of a mealy bug,Pseudococcus obscurus Essig are heterochromatic but show a variable heteropycnosis. In the female, they are weakly heteropyonotic in most tissues, but in a few tissues the individual supernumeraries form striking chromocenters. At oogenesis, they remain unassociated and divide equationally during the first division; during the second, they pair and disjoin. Pairing is usually accomplished by twos so that an unpaired supernumerary is found whenever an odd number, or only one, is present; the unpaired entity is twice as likely to go to the second polar body as to the egg.The normal spermatogenesis in the mealy bugs is a highly modified meiosis in which the paternal heterochromatic set is eliminated from the genetic continuum; during this sequence the supernumeraries are fully heterochromatic up until late prophase I. They then undergo a sharp change in pycnosis and become negatively heteropycnotic. In the second meiotic division they usually segregate with the maternal euchromatic set. Their behavior during spermatogenesis thus becomes an accumulation mechanism since an unreduced number, or nearly that, is transmitted by the males.The variable behavior of the supernumeraries affords further insight into the problem of heterochromatization in the mealy bugs.The supernumeraries may have originated from fragments followed by subsequent duplications. The accumulation mechanism may have been an important factor in their establishment.In genetic systems in which the supernumeraries have an accumulation mechanism, an elimination mechanism might evolve to stabilize the number of supernumeraries. Such elimination mechanisms are known for other genetic systems but have not yet been developed in this mealy bug.The material in this paper is part of a dissertation submitted to the graduate school of the University of California in partial satisfaction of the requirements for the degree of Doctor of Philosophy. This work was supported in part by a National Science Foundation Grant (G-9772) to ProfessorSpencer W. Brown.Predoctoral Trainee in Genetics, National Institutes of Health, 1960–1961.  相似文献   

18.
王梦媛  高小叶  侯扶江 《生态学报》2019,39(5):1758-1771
通渭-渭源-夏河样带位于黄土高原向青藏高原过渡的生态区,是我国典型农牧交错带。长期以来,不合理的农业生产结构带来生态、经济等一系列问题,制约了该地区草地农业的持续发展。为此,从能值角度分析区域农业生产结构,可为农(牧)户决策提供理论依据,为优化区域农业生产结构提供科学依据。收集研究区农户作物和家畜生产的投入-产出数据,用能值方法分析农户生产系统结构特征、农户生产决策行为及生产系统耦合作用,用结构方程模型(SEM)分析农户生产系统能量的组分间流动。研究发现,随海拔增高,农户作物生产活动减少,作物总产出能值递减;尽管作物生产主要投入和产出要素相同,但同一作物不同地点的同一要素投入、产出能值和能值收益率均存在显著差异(P0.05);同一地点不同作物的同一要素投入、产出能值和能值收益率均差异显著(P0.05);作物生产投入要素中,有机肥能值在通渭和渭源均有较高贡献;作物投入和产出能值的农户生产决策阈值自东向西递减,在能值投入初始增加时,夏河农户作物生产规模扩增最为迅速。家畜养殖规模、能值投入和产出自东向西递增;通渭和渭源,小麦秸秆和苜蓿作为中间投入,能值贡献率达到80%;夏河家畜生产投入要素中,补饲粮食能值贡献率高达90%;家畜投入和产出能值的农户生产决策阈值点自东向西递增;能值收益率随耦合度的增加呈指数上升,通渭和渭源能值收益率的增加速度,随耦合度的增加趋于缓慢,而夏河能值收益率增速随耦合度的增加而上升。调整作物生产内部粮、经、饲产品比例结构,加强作物生产与家畜生产耦合作用,优化天然草地利用方式,实现生态效益最大化;阈值点调控农户生产决策行为,实现该区域农业生产结构优化。  相似文献   

19.
Biosynthesis of metal nanoparticles represents a clean, eco‐friendly and sustainable “green chemistry” engineering. Lately, a number of metal selenides were successfully synthesized by biological methods. Here, cuprous selenide (Cu2Se) nanospheres were prepared under mild conditions by a novel biological‐chemical coupling reduction process. The simple process takes place between EDTA‐Cu and Na2SeO3 in presence of an alkaline solution containing NaBH4 and a selenite‐reducing bacteria, Pantoea agglomerans. It is noteworthy that the isolated Pantoea agglomerans and Cu+ ions, where the latter are obtained from reducing Cu2+ ions by NaBH4, play a key role, and Cu+ ions not only can promote the generation of Se2? ions as a catalyst, but also can react with Se2? ions to form Cu2Se. XRD pattern, SEM, and TEM images indicated that Cu2Se nanoparticles were tetragonal crystal structure and the nanospheres diameter were about 100 nm. EDX, UV–vis, and FTIR spectra show that the biosynthesized Cu2Se nanospheres are wrapped by protein and have a better stability. This work first proposes a new biosynthesis mechanism, and has important reference value for biological preparation of metal selenide nanomaterials. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1264–1270, 2016  相似文献   

20.
Yokota E  Izeki T  Shimmen T 《Protoplasma》2003,221(3-4):217-226
Summary.  In root hair cells of Limnobium stoloniferum, transvacuolar strands disperse and cytoplasmic spherical bodies (CSBs) emerge upon treatment with a protein phosphatase inhibitor, calyculin A (CA), whose effects were previously shown to be canceled by simultaneous treatment of the cells with a nonselective protein kinase inhibitor, K-252a. CSB formation is also suppressed by latrunculin B (LB) or cytochalasin D, actin filament depolymerization drugs, or 2,3-butanedione monoxime, an inhibitor of myosin activity. To confirm the involvement of myosin activity in CSB formation induced by CA, we examined the effect of an inhibitor of energy metabolism, NaN3, on CSB formation in root hair cells pretreated simultaneously with CA and LB. In the presence of CA-LB, CSB formation was suppressed due to the depolymerization of actin filaments. When these drugs were removed, the actin filaments recovered and CSBs emerged even in the presence of K-252a. These results indicated that the phosphorylation level in the cells is elevated during the CA-LB treatment and that a phosphorylation level sufficient for the CSB formation was sustained even after CA removal. On the other hand, CSB formation after simultaneous treatment with CA and LB was significantly suppressed in the presence of NaN3. In such cells, actin filament bundles recovered, although their organization was random. The present and previous results suggested that myosin activity is necessary for CSB formation induced by CA, and that myosin regulated by phosphorylation-dephosphorylation is implicated in the organization of the actin cytoskeleton in root hair cells. Received June 26, 2002; accepted October 18, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: Department of Life Science, Graduate School of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号