首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on the hormonal regulation of the formation and mobilisation of fat body stores are presented and discussed in relation to general parameters of last instar larval development such as growth, food intake, and moulting. Crickets feed voraciously during the first half of the last larval stage. With the onset of feeding, fat body lipid synthesis increases, leading to increasing lipid stores in the fat body with a maximum reached on day 5. Lipid (42% of fat body fresh mass) is the main constituent of the fat body stores, followed by protein (6%) and glycogen (2%). During the second half of the last larval stage, feeding activity dramatically decreases, the glycogen reserves are depleted but lipid and protein reserves in the fat body remain at a high level except for the last day of the last larval stage when lipid and protein in the fat body are also largely depleted. The process of moulting consumes almost three quarters of the caloric equivalents that were acquired during the last larval stage. Adipokinetic hormone (AKH) inhibits effectively the synthesis of lipids in the larval fat body. Furthermore, AKH stimulates lipid mobilisation by activating fat body triacylglycerol lipase (TGL) in last larval and adult crickets. Both effects of AKH are weaker in larvae than in adults. This is the first report on the age-dependent basal activity of TGL in larval and adult insects. In addition, for the first time, an activation of TGL by AKH in a larval insect is shown.  相似文献   

2.
Triglycerides (TG) stores build up in the insect fat body as lipid droplets at times of excess of food. The mobilization of fat body triglyceride (TG) is stimulated by adipokinetic hormones (AKH). The action of AKH involves a rapid activation of cAMP-dependent protein kinase (PKA). Recent in vitro studies have shown that PKA phosphorylates and activates the TG-lipase substrate, the lipid droplets. Conversely, purified TG-lipase from Manduca sexta fat body is phosphorylated by PKA in vitro but is not activated. This study was directed to learn whether or not AKH promotes a change in the state of phosphorylation of the lipase in vivo, and what are the relative contributions of cytosol and lipid droplets to the overall increase of lipolysis triggered by AKH. TG-lipase activity of fat body cytosols isolated from control and AKH-treated insects was determined against the native substrate, in vivo [3H]-TG radiolabeled lipid droplets, obtained from control and AKH-treated insects. The lipase activity of the system composed of AKH-cytosol and AKH-lipid droplets (11.1 +/- 2.1 nmol TG/min-mg) was 3.1-fold higher than that determined with control cytosol and lipid droplets (3.6 +/- 0.5 nmol TG/min-mg). Evaluation of the role of AKH-induced changes in the lipid droplets on lipolysis showed that changes in the lipid droplets are responsible for 70% of the lipolytic response to AKH. The remaining 30% appears to be due to AKH-dependent changes in the cytosol. However, the phosphorylation level of the TG-lipase was unchanged by AKH, indicating that phosphorylation of the TG-lipase plays no role in the activation of lipolysis induced by AKH.  相似文献   

3.
The hydrolysis of triglyceride (TG) stored in the lipid droplets of the insect fat body is under hormonal regulation by the adipokinetic hormone (AKH), which triggers a rapid activation cAMP-dependent kinase cascade (protein kinase A (PKA)). The role of phosphorylation on two components of the lipolytic process, the TG-lipase and the lipid droplet, was investigated in fat body adipocytes. The activity of purified TG-lipase determined using in vivo TG-radiolabeled lipid droplets was unaffected by the phosphorylation of the lipase. However, the activity of purified lipase was 2.4-fold higher against lipid droplets isolated from hormone-stimulated fat bodies than against lipid droplets isolated from unstimulated tissue. In vivo stimulation of lipolysis promotes a rapid phosphorylation of a lipid droplet protein with an apparent mass of 42-44 kDa. This protein was identified as "Lipid Storage Droplet Protein 1" (Lsdp1). In vivo phosphorylation of this protein reached a peak approximately 10 min after the injection of AKH. Supporting a role of Lsdp1 in lipolysis, maximum TG-lipase activity was also observed with lipid droplets isolated 10 min after hormonal stimulation. The activation of lipolysis was reconstituted in vitro using purified insect PKA and TG-lipase and lipid droplets. In vitro phosphorylation of lipid droplets catalyzed by PKA enhanced the phosphorylation of Lsdp1 and the lipolytic rate of the lipase, demonstrating a prominent role PKA and protein phosphorylation on the activation of the lipid droplets. AKH-induced changes in the properties of the substrate do not promote a tight association of the lipase with the lipid droplets. It is concluded that the lipolysis in fat body adipocytes is controlled by the activation of the lipid droplet. This activation is achieved by PKA-mediated phosphorylation of the lipid droplet. Lsdp1 is the main target of PKA, suggesting that this protein is a major player in the activation of lipolysis in insects.  相似文献   

4.
Cellular triglycerides (TG) are stored in cytosolic lipid droplets (LDs). Perilipins (PLIN) are a group of LD-proteins that play important roles in the assembly and transport of LDs and in TG metabolism. Two members of the PLIN family are found in insects (PLIN1 & 2 or Lsd1 & 2). We have cloned and expressed Manduca sexta PLIN2 (MsPLIN2), and studied developmental and nutritional changes in the expression of PLIN2. Nutritional changes induced fast alterations in PLIN2 mRNA and protein levels in fat body and midgut of the feeding larvae. The relationship observed between PLIN2 expression and TG synthesis in both larval fat body and midgut suggests that PLIN2 is needed when tissues are accumulating TG. However, when the fat body was storing TG at maximal capacity, MsPLIN2 levels declined. This unexpected finding suggests the occurrence of alternative mechanism/s to shield TG from the action of lipases in M. sexta LDs. In addition, it implies that the cellular level of lipid storage could be modulating MsPLIN2 expression and/or degradation. The study also confirmed that MsPLIN2 was most abundant in the adult fat body, which is characterized by a high rate of TG hydrolysis and lipid mobilization. Whether MsPLIN2 is directly involved in lipolysis and/or the secretion of lipids in the fat body of adult of M. sexta is unknown at this time. Nonetheless, the coexistence of high PLIN2 and lipolysis levels suggests a complex role for MsPLIN2. Altogether, we found that MsPLIN2 is needed when the synthesis of glycerides, DG and TG, is active even if the insect is accumulating or consuming TG.  相似文献   

5.
R Ziegler  K Eckart  J H Law 《Peptides》1990,11(5):1037-1040
The peptide hormone which controls activation of fat body glycogen phosphorylase in starving larvae of Manduca sexta was isolated from larval corpora cardiaca and sequenced by FAB tandem mass spectrometry. It was found to be identical with Manduca AKH. This, together with earlier observations, demonstrates that in M. sexta AKH controls glycogen phosphorylase activation in starving larvae while in adults it controls lipid mobilization during flight. Larval corpora cardiaca contain about 10 times less AKH than the corpora cardiaca of adults. The corpora cardiaca of M. sexta appear to contain only one AKH.  相似文献   

6.
Triglycerides (TG) stored in lipid droplets (LDs) are the main energy reserve in all animals. The mechanism by which animals mobilize TG is complex and not fully understood. Several proteins surrounding the LDs have been implicated in TG homeostasis such as mammalian perilipin A and insect lipid storage proteins (Lsd). Most of the knowledge on LD-associated proteins comes from studies using cells or LDs leaving biochemical properties of these proteins uncharacterized. Here we describe the purification of recombinant Lsd1 and its reconstitution with lipids to form lipoprotein complexes suitable for functional and structural studies. Lsd1 in the lipid bound state is a predominately α-helical protein. Using lipoprotein complexes containing triolein it is shown that PKA mediated phosphorylation of Lsd1 promoted a 1.7-fold activation of the main fat body lipase demonstrating the direct link between Lsd1 phosphorylation and activation of lipolysis. Serine 20 was identified as the Lsd1-phosphorylation site triggering this effect.  相似文献   

7.
Resembling the main function of insect adipokinetic hormones (AKHs), the vertebrate hormone glucagon mobilizes energy reserves and participates in the control of glucose level in the blood. Considering the similarities, the effect of porcine glucagon was evaluated in an insect model species, the firebug Pyrrhocoris apterus. Using the mouse anti-glucagon antibody, presence of immunoreactive material was demonstrated for the first time in the firebug CNS and gut by ELISA. Mammalian (porcine) glucagon injected into the adult bugs showed no effect on hemolymph lipid level or on the level of AKH in CNS and hemolymph, however, it activated an antioxidant response when oxidative stress was elicited by paraquat, a diquaternary derivative of 4, 4′-bipyridyl. Glucagon elicited the antioxidant response by increasing glutathione and decreasing protein carbonyl levels in hemolymph, decreasing both protein carbonyl and protein nitrotyrosine levels in CNS. Additionally, when co-injected with paraquat, glucagon partially eliminated oxidative stress markers elicited by this redox cycling agent and oxidative stressor. This indicates that glucagon might induce an antioxidant defense in insects, as recently described for AKH. Failure of glucagon to alter AKH level in the bug's body indicates employment of an independent pathway without involving the native AKH.  相似文献   

8.
Lipid storage protein 2 (Lsd 2) is a conserved insect protein that belongs to the small PAT family of proteins. PAT proteins are found associated to the lipid droplets of adipocytes and play significant roles in the regulation of triacylglycerides metabolism. Here we describe the expression and purification of Lsd2, its reconstitution in lipoprotein particles, the location of putative lipid binding sites and its secondary structure. This study provides the starting point for future studies on the mechanism of function of Lsd2. The similarities and differences between Lsd1 and Lsd2, the only PAT proteins found in insects, are discussed.  相似文献   

9.
Adipokinetic hormone (AKH) regulates energy homeostasis in insects by mobilizing lipid and carbohydrate from the fat body. Here, using RNA sequencing data, we identified cDNAs encoding AKH (GbAKH) and its highly homologous hormone AKH/corazonin-related peptide (GbACP) in the corpora cardiaca of the two-spotted cricket, Gryllus bimaculatus. RT-PCR revealed that GbAKH and GbACP are predominantly expressed in the corpora cardiaca and corpora allata, respectively. Phylogenetic analysis confirmed that the identified GbAKH and GbACP belong to the clades containing other AKHs and ACPs, respectively. Injection of synthetic GbAKH and GbACP elevated hemolymph carbohydrate and lipid levels and reduced food intake significantly. In contrast, knockdown of GbAKH and GbACP by RNA interference increased the food intake, although hemolymph lipid level was not altered. Collectively, this study provides evidence that ACP regulates hemolymph carbohydrate and lipid levels in cricket, possibly collaborative contribution with AKH to the maintenance of energy homeostasis.  相似文献   

10.
The lipid droplets (LDs) are intracellular organelles mainly dedicated to the storage and provision of fatty acids. To accomplish these functions the LDs interact with other organelles and cytosolic proteins. In order to explore possible correlations between the physiological states of cells and the protein composition of LDs we have determined and compared the proteomic profiles of lipid droplets isolated from the fat bodies of 5th-instar larvae and adult Manduca sexta insects and from ovaries. These LD-rich tissues represent three clearly distinct metabolic states in regard to lipid metabolism: 1) Larval fat body synthesizes fatty acids (FA) and accumulates large amounts as triglyceride (TG); 2) Fat body from adult insects provides FA to support reproduction and flight; 3) Ovaries do not synthesize FA, but accumulate considerable amounts of TG in LDs. Major qualitative and semi-quantitative variations in the protein compositions of the LDs isolated from these three tissues were observed by MS/MS and partially validated by immuno-blotting. The differences observed included changes in the abundance of lipid droplet specific proteins, cytosolic proteins, mitochondrial proteins and also proteins associated with the machinery of protein synthesis. These results suggest that changes in the interaction of LDs with other organelles and cytosolic proteins are tightly related to the physiological state of cells. Herein, we summarize and compare the protein compositions of three subtypes of LDs and also describe for the first time the proteomic profile of LDs from an insect ovary. The compositions and compositional differences found among the LDs are discussed to provide a platform for future studies on the role of LDs, and their associated proteins, in cellular metabolism.  相似文献   

11.
12.
Lipid metabolism in Tenebrio larval fat body has been studied in vitro. Lipid release required the presence of diluted hemolymph in the incubation medium. This time-dependent release of lipid was strongly stimulated in a dose-dependent manner by Tenebrio corpora cardiaca (CC) extracts or synthetic adipokinetic hormone (AKH I). Furthermore, some glycerol was released when larval fat body was incubated without hemolymph, and this phenomenon was also dose dependent for added CC extracts. Lipid synthesis was estimated in vitro by following the incorporation of radioactivity from [6-14C] glucose into fatty acids. Lipogenesis occurred in the absence of added carbohydrates in the medium, but it was stimulated by the addition of glucose, and especially trehalose (10 mg ml?1). Intestinal insulin-like peptide (ILP) also stimulated in vitro lipogenesis in a dose-dependent fashion. We conclude that lipolytic and lipogenetic activities of larval mealworm fat body in vitro are effectively under hormonal control.  相似文献   

13.
A new type of insect lipoprotein was isolated from the hemolymph of the female cochineal insect Dactylopius confusus. The lipoprotein from the cochineal insect hemolymph was found to have a relative molecular mass of 450 000. It contains 48% lipid, mostly diacylglycerol, phospholipids and hydrocarbons. The protein moiety of the lipoprotein consists of two apoproteins of approximately 25 and 22 kDa, both of which are glycosylated. Both apolipoproteins are also found free in the hemolymph, unassociated with any lipid. Purified cochineal apolipoproteins can combine with Manduca sexta lipophorin, if injected together with adipokinetic hormone into M. sexta. This could indicate that the cochineal lipoprotein can function as a lipid shuttle similar to lipophorins of other insects, and that the cochineal insect apolipoproteins have an overall structure similar to insect apolipophorin-III.  相似文献   

14.
Prior to wandering, 5th instar larvae of the silkworm, Bombyx mori, maintain constant hemolymph titers of trehalose. Head ligation of day 3, 5th instar larvae significantly decreased the hemolymph trehalose concentrations, but the concentrations did not decrease in starved larvae. After being diluted by replacement of larval hemolymph with insect Ringer's solution, the trehalose concentrations recovered the initial levels in 90 min in the non-ligated larvae, while they were not restored in 90 min in the neck-ligated larvae. These results suggest that a head factor(s) with hypertrehalosemic activity is involved in the homeostatic control of hemolymph trehalose concentration. When adipokinetic hormone (AKH) was injected into neck-ligated larvae, the trehalose concentrations increased in 2 h and decreased thereafter. Repeated injections of AKH every 4 h maintained the concentrations for 12 h. These findings suggest that AKH induces a hypertrehalosemic response and is involved in the homeostasis of hemolymph trehalose concentration in the larval feeding period.  相似文献   

15.
The levels of an 81K storage protein in the waxmoth, Galleria mellonella, were monitored during the course of development using rocket immunoelectrophoresis. During the fifth and sixth larval stadia, 81K protein levels increased during feeding and growth but sharply declined at each larval molt. During the fifth and sixth stadia hemolymph levels of the 81K protein increased to about 1 and 2.5 mg/ml, respectively, with no discernible differences between levels in males and females. Neither the fat body nor the remainder of the carcass contained the 81K protein, indicating that the accumulation of this protein during the intermolt period was exclusively in the hemolymph and redistribution of the 81K protein into other tissues does not occur at the final two larval molts. During the seventh (final) larval stadium the absolute quantities of the 81K protein increased from 23 μg per insect to over 1,600 μg in females and to 300 μg in males. The hemolymph concentration of the 81K protein reached 28 mg/ml in females and 6 mg/ml in males with only low levels found in the remaining tissues. Shortly after pupal apolysis, marked by eyespot retraction, the fat body in both sexes rapidly and quantitatively sequestered the 81K protein from the hemolymph. The 81K protein in the hemolymph of both males and females rapidly dropped to nearly zero concentration by pupation. The 81K storage protein remained localized in the fat body cells after uptake occurred, even though the fat body cells disaggregate and reaggregate during metamorphosis. During pharate adult development the 81K storage protein disappeared from the fat body without entering the hemolymph. At adult eclosion 81K was virtually absent from the tissues of both males and females.  相似文献   

16.
The mobilization of carbohydrate and lipid reserves from the insect fat body as fuels for migratory flight activity is controlled by adipokinetic hormone (AKH), of which in Locusta migratoria three different forms occur: AKH-I, -II and -III. In fat body in vitro, each AKH is capable of activating glycogen phosphorylase and of stimulating cAMP production, but only in the presence of extracellular Ca2+. The hormones stimulate both the influx and the efflux of Ca2+, the higher influx probably causing an increase in intracellular [Ca2+]. AKH enhances the production of inositol phosphates among which inositol 1,4,5-triphosphate may mediate the mobilization of Ca2+ from intracellular stores. Evidence is presented in favor of the occurrence of a capacitative calcium entry mechanism. Results suggest that transduction of the AKH signal occurs through stimulatory G protein-coupled receptor(s). A tentative model is presented for the interactions between the AKH signaling pathways in the locust fat body cell. AKH-induced lipid mobilization during flight requires the presence in the insect blood of high-density lipophorin (HDLp) particles and apolipophorin III (apoLp-III). Both protein components are synthesized in the fat body. In the locust, the two integral, nonexchangeable HDLp apolipophorins (apoLp-I and -II) were shown to originate from a common precursor; an mRNA of 10.3 kb seems to code for this precursor protein. The models proposed for lipophorin assembly and secretion in a number of insects are not in agreement. The exchangeable apoLp-III may occur in two or more isoforms; locust apoLp-III is secreted from the fat body as one of the two isoforms and in the hemolymph converted into the truncated second one. The rationale for this process is as yet unknown.  相似文献   

17.
18.
Hemolymph lipoproteins (lipophorins) of adult Manduca sexta are disinct from larval forms in density, lipid content, composition, and the presence of a third, low molecular weight apoprotein. Generally, only one lipoprotein species exists in M. sexta hemolymph during any given life stage. Progression through the life cycle results in alterations of existing lipoproteins to produce new forms, without new protein synthesis. The observed alterations in lipoprotein density could result from facilitated lipid transfer in insect hemolymph. An in vitro assay of facilitated lipid transfer was developed which employs a high density lipophorin from the wandering larva (density = 1.18 g/ml) as acceptor and adult low density lipophorin (density = 1.03 g/ml) as donor. Adult lipophorin-deficient hemolymph was shown to catalyze a time-dependent equilibration of the starting lipoproteins to produce a new intermediate lipophorin, Lp-I. Hydrodynamic experiments on the donor, acceptor, and product lipoproteins excluded fusion as the mechanism whereby Lp-I is produced. Thus, it is concluded that Lp-I results from facilitated net lipid transfer from low to high density lipoprotein. Furthermore, experiments conducted with radioiodinated donor and radioiodinated acceptor lipoproteins demonstrated that apoprotein exchange does not occur during the lipid transfer reaction. When donor lipoprotein was labeled in the lipid moiety with carbon-14, evidence of diacylglycerol and phospholipid exchange was obtained. Partial characterization of the lipid transfer factor revealed a relationship between incubation time, donor concentration, acceptor concentration, lipophorin-deficient hemolymph concentration, and transfer activity, as measured by Lp-I production. It is concluded that lipophorin-deficient hemolymph contains one or more factor(s) that catalyze net lipid transfer as well as diacylglycerol and phospholipid exchange between lipophorins to produce a single form at equilibrium.  相似文献   

19.
External stressors disrupt physiological homeostasis; in insects, the response to stress may result in delayed development as the animal attempts to restore homeostasis before proceeding with its complex life cycle. Previous studies have demonstrated that exposure to stress leads to increased levels of the juvenile hormone (JH), a hormone responsible for maintaining the insect larval state. In Manduca sexta, JH is transported to target tissue by a high-affinity binding protein, hemolymph JH binding protein (hJHBP). Since JH titers are elevated in stressed Manduca, we examined levels of hJHBP to better understand (1) the role of JH in regulating hJHBP levels and (2) the hJHBP-regulated bioavailability of hormone at the target site. Fourth stadium Manduca (48 h post-ecdysis) were exposed for 24h to various stressors including nutritional deprivation, microbial infection, cutaneous injury, episodic movement, and temperature elevation. Insects raised on diets lacking nutritional content exhibited mean hJHBP levels that were less than half (45%) those of control insects. Similarly, insects injected with Escherichia coli demonstrated a 47% reduction in hJHBP titers. Cutaneous injury, episodic movement, and temperature elevation lowered hJHBP levels by 47%, 43%, and 38%, respectively. Total hemolymph protein concentration was not affected. After a stress event (injury), a 50% reduction in abundance of fat body hJHBP mRNA was observed within 4h; hJHBP levels did not drop until 24h after injury. Stress in the fourth stadium was manifest in fifth instars, with 100% of the injured insects displaying an extended larval stadium or failing to pupate. Computational modeling of the JH-hJHBP interaction indicates that unbound JH doubles in stressed insects. These results indicate that in response to stress larval hJHBP titers are significantly reduced, increasing JH bioavailability at the target site and thereby impacting development and survival of the insect. Treatment of unstressed insects with physiological doses of JH I did not affect hJHBP levels, suggesting that elevated JH levels were not solely responsible for the observed down-regulation in stressed insects.  相似文献   

20.
《Insect Biochemistry》1987,17(6):799-808
The response of fifth larval instar locusts to injected adipokinetic hormone (AKH) is only poor, as is reflected in both a very moderate elevation of the haemolymph lipid concentration and the slight occurrence of the haemolymph lipophorin interconversions characteristic for adult locusts, resulting in formation of only small quantities of the low density lipophorin (A+). However, an additional lipophorin fraction (A′) is induced, which is intermediate in density and size between high and low density lipophorin and which is not identified in adult haemolymph. As in adults, larval A+ formation includes association of the resting high density lipophorin with a non-lipid containing protein (C2), the haemolymph concentration of which is only one-fifth relative to adults. However, the larval haemolymph protein composition is not the primary cause of the incomplete adipokinetic response, as elevation of the concentration of protein C2 by injection of isolated adult C2, whether or not in combination with adult high density lipophorin, did not increase lipophorin conversions nor haemolymph lipid elevation.In vitro incubation of larval fat bodies in adult haemolymph showed that competency to both the AKH-induced lipid release and the haemolymph lipophorin conversions of the larval fat body are reduced compared to equal amounts of adult tissue. Reciprocal incubation of adult fat body in larval haemolymph resulted in only a very moderate adipokinetic response, demonstrating that larval haemolymph protein composition is restrictive for full development of hormone action.Both immunoblotting experiments and enzyme-linked immunosorbent assays (ELISA), using monoclonal antibodies specific for the adult lipophorin apoproteins, indicated that the larval lipophorins closely resemble the adult forms. Apparently the structure of locust lipophorins is remarkably constant throughout development despite changes in metabolic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号