首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Positive allosteric modulation of metabotropic glutamate receptor 5 (mGluR5) is regarded as a potential novel treatment for schizophrenic patients. Herein we report the synthesis and SAR of 4-aryl piperazine and piperidine amides as potent mGluR5 positive allosteric modulators (PAMs). Several analogs have excellent activity and desired drug-like properties. Compound 2b was further characterized as a PAM using several in vitro experiments, and produced robust activity in several preclinical animal models.  相似文献   

2.
A novel series of N-aryl pyrrolidinonyl oxadiazoles were identified as mGluR5 positive allosteric modulators (PAMs). Optimization of the initial lead compound 6a led to the identification of the 12c (-) enantiomer as a potent compound with acceptable in vitro clearance, CYP, hERG and PK properties. Para substituted N-aryl pyrrolidinonyl oxadiazoles are mGluR5 PAMs while the meta and ortho substituted N-aryl pyrrolidinonyl oxadiazoles are negative allosteric modulators (NAMs). Para fluoro substitution on the N-aryl group and meta chloro or methyl substituents on the aryl oxadiazole moiety are optimal for mGluR5 PAM efficacy. The existence of an exquisitely sensitive 'PAM to NAM switch' within this chemotype making it challenging for simultaneous optimization of potency and drug-like properties.  相似文献   

3.
This Letter describes, for the first time, the synthesis and SAR, developed through an iterative analog library approach, that led to the discovery of the positive allosteric modulator (PAM) of the metabotropic glutamate receptor mGluR5 CPPHA. Binding to a unique allosteric binding site distinct from other mGluR5 PAMs, CPPHA has been the focus of numerous pharmacology studies by several laboratories.  相似文献   

4.
A series of metabotropic glutamate 5 receptor (mGluR5) allosteric ligands with positive, negative or no modulatory efficacy is described. The ability of this series to yield both mGluR5 PAMs and NAMs with single-digit nanomolar potency is unusual, and the underlying SAR is detailed.  相似文献   

5.
This Letter describes the synthesis and SAR of two mGluR4 positive allosteric modulator leads, 6 and 7. VU001171 (6) represents the most potent (EC50 = 650 nM), efficacious (141% Glu Max) and largest fold shift (36-fold) of any mGluR4 PAM reported to date. However, this work highlights the challenges in hit-to-lead for mGluR4 PAMs, with multiple confirmed HTS hits displaying little or no tractable SAR.  相似文献   

6.
The discovery, synthesis and SAR of a novel series of 3-benzyl-1,3-oxazolidin-2-ones as positive allosteric modulators (PAMs) of mGluR2 is described. Expedient hit-to-lead work on a single HTS hit led to the identification of a ligand-efficient and structurally attractive series of mGluR2 PAMs. Human microsomal clearance and suboptimal physicochemical properties of the initial lead were improved to give potent, metabolically stable and orally available mGluR2 PAMs.  相似文献   

7.
Dysregulation of prefrontal cortical glutamatergic signalling via NMDA receptor hypofunction has been implicated in cognitive dysfunction and impaired inhibitory control in such neuropsychiatric disorders as schizophrenia, attention‐deficit hyperactivity disorder and drug addiction. Although NMDA receptors functionally interact with metabotropic glutamate receptor 5 (mGluR5), the consequence of this interaction for glutamate release in the prefrontal cortex (PFC) remains unknown. We therefore investigated the effects of positive and negative allosteric mGluR5 modulation on changes in extracellular glutamate efflux in the medial PFC (mPFC) induced by systemic administration of the non‐competitive NMDA receptor antagonist dizocilpine (or MK801) in rats. Extracellular glutamate efflux was measured following systemic administration of the positive allosteric mGluR5 modulator [S‐(4‐Fluoro‐phenyl)‐{3‐[3‐(4‐fluoro‐phenyl)‐[1,2,4]‐oxadiazol‐5‐yl]‐piperidin‐1‐yl}‐methanone] (ADX47273; 100 mg/kg, p.o.) and negative allosteric mGluR5 modulator [2‐chloro‐4‐{[1‐(4‐fluorophenyl)‐2,5‐dimethyl‐1H‐imidazol‐4‐yl]ethynyl}pyridine] (RO4917523; 0.3 mg/kg, p.o.), using a wireless glutamate biosensor in awake, freely moving rats. The effect of MK801 (0.03–0.06 mg/kg, s.c.) on mPFC glutamate efflux was also investigated in addition to the effects of MK801 (0.03 mg/kg, s.c.) following ADX47273 (100 mg/kg, p.o.) pre‐treatment. ADX47273 produced a sustained increase in glutamate efflux and increased the effect of NMDA receptor antagonism on glutamate efflux in the mPFC. In contrast, negative allosteric mGluR5 modulation with RO4917523 decreased glutamate efflux in the mPFC. These findings indicate that positive and negative allosteric mGluR5 modulators produce long lasting and opposing actions on extracellular glutamate efflux in the mPFC. Positive and negative allosteric modulators of mGluR5 may therefore be viable therapeutic agents to correct abnormalities in glutamatergic signalling present in a range of neuropsychiatric disorders.

  相似文献   


8.
Antagonism of the mGluR2 receptor has the potential to provide therapeutic benefit to cognitive disorders by elevating synaptic glutamate, the primary excitatory neurotransmitter in the brain. Selective antagonism of the mGluR2 receptor, however, has so far been elusive, given the very high homology of this receptor with mGluR3, particularly at the orthosteric binding site. Given that inhibition of mGluR3 has been implicated in undesired effects, we sought to identify selective mGluR2 negative allosteric modulators. Herein we describe the discovery of the highly potent and selective class of mGluR2 negative allosteric modulators, 4-arylquinoline-2-carboxamides, following a successful HTS campaign and medicinal chemistry optimization, showing potent in vivo efficacy in rodent.  相似文献   

9.
This work describes the rational amelioration of Cytochrome P450 4/5 (CYP3A4/5) induction through the Pregnane-X Receptor (PXR) pathway in a series of compounds that modulate the metabotropic glutamate Receptor 2 (mGluR2) via an allosteric mechanism. The compounds were initially shown to induce CYP3A4/5 via the gold-standard induction assay measured in primary human hepatocytes. This was followed up by testing the compounds in a PXR assay which correlated well with the assay in primary cells. Further, one of the compounds was crystallized with PXR (pdb code 6DUP). Analysis of this co-crystal structure, together with previously published PXR co-crystal structures, lead to modification ideas. The compounds synthesized based on these ideas were shown not to be CYP3A4/5 inducers. The mGluR2 activity of the resulting compounds was maintained.  相似文献   

10.
This Letter describes the synthesis and SAR, developed through an iterative analogue library approach, of a mGluR5 allosteric partial antagonist lead based on a 5-(phenylethynyl)pyrimidine scaffold. With slight structural modifications to the distal phenyl ring, analogues demonstrated a range of pharmacological activities from mGluR5 partial antagonism to full antagonism/negative allosteric modulation to positive allosteric modulation.  相似文献   

11.
Development of SAR in a 5-aryl-3-acylpyridinyl-pyrazoles and 1-aryl-4-acylpyridinyl imidazoles series of mGlu5 receptor negative allosteric modulators (mGluR5 NAMs) using a functional cell-based assay is described in this Letter. Analysis of the Ligand-lipophilic efficiency (LipE) of compounds provided new insight for the design of potent mGluR5 negative allosteric modulators with anti-depressant activities.  相似文献   

12.
A series of N-propyl-8-chloro-6-substituted isoquinolones was identified as positive allosteric modulators of metabotropic glutamate receptor 2 (mGluR2 PAM) via high throughput screening (HTS). The subsequent synthesis and initial SAR exploration that led to the identification of compound 28 is described.  相似文献   

13.
The synthesis and structure-activity relationship (SAR) of a novel series of 3-(imidazolyl methyl)-3-aza-bicyclo[3.1.0]hexan-6-yl)methyl ethers, derived from a high throughput screening (HTS), are described. Subsequent optimization led to identification of potent, metabolically stable and orally available mGluR2 positive allosteric modulators (PAMs).  相似文献   

14.
This Letter describes the discovery of a novel series of mGluR5 positive allosteric modulators (PAMs). The lead compound, 11c, exhibits excellent potency (EC50 = 30 nM) in vitro, and reaches high brain levels in both rats and mice after oral administration.  相似文献   

15.
Metabotropic glutamate receptors (mGluRs) are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects--enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%), the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%), the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86%) and 8/9 (89%) for ArgusLab and 10/14 (71%) and 7/9 (78%) for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by photochemical isomerization of the retinal ligand--despite the extensive differences in sequences between mGluRs and rhodopsin.  相似文献   

16.
G-protein-coupled receptors (GPCRs) represent the largest class of drug targets, accounting for more than 40% of marketed drugs; however, discovery efforts for many GPCRs have failed to provide viable drug candidates. Historically, drug discovery efforts have focused on developing ligands that act at the orthosteric site of the endogenous agonist. Recently, efforts have focused on functional assay paradigms and the discovery of ligands that act at allosteric sites to modulate receptor function in either a positive, negative, or neutral manner. Allosteric modulators have numerous advantages over orthosteric ligands, including high subtype selectivity; the ability to mimic physiological conditions; the lack of densensitization, downregulation, and internalization; and reduced side effects. Despite these virtues, challenging issues have now arisen for allosteric modulators of metabotropic glutamate receptors (mGluRs): shallow SAR, ligand-directed trafficking, and the identification of subtle "molecular switches" that modulate the modes of pharmacology. Here, we will discuss the impact of modest structural changes to multiple mGluR allosteric ligands scaffolds that unexpectedly modulate pharmacology and raise concerns over metabolism and the pharmacology of metabolites.  相似文献   

17.
Metabotropic glutamate receptor 2 (mGluR2) has been implicated in a variety of CNS disorders, including schizophrenia. Disclosed herein is the development of a new series of allosteric potentiators of mGluR2. Structure-activity relationship studies in conjunction with pharmacokinetic data led to the discovery of indole 5, which is active in an animal model for schizophrenia.  相似文献   

18.
Activation of metabotropic glutamate receptor subtype 4 has been shown to be efficacious in rodent models of Parkinson's disease. Artificial neural networks were trained based on a recently reported high throughput screen which identified 434 positive allosteric modulators of metabotropic glutamate receptor subtype 4 out of a set of approximately 155,000 compounds. A jury system containing three artificial neural networks achieved a theoretical enrichment of 15.4 when selecting the top 2?% compounds of an independent test dataset. The model was used to screen an external commercial database of approximately 450,000 drug-like compounds. 1,100 predicted active small molecules were tested experimentally using two distinct assays of mGlu(4) activity. This experiment yielded 67 positive allosteric modulators of metabotropic glutamate receptor subtype 4 that confirmed in both experimental systems. Compared to the 0.3?% active compounds in the primary screen, this constituted an enrichment of 22 fold.  相似文献   

19.
In the rodent cerebellum, pharmacological activation of group III pre-synaptic metabotropic glutamate receptors (mGluRs) by the broad spectrum agonist l -2-amino-4-phosphonobutyric acid, acutely depresses excitatory synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses. Among the group III mGluR subtypes, cerebellar granule cells express predominantly mGluR4, but also mGluR7 and mGluR8 mRNA. Taking into account that previous functional and pharmacological studies have used group III mGluR broad spectrum agonists that do not differentiate between these various subtypes, their relative contribution to the modulation of glutamatergic transmission at PF-PC synapses remains to be elucidated. In order to clarify this issue, we applied conventional whole-cell patch-clamp recordings and pre-synaptic calcium influx measurements, combined with pharmacological manipulations to rat and mice cerebellar slices. With the use of (1 S ,2 R )-1-amino-2-phosphonomethylcyclopropanecarboxylic acid, a new and selective group III mGluR agonist, N -phenyl-7-(hydroxylimino)cyclopropa[b]-chromen-1a-carboxamide, the specific positive allosteric modulator of mGluR4, ( S )-3,4-dicarboxyphenylglycine, a selective mGluR8 agonist, and mGluR4 knock-out mice, we demonstrate that the inhibitory control of group III mGluRs on excitatory neurotransmission at PF-PC synapses of the rodent cerebellar cortex, is totally because of the activation of pre-synaptic mGluR4 autoreceptors.  相似文献   

20.
代谢型谷氨酸受体1(mGluR1)过度激活介导的谷氨酸兴奋性毒性是帕金森病(PD)的主要发病机制之一。在临床试验中应用mGluRs的负性变构调节剂缓解PD病人的运动障碍已有报道,但由于精确调控mGluRs表达或活性的局限性,目前,在PD的治疗中仍存在一些问题。因此,寻找能够精确调控mGluR1表达及活性的小分子药物或内源性基因,将有可能成为解决目前PD治疗中存在问题的有效方法。本文通过体内和体外实验,对囊性纤维跨膜调节器相关配体(CAL)在mGluR1过度激活诱导的细胞毒性中的作用和机制进行研究。研究结果显示,在工具细胞HEK293中,应用mGluR1的激动剂激活受体,CAL与mGluR1的相互作用明显增强(P< 0.05),且CAL通过与mGluR1相互作用,抑制mGluR1过度激活诱导的细胞凋亡及其下游信号通路的激活。在鱼藤酮诱导的PD大鼠模型中,过表达CAL通过抑制mGluR1下游通路的激活,减少鱼藤酮引起的神经损伤(P< 0.001)。本文揭示了一种调控mGluR1活性的新机制,希望为神经系统疾病的治疗和相关研究提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号