首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme hydrolyzing bioactive N-acylethanolamines, including anandamide and N-palmitoylethanolamine. Previously, we suggested that NAAA is glycosylated and proteolytically cleaved. Here, we investigated the mechanism and significance of the cleavage of human NAAA overexpressed in human embryonic kidney 293 cells. Western blotting with anti-NAAA antibody revealed that most of NAAA in the cell homogenate was the cleaved 30-kDa form. However, some of NAAA were released outside the cells and the extracellular enzyme was mostly the uncleaved 48-kDa form. When incubated at pH 4.5, the 48-kDa form was time-dependently converted to the 30-kDa form with concomitant increase in the N-palmitoylethanolamine-hydrolyzing activity. The purified 48-kDa form was also cleaved and activated. However, the cleavage did not proceed at pH 7.4 or in the presence of p-chloromercuribenzoic acid. The mutant C126S was resistant to the cleavage and remained inactive. These results suggested that this specific proteolysis is a self-catalyzed activation step. We next determined N-glycosylation sites of human NAAA by site-directed mutagenesis addressed to asparagine residues in six potential N-glycosylation sites. The results exhibited that Asn-37, Asn-107, Asn-309, and Asn-333 are actual N-glycosylation sites. The glycosylation appeared to play an important role in stabilizing the enzyme protein.  相似文献   

2.
Aspergillopepsin II from Aspergillus niger var. macrosporus is a non-pepsin type or pepstatin-insensitive acid proteinase. To identify the catalytic residues of the enzyme, all acidic residues that are conserved in the homologous proteinases of family A4 were replaced with Asn, Gln, or Ala using site-directed mutagenesis. The wild-type and mutant pro-enzymes were heterologously expressed in Escherichia coli and refolded in vitro. The wild-type pro-enzyme was shown to be processed into a two-chain active enzyme under acidic conditions. Most of the recombinant mutant pro-enzymes showed significant activity under acidic conditions because of autocatalytic activation except for the D123N, D123A, E219Q, and E219A mutants. The D123A, E219Q, and E219A mutants showed neither enzymatic activity nor autoprocessing activity under acidic conditions. The circular dichroism spectra of the mutant pro- and mature enzymes were essentially the same as those of the wild-type pro- and mature enzyme, respectively, indicating that the mutant pro-enzymes were correctly folded. In addition, two single and one double mutant pro-enzyme, D123E, E219D, and D123E/E219D, did not show enzymatic activity under acidic conditions. Taken together, Glu-219 and Asp-123 are deduced to be the catalytic residues of aspergillopepsin II.  相似文献   

3.
Interleukin-18 (IL-18) is a pro-inflammatory cytokine, and IL-18-binding protein (IL-18BP) is a naturally occurring protein that binds IL-18 and neutralizes its biological activities. Computer modeling of human IL-18 identified two charged residues, Glu-42 and Lys-89, which interact with oppositely charged amino acid residues buried in a large hydrophobic pocket of IL-18BP. The cell surface IL-18 receptor alpha chain competes with IL-18BP for IL-18 binding, although the IL-18 receptor alpha chain does not share significant homology to IL-18BP. In the present study, Glu-42 was mutated to Lys and Lys-89 to Glu; Glu-42 and Lys-89 were also deleted separately. The deletion mutants (E42X and K89X) were devoid of biological activity, and the K89E mutant lost 95% of its activity. In contrast, compared with wild-type (WT) IL-18, the E42K mutant exhibited a 2-fold increase in biological activity and required a 4-fold greater concentration of IL-18BP for neutralization. The binding of WT IL-18 and its various mutants to human natural killer cells was evaluated by competition assays. The mutant E42K was more effective than WT IL-18 in inhibiting the binding of (125)I-IL-18 to natural killer cells, whereas the three inactive mutants E42X, K89E, and K89X were unable to compete with (125)I-IL-18 for binding. Similarly, WT IL-18 and the E42K mutant induced degradation of Ikappa-Balpha, whereas the three biologically inactive mutants did not induce degradation. The present study reveals that Glu-42 and Lys-89 are critical amino acid residues for the integrity of IL-18 structure and are important for binding to cell surface receptors, for signal transduction, and for neutralization by IL-18BP.  相似文献   

4.
Bioactive N-acylethanolamines, including the endocannabinoid anandamide and anti-inflammatory N-palmitoylethanolamine, are hydrolyzed to fatty acids and ethanolamine in animal tissues by the catalysis of fatty acid amide hydrolase (FAAH). We recently cloned cDNA of N-acylethanolamine-hydrolyzing acid amidase (NAAA), another enzyme catalyzing the same reaction, from human, rat, and mouse. NAAA reveals no sequence homology with FAAH and belongs to the choloylglycine hydrolase family. The most striking catalytic property of NAAA is pH optimum at 4.5-5, which is consistent with its immunocytochemical localization in lysosomes. In rat, NAAA is highly expressed in lung, spleen, thymus, and intestine. Notably, the expression level of NAAA is exceptionally high in rat alveolar macrophages. The primary structure of NAAA exhibits 33-35% amino acid identity to that of acid ceramidase, a lysosomal enzyme hydrolyzing ceramide to fatty acid and sphingosine. NAAA actually showed a low, but detectable ceramide-hydrolyzing activity, while acid ceramidase hydrolyzed N-lauroylethanolamine. Thus, NAAA is a novel lysosomal hydrolase, which is structurally and functionally similar to acid ceramidase. These results suggest a unique role of NAAA in the degradation of N-acylethanolamines.  相似文献   

5.
Lacticin 481 is a lanthionine-containing bacteriocin (lantibiotic) produced by Lactococcus lactis subsp. lactis. The final steps of lacticin 481 biosynthesis are proteolytic removal of an N-terminal leader sequence from the prepeptide LctA and export of the mature lantibiotic. Both proteolysis and secretion are performed by the dedicated ATP-binding cassette (ABC) transporter LctT. LctT belongs to the family of AMS (ABC transporter maturation and secretion) proteins whose prepeptide substrates share a conserved double-glycine type cleavage site. The in vitro activity of a lantibiotic protease has not yet been characterized. This study reports the purification and in vitro activity of the N-terminal protease domain of LctT (LctT150), and its use for the in vitro production of lacticin 481. The G(-2)A(-1) cleavage site and several other conserved amino acid residues in the leader peptide were targeted by site-directed mutagenesis to probe the substrate specificity of LctT as well as shed light upon the role of these conserved residues in lantibiotic biosynthesis. His 10-LctT150 did not process most variants of the double glycine motif and processed mutants of Glu-8 only very slowly. Furthermore, incorporation of helix-breaking residues in the leader peptide resulted in greatly decreased proteolytic activity by His 10-LctT150. On the other hand, His 10-LctT150 accepted all peptides containing mutations in the propeptide or at nonconserved positions of LctA. In addition, the protease domain of LctT was investigated by site-directed mutagenesis of the conserved residues Cys12, His90, and Asp106. The proteolytic activities of the resulting mutant proteins are consistent with a cysteine protease.  相似文献   

6.
The mitochondrial ATPase inhibitor, IF(1), regulates the activity of F(1)F(o)-ATPase. The inhibitory activity of IF(1) is highly pH-dependent. The effective inhibition by IF(1) requires a low pH. Under basic conditions, its activity markedly declines. The importance of His49 in the pH dependence of bovine IF(1) is well-known. However, the residue is not conserved in yeast IF(1). We previously showed that Glu21 is required for the pH dependence of yeast IF(1), but the function of homologous Glu in mammalian IF(1) is not clear. In this study, we examined the requirement for Glu26 of bovine IF(1) (corresponding to Glu21 of yeast IF(1)) regarding its pH dependence by amino acid replacement. Three mutant proteins, E26A, H49K and the double mutant E26A/H49K, were overexpressed and purified. All mutants retained their inhibitory activity well at pH 8.2, although wild-type IF(1) was approximately 10-fold less active at pH 8.2 than at 6.5. A covalent cross-linking study revealed that both wild-type IF(1) and the E26A mutant formed a tetramer at pH 8.2, although H49K and E26A/H49K mutants did not. These results indicate that, in addition to His49, Glu26 participates in pH sensing in bovine IF(1), and the mechanism of pH sensing mediated by Glu26 is different from the dimer-tetramer model proposed previously.  相似文献   

7.
Botulinum neurotoxins (BoNTs) are metalloproteases which block neuroexocytosis via specific cleavage and inactivation of SNARE proteins. Such proteolysis accounts for the extreme toxicity of these neurotoxins and of their prolonged effect. The recently determined structures of BoNT/A and/B allows one to design active-site mutants to probe the role of specific residues in the proteolysis of SNARE proteins. Here we present the results of mutations of the second glutamyl residue involved in zinc coordination and of a tyrosine and a phenylalanine residues that occupy critical positions within the active site of BoNT/A. The spectroscopic properties of the purified mutants are closely similar to those of the wild-type molecule indicating the acquisition of a correct tertiary structure. Mutation of the Glu-262* nearly abolishes SNAP-25 hydrolysis as expected for a residue involved in zinc coordination. The Phe-266 and Tyr-366 mutants have reduced proteolytic activity indicating a direct participation in the proteolytic reaction, and their possible role in catalysis is discussed.  相似文献   

8.
Chitinases (EC 3.2.1.14) are glycosyl hydrolases that catalyze the hydrolysis of beta-(1, 4)-glycosidic bonds in chitin, the major structural polysaccharide present in the cuticle and gut peritrophic matrix of insects. Two conserved regions have been identified from amino acid sequence comparisons of family 18 glycosyl hydrolases, which includes Manduca sexta (tobacco hornworm) chitinase as a member. The second of these regions in M. sexta chitinase contains three very highly conserved acidic amino acid residues, D142, D144 and E146, that are probably active site residues. In this study the functional roles of these three residues were investigated using site-directed mutagenesis for their substitutions to other amino acids. Six mutant proteins, D142E, D142N, D144E, D144N, E146D and E146Q, as well as the wild-type enzyme, were produced using a baculovirus-insect cell line expression system. The proteins were purified by anion-exchange chromatography, after which their physical, kinetic and substrate binding properties were determined. Circular dichroism spectra of the mutant proteins were similar to that of the wild-type protein, indicating that the presence of mutations did not change the overall secondary structures. E146 was required for enzymatic activity because mutants E146Q and E146D were devoid of activity. D144E retained most of the enzymatic activity, but D144N lost nearly 90%. There was a shift in the pH optimum from alkaline pH to acidic pH for mutants D142N and D144E with minimal losses of activity relative to the wild-type enzyme. The pH-activity profile for the D142E mutation resembled that of the wild-type enzyme except activity in the neutral and acidic range was lower. All of the mutant proteins bound to chitin. Therefore, none of these acidic residues was essential for substrate binding. The results indicate that E146 probably functions as an acid/base catalyst in the hydrolytic mechanism, as do homologous residues in other glycosyl hydrolases. D144 apparently functions as an electrostatic stabilizer of the positively charged transition state, whereas D142 probably influences the pKa values of D144 and E146.  相似文献   

9.
Mucopolysaccharidosis type I (MPS I; McKusick 25280) results from a deficiency in alpha-L-iduronidase activity. Using a bioinformatics approach, we have previously predicted the putative acid/base catalyst and nucleophile residues in the active site of this human lysosomal glycosidase to be Glu182 and Glu299, respectively. To obtain experimental evidence supporting these predictions, wild-type alpha-L-iduronidase and site-directed mutants E182A and E299A were individually expressed in Chinese hamster ovary-K1 cell lines. We have compared the synthesis, processing, and catalytic properties of the two mutant proteins with wild-type human alpha-L-iduronidase. Both E182A and E299A transfected cells produced catalytically inactive human alpha-L-iduronidase protein at levels comparable to the wild-type control. The E182A protein was synthesized, processed, targeted to the lysosome, and secreted in a similar fashion to wild-type alpha-L-iduronidase. The E299A mutant protein was also synthesized and secreted similarly to the wild-type enzyme, but there were alterations in its rate of traffic and proteolytic processing. These data indicate that the enzymatic inactivity of the E182A and E299A mutants is not due to problems of synthesis/folding, but to the removal of key catalytic residues. In addition, we have identified a MPS I patient with an E182K mutant allele. The E182K mutant protein was expressed in CHO-K1 cells and also found to be enzymatically inactive. Together, these results support the predicted role of E182 and E299 in the catalytic mechanism of alpha-L-iduronidase and we propose that the mutation of either of these residues would contribute to a very severe clinical phenotype in a MPS I patient.  相似文献   

10.
Human pancreatic alpha-amylase (HPA) is a member of the alpha-amylase family involved in the degradation of starch. Some members of this family, including HPA, require chloride for maximal activity. To determine the mechanism of chloride activation, a series of mutants (R195A, R195Q, N298S, R337A, and R337Q) were made in which residues in the chloride ion binding site were replaced. Mutations in this binding site were found to severely affect the ability of HPA to bind chloride ions with no binding detected for the R195 and R337 mutant enzymes. X-ray crystallographic analysis revealed that these mutations did not result in significant structural changes. However, the introduction of these mutations did alter the kinetic properties of the enzyme. Mutations to residue R195 resulted in a 20-450-fold decrease in the activity of the enzyme toward starch and shifted the pH optimum to a more basic pH. Interestingly, replacement of R337 with a nonbasic amino acid resulted in an alpha-amylase that no longer required chloride for catalysis and has a pH profile similar to that of wild-type HPA. In contrast, a mutation at residue N298 resulted in an enzyme that had much lower binding affinity for chloride but still required chloride for maximal activity. We propose that the chloride is required to increase the pK(a) of the acid/base catalyst, E233, which would otherwise be lower due to the presence of R337, a positively charged residue.  相似文献   

11.
The roles of six conserved active carboxylic acids in the catalytic mechanism of Aspergillus saitoi 1,2-alpha-d-mannosidase were studied by site-directed mutagenesis and kinetic analyses. We estimate that Glu-124 is a catalytic residue based on the drastic decrease of kcat values of the E124Q and E124D mutant enzyme. Glu-124 may work as an acid catalyst, since the pH dependence of its mutants affected the basic limb. D269N and E411Q were catalytically inactive, while D269E and E411D showed considerable activity. This indicated that the negative charges at these points are essential for the enzymatic activity and that none of these residues can be a base catalyst in the normal sense. Km values of E273D, E414D, and E474D mutants were greatly increased to 17-31-fold wild type enzyme, and the kcat values were decreased, suggesting that each of them is a binding site of the substrate. Ca2+, essential for the mammalian and yeast enzymes, is not required for the enzymatic activity of A. saitoi 1,2-alpha-d-mannosidase. EDTA inhibits the Ca2+-free 1,2-alpha-d-mannosidase as a competitive inhibitor, not as a chelator. We deduce that the Glu-124 residue of A. saitoi 1,2-alpha-d-mannosidase is directly involved in the catalytic mechanism as an acid catalyst, whereas no usual catalytic base is directly involved. Ca2+ is not essential for the activity. The catalytic mechanism of 1,2-alpha-d-mannosidase may deviate from that typical glycosyl hydrolase.  相似文献   

12.
Each of four conserved glutamate residues of Bacillus stearothermophilus leucine aminopeptidase II (BsLAPII) was replaced with aspartate, lysine, and leucine respectively by site-directed mutagenesis. The over-expressed wild-type and mutant enzymes were purified to homogeneity by nickel-chelate chromatography and the molecular mass of the subunit was determined to be 44.5 kDa by SDS-PAGE. The specific activity for the Glu-316 and Glu-340 mutants was completely abolished, while Glu-249 mutants showed comparable activity to that of the wild-type BsLAPII. Compared with the wild-type enzyme, the E250D and E250L mutant enzymes retained less than 18% of the enzyme activity and exhibited a dramatic decrease in the value of k cat/K m. These observations indicate that Glu-250, Glu-316, and Glu-340 residues are critical for the catalytic activity of BsLAPII.  相似文献   

13.
The gene glpK, encoding glycerol kinase (GlpK) of Thermus aquaticus, has recently been identified. The protein encoded by glpK was found to have an unusually high identity of 81% with the sequence of GlpK from Bacillus subtilis. Three residues (Arg-82, Glu-83, and Asp-244) of T. aquaticus GlpK are conserved in all the known GlpK sequences, including those from various bacteria, yeast and human. The roles that these three residues play in the catalytic mechanism were investigated by using site-directed mutagenesis to produce three mutants: Arg-82-Ala, Glu-83-Ala, and Asp-244-Ala. Replacement of Asp-244 by Ala resulted in a complete loss of activity, thus suggesting that Asp-244 is important for catalysis. Taking k(cat)/K(m) as a simple measure of catalytic efficiency, the mutants Arg-82-Ala and Glu-83-Ala were judged to cause 190- and 37,000-fold decrease, respectively, when compared to the wild-type GlpK. Thus, these three residues play a critical role in the catalytic mechanism. However, only mutant Glu-83-Ala was cleaved by alpha-chymotrypsin, and proteolysis studies showed that the mutant Glu-83-Ala involves a change in the exposure of Tyr-331 at the alpha-chymotrypsin site. This indicates a large domain conformational change, since the residues corresponding to Glu-83 and Tyr-331 in the Escherichia coli GlpK sequence are located in domain IB and domain IIB, respectively. The apparent conformational change caused by replacement of Glu-83 leads us to propose that Glu-83 is an important residue for stabilization of domain conformation.  相似文献   

14.
The norovirus 3C-like protease is a member of the chymotrypsin-like serine protease superfamily. Previous characterization of its crystal structure has implicated the Glu54-His30-Cys139 triad in the catalysis. In the present study, the Glu54 residue of the protease was subjected to site-saturation mutagenesis, with the result that nearly half of the mutants retained the significant proteolytic activity. It was suggested that a carboxylate at position 54 was not essential for the activity. The in vitro assays of the proteolysis revealed that most of Glu54 mutants retained relatively high proteolytic activity. When the Glu54 mutation was combined with the Ser mutation of the Cys139 residue, a nucleophile, only the Asp54 and Gln54 mutations showed proteolytic activity comparable to that of the Ser139 single mutant, suggesting that a hydrogen bond between Glu54 and His30 was critical in the Ser139 background. These results suggested that the mechanism of the proteolysis by the wild-type norovirus 3C-like protease was different from that of typical chymotrypsin-like serine proteases.  相似文献   

15.
Acid sphingomyelinase (aSMase) catalyzes the hydrolysis of sphingomyelin (SM) to form the bioactive lipid ceramide (Cer). Notably, aSMase exists in two forms: a zinc (Zn(2+))-independent lysosomal aSMase (L-SMase) and a Zn(2+)-dependent secreted aSMase (S-SMase) that arise from alternative trafficking of a single protein precursor. Despite extensive investigation into the maturation and trafficking of aSMase, the exact identity of mature L-SMase has remained unclear. Here, we describe a novel mechanism of aSMase maturation involving C-terminal proteolytic processing within, or in close proximity to, endolysosomes. Using two different C-terminal-tagged constructs of aSMase (V5, DsRed), we demonstrate that aSMase is processed from a 75-kDa, Zn(2+)-activated proenzyme to a mature 65 kDa, Zn(2+)-independent L-SMase. L-SMase is recognized by a polyclonal Ab to aSMase, but not by anti-V5 or anti-DsRed antibodies, suggesting that the C-terminal tag is lost during maturation. Furthermore, indirect immunofluorescence staining demonstrated that mature L-SMase colocalized with the lysosomal marker LAMP1, whereas V5-aSMase localized to the Golgi secretory pathway. Moreover, V5-aSMase possessed Zn(2+)-dependent activity suggesting it may represent the common protein precursor of S-SMase and L-SMase. Importantly, the 65-kDa L-SMase, but not V5-aSMase, was sensitive to the lysosomotropic inhibitor desipramine, co-fractionated with lysosomes, and migrated at the same M(r) as partially purified human aSMase. Finally, three aSMase mutants containing C-terminal Niemann-Pick mutations (R600H, R600P, ΔR608) exhibited defective proteolytic maturation. Taken together, these results demonstrate that mature L-SMase arises from C-terminal proteolytic processing of pro-aSMase and suggest that impaired C-terminal proteolysis may lead to severe defects in L-SMase function.  相似文献   

16.
Bioactive N-acylethanolamines, including anandamide (an endocannabinoid), N-palmitoylethanolamine (an anti-inflammatory substance), and N-oleoylethanolamine (an anorexic substance) are enzymatically hydrolyzed to fatty acids and ethanolamine. Fatty acid amide hydrolase plays a major role in this reaction. In addition, we cloned cDNA of an isozyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)" [K. Tsuboi, Y.-X. Sun, Y. Okamoto, N. Araki, T. Tonai, N. Ueda, Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase, J. Biol. Chem. 280 (2005) 11082-11092]. Previous biochemical analyses suggested the expression of NAAA in macrophage cells and various rat tissues including lung and brain. To clarify the physiological significance of NAAA, here we immunochemically studied NAAA for the first time. We developed an antibody specific for rat NAAA, and by Western blotting revealed that NAAA is glycosylated and subjected to specific proteolysis. In alveolar macrophages isolated from rat lung, NAAA was immunocytochemically localized in lysosomes. In the whole lung tissue, only alveolar macrophages were immunostained for NAAA. Conformably, the mRNA and protein levels and activity of NAAA in alveolar macrophages were much higher than those in the whole lung tissue. In brain, intraventricular macrophages were positively stained with anti-NAAA antibody, while microglia appeared to be negative. These results strongly suggested the importance of macrophages as an expression site of NAAA in rat tissues.  相似文献   

17.
Bioactive N-acylethanolamines, including anandamide (an endocannabinoid) and N-palmitoylethanolamine (an anti-inflammatory and neuroprotective substance), are hydrolyzed to fatty acids and ethanolamine by fatty acid amide hydrolase. Moreover, we found another amidohydrolase catalyzing the same reaction only at acidic pH, and we purified it from rat lung (Ueda, N., Yamanaka, K., and Yamamoto, S. (2001) J. Biol. Chem. 276, 35552-35557). Here we report complementary DNA cloning and functional expression of the enzyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)" from human, rat, and mouse. The deduced primary structures revealed that NAAA had no homology to fatty acid amide hydrolase but belonged to the choloylglycine hydrolase family. Human NAAA was essentially identical to a gene product that had been noted to resemble acid ceramidase but lacked ceramide hydrolyzing activity. The recombinant human NAAA overexpressed in HEK293 cells hydrolyzed various N-acylethanolamines with N-palmitoylethanolamine as the most reactive substrate. Most interestingly, a very low ceramide hydrolyzing activity was also detected with NAAA, and N-lauroylethanolamine hydrolyzing activity was observed with acid ceramidase. By the use of tunicamycin and endoglycosidase, NAAA was found to be a glycoprotein. Furthermore, the enzyme was proteolytically processed to a shorter form at pH 4.5 but not at pH 7.4. Expression analysis of a green fluorescent protein-NAAA fusion protein showed a lysosome-like distribution in HEK293 cells. The organ distribution of the messenger RNA in rats revealed its wide distribution with the highest expression in lung. These results demonstrated that NAAA is a novel N-acylethanolamine-hydrolyzing enzyme that shows structural and functional similarity to acid ceramidase.  相似文献   

18.
The Escherichia coli Orf135 protein, a MutT-type enzyme, hydrolyzes 2-hydroxy-dATP and 8-hydroxy-dGTP, in addition to dCTP and 5-methyl-dCTP, and its deficiency causes increases in both the spontaneous and H(2)O(2)-induced mutation frequencies. In this study, the Gly-36, Gly-37, Lys-38, Glu-43, Arg-51, Glu-52, Leu-53, Glu-55, and Glu-56 residues of Orf135, which are conserved in the three MutT-type proteins (Orf135, MutT, and MTH1), were substituted, and the enzymatic activity of these mutant proteins was examined. The mutant proteins with a substitution at the 36th, 37th, 52nd, and 56th amino acid residues completely lost their activity. On the other hand, the mutant proteins with a substitution at the 38th, 43rd, 51st, 53rd, and 55th residues could hydrolyze 5-methyl-dCTP. Some mutants with detectable activity for 5-methyl-dCTP did not hydrolyze dCTP. Activities for known substrates (5-methyl-dCTP, dCTP, 2-hydroxy-dATP, and 8-hydroxy-dGTP) were examined in detail with the four mutants, K38R, E43A, L53A, and E55Q. These results indicate the essential residues for the activity of the Orf135 protein.  相似文献   

19.
The aim of this study was to investigate the mechanism by which tripeptidyl-peptidase II (TPP II) can specifically release tripeptides from the free N-terminus of an oligopeptide. The subtilisin-like N-terminal part of TPP II was modelled using subtilisin as template. Two glutamate residues (Glu-305 and Glu-331) appeared to be positioned so as to interact with the positively charged N-terminus of the substrate. In order to test this potential interaction, both residues were replaced by glutamine and lysine. The catalytic efficiency was reduced 400-fold for the E331Q variant and 20000-fold for the E331K variant, compared with the wild-type (wt). A substantial part of this reduction was due to decreased substrate affinity, since the K(M) for both mutants was at least two orders of magnitude greater than for the wt. This decrease was linked specifically to interaction with the free N-terminal amino group, based on inhibition studies. Glu-305 appears to be essential for enzymatic activity, but the extremely low activity of the E305Q variant prevented an investigation of the involvement of Glu-305 in substrate binding. The present work is, to our knowledge, the first report to investigate a mechanism for a tripeptidyl-peptidase activity through site-directed mutagenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号