首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The applicability of anaerobic baffled reactor (ABR) was investigated for the treatment of acidic (pH 4.5–7.0) wastewater containing sulfate (1000–2000 mg/L) and Zn (65–200 mg/L) at 35 °C. The ABR consisted of four equal stages and lactate was supplemented (COD/SO42− = 0.67) as carbon and energy source for sulfate reducing bacteria (SRB). The robustness of the system was studied by decreasing pH and increasing Zn, COD, and sulfate loadings. Sulfate-reduction efficiency quickly increased during the startup period and reached 80% within 45 days. Decreasing feed pH, increasing feed sulfate and Zn concentrations did not adversely affect system performance as sulfate reduction and COD removal efficiencies were within 62–90% and 80–95%, respectively. Although feed pH was steadily decreased from 7.0 to 4.5, effluent pH was always within 6.8–7.5. Over 99% Zn removal was attained throughout the study due to formation of Zn-sulfide precipitate.  相似文献   

2.
In this study, the effect of increasing p-nitrophenol (PNP) concentrations on the performance of anaerobic baffled reactor (ABR) (chemical oxygen demand (COD), removals, volatile fatty acid (VFA), p-aminophenol (PAP) and methane gas productions) was investigated through 240 days. The PNP concentrations were raised to 700 from 10 mg/L corresponding to PNP loading rates of 0.97 and 67.9 g/m3 day. The PNP and COD removal efficiencies were 99 and 90% at PNP loading rates as high as 33.9 g/m3 day, respectively, through the acclimation of anaerobic granular sludge. After this loading rate, the removal efficiencies decreased to 79%. The COD removal efficiencies were high in compartment 1 (E = 78–93%) while a small amount of COD removal was achieved in compartments 2 and 3. The PNP removal efficiencies were approximately 90% in all PNP loading rates except for loading rate of 0.97 g/m3 day. The maximum PNP removal efficiency was measured as 99% at a loading rate of 8.32 g/m3 day. The optimum PNP loading rate for maximum COD, PNP removals and methane yield was 8.32 g/m3 day. The total, methane gas productions and methane percentages were approximately 2160–2400 mL/day and 950–1250 mL/day and 44–52% for the PNP loading rates varying between 4.36 and 33.9 g/m3 day, respectively. For PNP loading rates varying between 33.9 and 67.9 g/m3 day, the total, methane gas productions and methane percentages were approximately 2160 and 960 mL/day and 44%, respectively. The highest total volatile fatty acid (TVFA) concentrations were found in the first compartment with fluctuated values varied between 50 and 200 mg/L indicating the acidogenesis. p-Aminophenol was found as the main intermediate through anaerobic degradation of PNP which later was broken down to phenol and ammonia.  相似文献   

3.
Treatment of a low strength complex wastewater of chemical oxygen demand (COD) around 500mg/L was studied in a 10L capacity laboratory scale anaerobic baffled reactor (ABR). It was operated at hydraulic retention times (HRTs) of 20, 15, 10, 8 and 6h. Corresponding organic loading rates (OLRs) were 0.6, 0.8, 1.2, 1.5 and 2kg COD/m(3)d. At every HRT (or OLR), pseudo steady state (PSS) was achieved. Even at maximum OLR of 2kg COD/m(3)d, COD and biochemical oxygen demand (BOD) removals exceeded 88%. Removal of particulate fraction of organics was found to be greater than soluble fraction. Compartment-wise studies of various parameters revealed that if the OLR was larger, the number of initial compartments played significant role in the removal of organics. The values of volatile fatty acids (VFA) demonstrated that hydrolysis and acidogenesis were the main biochemical activities in the initial few compartments. Based on the tracer studies, dead space in the ABR was found to range from 23% to 34%. The flow pattern in the ABR was classified as intermediate between plug flow and perfectly mixed flows. Observations from scanning electron micrographs (SEM) also suggested that distinct phase separation takes place in an ABR. Study of organic and hydraulic shock loads revealed that ABR was capable of sustaining the type of shock loads generally experienced at a sewage treatment plant (STP).  相似文献   

4.
The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention times (HRT) on the treatment of NB were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system. In the first step of the study, the maximum COD removal efficiencies were found as 88% and 92% at NB concentrations varying between 30 mg L?1 and 210 mg L?1 in ABR. The minimum COD removal efficiency was 79% at a NB concentration of 700 mg L?1. The removal efficiency of NB was nearly 100% for all NB concentrations in the ABR reactor. The methane gas production and the methane gas percentage remained stable (1500 mL day?1 and 48–50%, respectively) as the NB concentration was increased from 30 to 210 mg L?1. In the second step of the study it was found that as the HRT decreased from 10.38 days to 2.5 days the COD removal efficiencies decreased slightly from 94% to 92% in the ABR. For maximum COD and NB removal efficiencies the optimum HRT was found as 2.5 days in the ABR. The total COD removal efficiency was 95% in sequential anaerobic (ABR)/aerobic (CSTR) reactor system at a minimum HRT of 1 day. When the HRT was decreased from 10.38 days to 1 day, the methane percentage decreased from 42% to 29% in an ABR reactor treating 100 mg L?1 NB. Nitrobenzene was reduced to aniline under anaerobic conditions while aniline was mineralized to catechol with meta cleavage under aerobic conditions.  相似文献   

5.
The distribution of invasive and native species in wetlands is determined by hydrological conditions; whereas conditions such as water depth fluctuations, variations in the nutrient concentrations are expected to affect the growth and physiological traits of plants. For the assessment of such effects, we conduct greenhouse experiment with three factors; 1) water depth of 5 cm and 15 cm (static and fluctuated); 2) three levels of nutrient concentrations (i) full‐strength Hoagland solution (N1), (ii) ¼‐strength Hoagland solution (N2), and (iii) 1/8‐strength Hoagland solution (N3); and 3) species, invasive Wedelia trilobata (L.) and its congener, native Wedelia chinensis (Osbeck.) under mono and mixed culture. Water depth of 5 cm combined with any of the nutrient treatments significantly restrained the photosynthesis, intracellular CO2 concentration and leaf chlorophyll of both W. trilobata and W. chinensis. Increase in the water depth to 15 cm with low‐nutrient treatment N3 did not sustain the physiological traits of W. chinensis under mono and mixed planting. A great loss was noted in the growth of W. chinensis at 15 cm static and fluctuated water depth with low‐nutrient treatment (N3) and under mixed culture. In addition, water depth fluctuations with both low‐ and high‐nutrient treatments significantly affected the root‐shoot ratio, relative growth rate, and interspecific interaction among these two species. W. trilobata benefited more from competitive interaction index (CII) under fluctuated water depth at 15 cm with high nutrients, and the value of CII was clearly positive. Therefore, higher competitive ability may contribute to the invasiveness of W. trilobata in wetlands.  相似文献   

6.
Chen  Maolian  Yu  Ningning  Chen  Yaping  Tong  Qibang  Guo  Yong 《Biodegradation》2021,32(4):377-388
Biodegradation - P-nitrophenol (PNP or 4-NP) has been widely used as a biorefractory raw material in chemical industry, whereas been highly concerned for its characteristics of...  相似文献   

7.
Studies are carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater are found to be very high with low Biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and start up of the reactor is carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor is studied at different organic loading rates (OLR) and it is found that the optimum OLR is 10 kg COD/m3/day. The wastewater under investigation, which is having considerable quantity of SS, is treated anaerobically without any pretreatment. The COD and BOD of the reactor outlet wastewater are monitored and reduction at steady state and optimum OLR is observed to be 60-70% of COD and 80-90% of BOD. The reactor is subjected to organic shock loads at two different OLR and it is observed that the reactor could withstand shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.  相似文献   

8.
Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.  相似文献   

9.
This study evaluated the treatment of oil sands process-affected water (OSPW) using a fluidized bed biofilm reactor (FBBR) with granular activated carbon (GAC) as support media. The bioreactor was operated for 120 days at different organic and hydraulic loading rates. The combined GAC adsorption and biodegradation process removed 51% of chemical oxygen demand (COD), 56% of acid-extractable fraction (AEF) and 96% of classical naphthenic acids (NAs) under optimized operational conditions. Bioreactor treatment efficiencies were dependent on the organic loading rate (OLR), and to a lower degree, on the hydraulic loading rate (HLR). Further ultra performance liquid chromatography/high resolution mass spectroscopy (UPLC/HRMS) analysis showed that the removal of classical NAs increased as the carbon number increased. Compared with planktonic bacterial community in OSPW, more diverse microbial structures were found in biofilms colonized on the surface of GAC after 120-day treatment, with various carbon degraders namely Polaromonas jejuensis, Algoriphagus sp., Chelatococcus sp. and Methylobacterium fujisawaense in the GAC-biofilm reactor. The results of this study, therefore, showed that the GAC-biofilm seems to be a promising biological treatment method for OSPW remediation.  相似文献   

10.
Summary In the combined ion exchange/biological denitrification process for nitrate removal from ground water, in which nitrate is removed by ion exchange, the resins are regenerated in a closed circuit by a biological denitrification reactor. This denitrification reactor eliminates nitrate from the regenerant. Methanol is used as electron donor for biological denitrification. To obtain sufficient regeneration of the resins within a reasonable time, high NaCl or NaHCO3 concentrations (10–30 g/l) in the regenerant are necessary. High NaHCO3 concentrations affected the biological denitrification in three ways: a) a slight decrease in denitrification capacity (30%) was observed; b) the yield coefficient and CH3OH/NO3 -–N ratio decreased. When high NaHCO3 concentrations (above 10g NaHCO3/l) were used, the yield coefficient was 0.10–0.13 g VSS/g NO3 -–N and the CH3OH/NO3 -–N ratio was 2.00–2.03 g/g; c) high NaHCO3 concentrations influenced nitrite production. Nitrite is an intermediate product of biological denitrification and with rising NaHCO3 concentrations nitrite accumulation was suppressed. This was explained by the effect of high NaHCO3 concentrations on the pH in the microenvironment of the denitrifying organisms. High NaCl concentrations also resulted in a slight decrease in denitrification capacity, but the second and third effects were not observed in the presence of high NaCl concentrations.Although the pH in the regenerant will rise as a result of biological denitrification, the capacity of a denitrification reactor did not decrease significantly when a pH of 8.8–9.2 was reached.  相似文献   

11.
Using a surface force balance, we measured normal and shear interactions as a function of surface separation between layers of hydrogenated soy phosphatidylcholine (HSPC) small unilamellar vesicles (SUVs) adsorbed from dispersion at physiologically high salt concentrations (0.15 M NaNO3). Cryo-scanning electron microscopy shows that each surface is coated by a close-packed HSPC-SUV layer with an overlayer of liposomes on top. A clear attractive interaction between the liposome layers is seen upon approach and separation, followed by a steric repulsion upon further compression. The shear forces reveal low friction coefficients (μ = 0.008–0.0006) up to contact pressures of at least 6 MPa, comparable to those observed in the major joints. The spread in μ-values may be qualitatively accounted for by different local liposome structure at different contact points, suggesting that the intrinsic friction of the HSPC-SUV layers at this salt concentration is closer to the lower limit (μ = ∼0.0006). This low friction is attributed to the hydration lubrication mechanism arising from rubbing of the hydrated phosphocholine-headgroup layers exposed at the outer surface of each liposome, and provides support for the conjecture that phospholipids may play a significant role in biological lubrication.  相似文献   

12.
A modelling of the anaerobic digestion process of molasses was conducted in a 70-L multistage anaerobic biofilm reactor or hybrid anaerobic baffled reactor with six compartments at an operating temperature of 26 °C. Five hydraulic retention times (6, 16, 24, 72 and 120 h) were studied at a constant influent COD concentration of 10,000 mg/L. Two different kinetic models (one was based on a dispersion model with first-order kinetics for substrate consumption and the other based on a modification of the Young equation) were evaluated and compared to predict the organic matter removal efficiency or fractional conversion. The first-order kinetic constant obtained with the dispersion model was 0.28 h−1, the Peclet dispersion number being 45, with a mean relative error of 2%. The model based on the Young equation predicted the behaviour of the reactor more accurately showing deviations lower than 10% between the theoretical and experimental values of the fractional conversion, the mean relative error being 0.9% in this case.  相似文献   

13.
Physicochemical and microbiological characteristics of formation waters low-temperature heavy oil reservoirs (Russia) were investigated. The Chernoozerskoe, Yuzhno-Suncheleevskoe, and Severo-Bogemskoe oilfields, which were exploited without water-flooding, were shown to harbor scant microbial communities, while microbial numbers in the water-flooded strata of the Vostochno-Anzirskoe and Cheremukhovskoe oilfields was as high as 106 cells/mL. The rates of sulfate reduction and methanogenesis were low, not exceeding 1982 ng S2–/(L day) and 9045 nL СН4/(L day), respectively, in the samples from water-flooded strata. High-throughput sequencing of microbial 16S rRNA gene fragments in the community of injection water revealed the sequences of the Proteobacteria (74.7%), including Betaproteobacteria (40.2%), Alphaproteobacteria (20.7%), Gammaproteobacteria (10.1%), Deltaproteobacteria (2.0%), and Epsilonproteobacteria (1.6%), as well as Firmicutes (7.9%), Bacteroidetes (4.1%), and Archaea (0.2%). DGGE analysis of microbial mcrA genes in the community of injection water revealed methanogens of the genera Methanothrix, Methanospirillum, Methanobacterium, Methanoregula, Methanosarcina, and Methanoculleus, as well as unidentified Thermoplasmata. Pure cultures of bacteria of the genera Rhodococcus, Pseudomonas, Gordonia, Cellulomonas, etc., capable of biosurfactant production when grown on heavy oil, were isolated. Enrichment cultures of fermentative bacteria producing significant amounts of volatile organic acids (acetic, propionic, and butyric) from sacchariferous substrates were obtained. These acids dissolve the carbonates of oil-bearing rock efficiently. Selection of the efficient microbial technology for enhanced recovery of heavy oil from terrigenous and carbonate strata requires model experiments with microbial isolates and the cores of oil-bearing rocks.  相似文献   

14.
Fu Z  Yang F  Zhou F  Xue Y 《Bioresource technology》2009,100(1):136-141
A modified membrane bioreactor (MBR) system has been developed to evaluate the efficiency of nutrient removal in treating synthetic high strength water. This study examined the effect of influent COD/N ratio on this system. Results showed that above 95.0% removal efficiencies of organic matter were achieved; indicating COD removal was irrespective of COD/N ratio. The average removal efficiencies of total nitrogen (TN) and phosphate (PO(4)(3-)-P) with a COD/N ratio of 9.3 were the highest at 90.6% and 90.5%, respectively. Furthermore, TN removal was primarily based on simultaneous nitrification and denitrification (SND) process occurred in the aerobic zone. Decreased COD/N ratios to 7.0 and 5.3, TN removal efficiencies in steady-states were 69.3% and 71.2%, respectively. Both aerobic SND and conventional biological nitrification/denitrification contributed to nitrogen removal and the latter played dominant effect. PO(4)(3-)-P-release and uptake process ceased in steady-states of COD/N 7.0 and 5.3, which decreased its removal efficiency significantly.  相似文献   

15.
《Process Biochemistry》2004,39(10):1249-1256
The granulation process using synthetic wastewater containing pentachlorophenol (PCP) in four 1.1 l laboratory scale upflow anaerobic sludge blanket (UASB) reactors was studied, and the anaerobic biotransformation of PCP during the granulation process investigated. After 110 days granular sludge was developed and up to 160 and 180 mg/l of PCP was added into the reactors R1 and R2, respectively, when they were inoculated with acclimated anaerobic sludge from an anaerobic digester of a citric acid plant. The inoculum was predominately composed of bacilli and filamentous bacteria. Granulation did not occur in reactors R3 and R4 which were inoculated with acclimated anaerobic sludge from aerobic sludge of the municipal sewage treatment plant which consisted mainly of cocci. Despite similar bacilli in the granule, the filamentous bacteria from reactor R1 were thicker than those of reactor R2. The granular sludge had a maximum diameter of 2.5 and 2.2 mm, and SMA of 1.44 and 1.32 gCOD/gTVS per day for reactors R1 and R2, respectively. Over 98% chemical oxygen demand (COD) removal rate and 99% of PCP removal rate were achieved when reactors R1 and R2 were operated at PCP and COD loading rates of 150 and 7.5 g/l per day, respectively. H2-producing acetogens were the dominant anaerobes in the granular sludge.  相似文献   

16.
J Lüthje  D Miller  A Ogilvie 《Blut》1987,54(4):193-200
Platelets from whole blood were separated into five density subpopulations using a discontinuous Percoll gradient. The content of diadenosine triphosphate (Ap3A), diadenosine tetraphosphate (Ap4A), ADP and ATP were determined in the subfractions. The dinucleotides were directly measured in neutralized, acid-soluble extracts of human platelets with a bioluminescence method not requiring any chromatographic step. When comparing the nucleotide contents of the density subpopulations it became evident that all nucleotides steadily increased with increasing density. Ap3A, Ap4A, ADP and ATP were present in 10-, 7-, 4- and 2-fold higher amounts in the heaviest platelets, respectively, as compared to the subfraction with the lowest density. This finding is practically relevant since the most dense platelet subpopulations may be lost during conventional centrifugation to obtain platelet-rich plasma. Therefore we compared a platelet population obtained from PRP with the platelet population, which had been prepared from whole blood by means of a continuous Percoll gradient. All the four nucleotides investigated were represented in 1.5- to 2-fold higher amounts in the whole blood platelet population. This indicates that PRP does not contain a representative population but lacks part of the large heavy platelets containing the highest amounts of nucleotides.  相似文献   

17.
Denitrifying granular sludge reactor holds better nitrogen removal efficiency than other kinds of denitrifying reactors, while this reactor commonly needs seeding anaerobic granular sludge and longer period for start-up in practice, which restricted the application of denitrifying granular sludge reactor. This study presented a rapid and stable start-up method for denitrifying granular sludge. An upflow sludge blanket (USB) reactor with packings was established with flocculent activated sludge for treatment of high concentration nitrite wastewater. Results showed mature denitrifying granular sludge appeared only after 15 days with highest nitrogen removal rate of 5.844 kg N/(m3 day), which was much higher than that of compared anoxic sequencing batch reactor (ASBR). No significant nitrite inhibition occurred in USB and denitrification performance was mainly influenced by hydraulic retention time, influent C/N ratio and internal reflux ratio. Hydraulic shear force created by upflow fluid, shearing of gaseous products and stable microorganisms adhesion on the packings might be the reasons for rapid achievement of granular sludge. Compared to inoculated sludge and ASBR, remarkable microbial communitiy variations were detected in USB. The dominance of Proteobacteria and Bacteroidetes and enrichment of species Pseudomonas_stutzeri should be responsible for the excellent denitrification performance, which further verified the feasibility of start-up method.  相似文献   

18.
Abstract

In order to identify phytohormones involved in the initiation and maintenance of galls on the hackberry tree, Celtis occidentalis (Ulmaceae), in the presence of the insect Pachypsylla celtidis (Psyllidae); endogenous levels of cytokinins (CKs) and abscisic acid (ABA) were measured in the tissues of leaves, galls, and larval insects using liquid-chromatography-tandem-mass-spectrometry. The CKs isopentenyl adenine, isopentenyl adenosine, trans-zeatin and cis-zeatin, were extremely concentrated in insect larvae compared to surrounding tissue of leaves and galls. ABA concentrations in the insects were also relatively high at about 3268 pmol?g-1 fresh mass – approximately 25 times higher than in leaves, and 17 times higher than in galls. This represents a novel case of high concentrations of ABA being found in a larval insect. These findings indicate that manipulation of CK and ABA are involved in the initiation and maintenance of hackberry galls in the presence of larval P. celtidis.  相似文献   

19.
This work reports on the treatment of partially soluble wastewater in an anaerobic sequencing batch biofilm reactor, containing biomass immobilized on polyurethane matrices and stirred mechanically. The results showed that agitation provided optimal mixing and improved the overall organic matter consumption rates. The system showed to be feasible to enhance the treatment of partially soluble wastewaters.  相似文献   

20.
In this study, we have focused on those components of Photosystem (PS) II which are significantly affected by dual stress (high salt and temperature) on wheat as measured by Plant Efficiency Analyser (PEA). It was observed that some of the chlorophyll a fluorescence parameters were temperature dominated, while some other parameters were salt dominated. We have also observed additive effects for parameters like antenna size heterogeneity. An important observation was that in high temperature alone, the K-step was observed at 40 °C, while in case of dual stress, the K-step was observed at 45 °C, while the Chl a fluorescence transient of 40 °C?+?0.5 M?NaCl was quite similar to 35 °C transient curve. In the presence of salt, K-step was observed at higher temperature suggesting a protection of OEC by salt. Plants are under dual stress, but effect of temperature stress is less severe in presence of salt stress. Thus, we can say that salt stress caused partial prevention from high temperature stress but it did not cause complete protection of PS II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号