首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that results in damage to myelin sheaths and axons in the central nervous system and which preferentially affects young adults. We performed a proteomics-based biomarker discovery study in which cerebrospinal fluid (CSF) from MS and control individuals was analyzed (n = 112). Ten candidate biomarkers were selected for evaluation by quantitative immunoassay using an independent cohort of MS and control subjects (n = 209). In relapsing–remitting MS (RRMS) patients there were significant increases in the CSF levels of alpha-1 antichymotrypsin (A1AC), alpha-1 macroglobulin (A2MG) and fibulin 1 as compared to control subjects. In secondary progressive MS (SPMS) four additional proteins (contactin 1, fetuin A, vitamin D binding protein and angiotensinogen (ANGT)) were increased as compared to control subjects. In particular, ANGT was increased 3-fold in SPMS, indicating a potential as biomarker of disease progression in MS. In PPMS, A1AC and A2MG exhibit significantly higher CSF levels than controls, with a trend of increase for ANGT. Classification models based on the biomarker panel could identify 70% of the RRMS and 80% of the SPMS patients correctly. Further evaluation was conducted in a pilot study of CSF from RRMS patients (n = 36), before and after treatment with natalizumab.  相似文献   

2.

Background

Differences in cytokine/chemokine profiles among patients with neuromyelitis optica (NMO), relapsing remitting multiple sclerosis (RRMS), and primary progressive MS (PPMS), and the relationships of these profiles with clinical and neuroimaging features are unclear. A greater understanding of these profiles may help in differential diagnosis.

Methods/Principal Findings

We measured 27 cytokines/chemokines and growth factors in CSF collected from 20 patients with NMO, 26 with RRMS, nine with PPMS, and 18 with other non-inflammatory neurological diseases (OND) by multiplexed fluorescent bead-based immunoassay. Interleukin (IL)-17A, IL-6, CXCL8 and CXCL10 levels were significantly higher in NMO patients than in OND and RRMS patients at relapse, while granulocyte-colony stimulating factor (G-CSF) and CCL4 levels were significantly higher in NMO patients than in OND patients. In NMO patients, IL-6 and CXCL8 levels were positively correlated with disability and CSF protein concentration while IL-6, CXCL8, G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IFN-γ were positively correlated with CSF neutrophil counts at the time of sample collection. In RRMS patients, IL-6 levels were significantly higher than in OND patients at the relapse phase while CSF cell counts were negatively correlated with the levels of CCL2. Correlation coefficients of cytokines/chemokines in the relapse phase were significantly different in three combinations, IL-6 and GM-CSF, G-CSF and GM-CSF, and GM-CSF and IFN-γ, between RRMS and NMO/NMOSD patients. In PPMS patients, CCL4 and CXCL10 levels were significantly higher than in OND patients.

Conclusions

Our findings suggest distinct cytokine/chemokine alterations in CSF exist among NMO, RRMS and PPMS. In NMO, over-expression of a cluster of Th17- and Th1-related proinflammatory cytokines/chemokines is characteristic, while in PPMS, increased CCL4 and CXCL10 levels may reflect on-going low grade T cell and macrophage/microglia inflammation in the central nervous system. In RRMS, only a mild elevation of proinflammatory cytokines/chemokines was detectable at relapse.  相似文献   

3.
4.
Oxidative stress is revealed as the main contributor in the pathophysiology of neuroinflammation. Analyzing plasma and cerebrospinal fluid (CSF) of patients with different clinical phenotypes of neuroinflammation, defined as clinically isolated syndrome (CIS), and those defined as relapsing remitting multiples sclerosis (RRMS), we tested peripheral and CNS oxidative stress intensity in these neuroinflammatory acute attacks. All obtained values changes were assessed regarding clinical and radiological features of CNS inflammation. The obtained results revealed an increase in malondialdehyde levels in plasma and CSF in CIS and RRMS patients compared to control values (p < 0.05). The obtained values were most prevailed in both study group, CIS and RRMS, in patients with severe clinical presentation (p < 0.05). Measured activities of catalase and total superoxide dismutase were higher in CIS and RRMS patients in plasma compared to control values (p < 0.05), parallel with an increased catalase activity and decrease in superoxide dismutase activity in CSF regarding values obtained in control group (p < 0.05). The positive correlations regarding clinical score were obtained for all tested biomarkers (p < 0.01). Although the positive correlations were observed in MDA levels in plasma and CSF, for both study patients, and their radiological findings (p < 0.01), and a negative correlation in plasma SOD activity and CIS patients’ radiological findings (p < 0.01), no other similar correlations were obtained. These findings might be useful in providing the earliest antioxidative treatment in neuroinflammation aimed to preserve total and CNS antioxidative capacity parallel with delaying irreversible, later neurological disabilities.  相似文献   

5.

Background

Most patients with relapsing-remitting multiple sclerosis (RRMS) eventually enter a secondary progressive (SPMS) phase, characterized by increasing neurological disability. The mechanisms underlying transition to SPMS are unknown and effective treatments and biomarkers are lacking. Vascular endothelial growth factor-A (VEGF-A) is an angiogenic factor with neuroprotective effects that has been associated with neurodegenerative diseases. SPMS has a prominent neurodegenerative facet and we investigated a possible role for VEGF-A during transition from RRMS to SPMS.

Methodology/Principal Findings

VEGF-A mRNA expression in peripheral blood mononuclear (PBMC) and cerebrospinal fluid (CSF) cells from RRMS (n = 128), SPMS (n = 55) and controls (n = 116) were analyzed using real time PCR. We demonstrate reduced expression of VEGF-A mRNA in MS CSF cells compared to controls (p<0.001) irrespective of disease course and expression levels are restored by natalizumab treatment(p<0.001). VEGF-A was primarily expressed in monocytes and our CSF findings in part may be explained by effects on relative monocyte proportions. However, VEGF-A mRNA expression was also down regulated in the peripheral compartment of SPMS (p<0.001), despite unchanged monocyte counts, demonstrating a particular phenotype differentiating SPMS from RRMS and controls. A possible association of allelic variability in the VEGF-A gene to risk of MS was also studied by genotyping for six single nucleotide polymorphisms (SNPs) in MS (n = 1114) and controls (n = 1234), which, however, did not demonstrate any significant association between VEGF-A alleles and risk of MS.

Conclusions/Significance

Expression of VEGF-A in CSF cells is reduced in MS patients compared to controls irrespective of disease course. In addition, SPMS patients display reduced VEGF-A mRNA expression in PBMC, which distinguish them from RRMS and controls. This indicates a possible role for VEGF-A in the mechanisms regulating transition to SPMS. Decreased levels of PBMC VEGF-A mRNA expression should be further evaluated as a biomarker for SPMS.  相似文献   

6.

Objectives

Examination of sensorimotor activation alone in multiple sclerosis (MS) patients may not yield a comprehensive view of cerebral response to task stimulation. Additional information may be obtained by examining the negative BOLD response (deactivation). Aim of this work was to characterize activation and deactivation patterns during passive hand movements in MS patients.

Methods

13 relapsing remitting-MS patients (RRMS), 18 secondary progressive-MS patients (SPMS) and 15 healthy controls (HC) underwent an fMRI study during passive right-hand movements. Activation and deactivation contrasts in the three groups were entered into ANOVA, age and gender corrected. Post-hoc analysis was performed with one-sample and two-sample t-tests. For each patient we obtained lesion volume (LV) from both T1- and T2-weighted images.

Results

Activations showed a progressive extension to the ipsilateral brain hemisphere according to the group and the clinical form (HC<RRMS<SPMS). Significant deactivation of the ipsilateral cortical sensorimotor areas was reduced in both patient groups with respect to HC. Deactivation of posterior cortical areas belonging to the default mode network (DMN), was increased in RRMS, but not in SPMS, with respect to HC. The amount of activation in the contralateral sensorimotor cortex was significantly correlated with that of deactivation in the DMN in HC and RRMS, but not in SPMS. Both increased activation and decreased deactivation patterns correlated with LV.

Conclusion

In RRMS patients, increased cortical activation was associated with increased deactivation of the posterior cortex suggesting a greater resting-state activity in the DMN, probably aimed at facilitating sensorimotor circuit engagement during task performance. In SPMS the coupling between increased sensorimotor activation/increased DMN deactivation was not observed suggesting disorganization between anticorrelated functional networks as a consequence of a higher level of disconnection.  相似文献   

7.
BackgroundDouble inversion recovery (DIR) detects only a minority (<20%) of cortical lesions (CL) in multiple sclerosis (MS). Phase-sensitive inversion recovery (PSIR) was suggested to be substantially superior to DIR in the detection of cortical lesions (CL). These two sequences might be complementary.ObjectivesTo analyze CL frequency and type in MS patients having different disease duration and disability, including patients at clinical onset, and to discern more correctly the artifacts, by combining DIR and PSIR images.ResultsPSIR disclosed CL in 100% of the patients and was capable of identifying more than four times lesions (455.5%, p<0.00001), especially IC (mean numbers: 36.5 in CIS/eRRMS, 45.0 in RRMS and 52.3 in SPMS) and LC (mean numbers: 10.9 in CIS/eRRMS, 20.1 in RRMS and 25.3 in SPMS), compared to DIR (p<0.00001). CL number was significantly higher in SPMS compared to RRMS (p<0.0001). Artifacts were more accurately identified by comparing the two sequences.ConclusionsOur study confirms the higher ability of PSIR in disclosing and classifying CL. The presence of CL in all CIS patients further points out the relevance of cortical pathology in MS. Whether the parallel analysis of DIR and PSIR images may be useful for diagnostic purposes, especially when a diagnosis of MS is suspected but not confirmed by routine MRI, needs to be evaluated in larger patient series. The analysis of the cortex by DIR and PSIR may also allow a better stratification of the patients for prognostic and counseling purposes, as well as for their inclusion in clinical studies.  相似文献   

8.

Background and Purpose

Advanced MRI studies have revealed regional alterations in the sensorimotor cortex of patients with relapsing-remitting multiple sclerosis (RRMS). However, the organizational features underlying the relapsing phase and the subsequent remitting phase have not been directly shown at the functional network or the connectome level. Therefore, this study aimed to characterize MS-related centrality disturbances of the sensorimotor network (SMN) and to assess network integrity and connectedness.

Methods

Thirty-four patients with clinically definite RRMS and well-matched healthy controls participated in the study. Twenty-three patients in the remitting phase underwent one resting-state functional MRI, and 11 patients in the relapsing-remitting phase underwent two different MRIs. We measured voxel-wise centrality metrics to determine direct (degree centrality, DC) and global (eigenvector centrality, EC) functional relationships across the entire SMN.

Results

In the relapsing phase, DC was significantly decreased in the bilateral primary motor and somatosensory cortex (M1/S1), left dorsal premotor (PMd), and operculum-integrated regions. However, DC was increased in the peripheral SMN areas. The decrease in DC in the bilateral M1/S1 was associated with the expanded disability status scale (EDSS) and total white matter lesion loads (TWMLLs), suggesting that this adaptive response is related to the extent of brain damage in the rapid-onset attack stage. During the remission process, these alterations in centrality were restored in the bilateral M1/S1 and peripheral SMN areas. In the remitting phase, DC was reduced in the premotor, supplementary motor, and operculum-integrated regions, reflecting an adaptive response due to brain atrophy. However, DC was enhanced in the right M1 and left parietal-integrated regions, indicating chronic reorganization. In both the relapsing and remitting phases, the changes in EC and DC were similar.

Conclusions

The alterations in centrality within the SMN indicate rapid plasticity and chronic reorganization with a biased impairment of specific functional areas in RRMS patients.  相似文献   

9.

Background

Recently the reduction of the retinal nerve fibre layer (RNFL) was suggested to be associated with diffuse axonal damage in the whole CNS of multiple sclerosis (MS) patients. However, several points are still under discussion. (1) Is high resolution optical coherence tomography (OCT) required to detect the partly very subtle RNFL changes seen in MS patients? (2) Can a reduction of RNFL be detected in all MS patients, even in early disease courses and in all MS subtypes? (3) Does an optic neuritis (ON) or focal lesions along the visual pathways, which are both very common in MS, limit the predication of diffuse axonal degeneration in the whole CNS? The purpose of our study was to determine the baseline characteristics of clinical definite relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients with high resolution OCT technique.

Methodology

Forty-two RRMS and 17 SPMS patients with and without history of uni- or bilateral ON, and 59 age- and sex-matched healthy controls were analysed prospectively with the high resolution spectral-domain OCT device (SD-OCT) using the Spectralis 3.5mm circle scan protocol with locked reference images and eye tracking mode. Furthermore we performed tests for visual and contrast acuity and sensitivity (ETDRS, Sloan and Pelli-Robson-charts), for color vision (Lanthony D-15), the Humphrey visual field and visual evoked potential testing (VEP).

Principal Findings

All 4 groups (RRMS and SPMS with or without ON) showed significantly reduced RNFL globally, or at least in one of the peripapillary sectors compared to age-/sex-matched healthy controls. In patients with previous ON additional RNFL reduction was found. However, in many RRMS patients the RNFL was found within normal range. We found no correlation between RNFL reduction and disease duration (range 9–540 months).

Conclusions

RNFL baseline characteristics of RRMS and SPMS are heterogeneous (range from normal to markedly reduced levels).  相似文献   

10.
In an effort to further characterize the defective proliferative response of T lymphocytes to mitogens in multiple sclerosis (MS) patients, we examined the response to and production of interleukin 2 (IL 2) by both peripheral blood lymphocytes (PBL) and cerebrospinal fluid mononuclear cells. We also examined the proportion of cells bearing receptors for IL 2 and transferrin. Chronic progressive MS patients have an abnormally low response to exogenous IL 2 as compared to controls. Whereas acute relapse patients' PBL demonstrated a normal IL 2 response during an exacerbation, they showed reduced responsiveness during remission. These abnormalities could not be explained by different dose or kinetic response optima to PHA or IL 2, nor could they be explained by depressed numbers of IL 2 or transferrin receptor-bearing lymphocytes. Production of IL 2 by PBL was also abnormal in MS patients. Chronic progressive patients produced elevated levels of IL 2, whereas acute relapse patients undergoing an exacerbation produced diminished levels of IL 2. During remission, these levels returned to that of controls'. The effect of 1200 rad x-irradiation or nylon wool removal of adherent cells was a significantly greater augmentation of IL 2 production in MS patients than in other neurologic disease or normal controls. Cerebrospinal fluid lymphocytes from MS patients had normal proportions of IL 2 receptor-bearing cells, but were deficient in their IL 2 response and production as compared to autochthonous or control PBL. The inability of some MS patients' lymphocytes to clonally expand in response to IL 2 might contribute to the pathogenicity of the disease.  相似文献   

11.
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS with unknown cause. Proteins with different abundance in the cerebrospinal fluid (CSF) from relapsing‐remitting MS (RRMS) patients and neurological controls could give novel insight to the MS pathogenesis and be used to improve diagnosis, predict prognosis and disease course, and guide in therapy decisions. We combined iTRAQ labeling and Orbitrap mass spectrometry to discover proteins with different CSF abundance between six RRMS patients and 18 neurological disease controls. From 777 quantified proteins seven were selected as biomarker candidates, namely chitinase‐3‐like protein 1, secretogranin‐1 (Sg1), cerebellin‐1, neuroserpin, cell surface glycoprotein MUC18, testican‐2 and glutamate receptor 4. An independent sample set of 13 early‐MS patients, 13 RRMS patients and 13 neurological controls was used in a multiple reaction monitoring verification study. We found the intracellular calcium binding protein Sg1 to be increased in early‐MS patients compared to RRMS and neurological controls. Sg1 should be included in further studies to elucidate its role in the early phases of MS pathogenesis and its potential as a biomarker for this disease.  相似文献   

12.
The mechanisms leading to disability and the long-term efficacy and safety of disease modifying drugs (DMDs) in multiple sclerosis (MS) are unclear. We aimed at building a prospective cohort of MS patients with standardized collection of demographic, clinical, MRI data and body fluids that can be used to develop prognostic indicators and biomarkers of disease evolution and therapeutic response. The Swiss MS Cohort (SMSC) is a prospective observational study performed across seven Swiss MS centers including patients with MS, clinically isolated syndrome (CIS), radiologically isolated syndrome or neuromyelitis optica. Neurological and radiological assessments and biological samples are collected every 6–12 months. We recruited 872 patients (clinically isolated syndrome [CIS] 5.5%, relapsing-remitting MS [RRMS] 85.8%, primary progressive MS [PPMS] 3.5%, secondary progressive MS [SPMS] 5.2%) between June 2012 and July 2015. We performed 2,286 visits (median follow-up 398 days) and collected 2,274 serum, plasma and blood samples, 152 cerebrospinal fluid samples and 1,276 brain MRI scans. 158 relapses occurred and expanded disability status scale (EDSS) scores increased in PPMS, SPMS and RRMS patients experiencing relapses. Most RRMS patients were treated with fingolimod (33.4%), natalizumab (24.5%) or injectable DMDs (13.6%). The SMSC will provide relevant information regarding DMDs efficacy and safety and will serve as a comprehensive infrastructure available for nested research projects.  相似文献   

13.

Background

Reduced N-acetyl-aspartate (NAA) levels in magnetic resonance spectroscopy (MRS) may visualize axonal damage even in the normal appearing white matter (NAWM). Demyelination and axonal degeneration are a hallmark in multiple sclerosis (MS).

Objective

To define the extent of axonal degeneration in the NAWM in the remote from focal lesions in patients with relapsing-remitting (RRMS) and secondary progressive MS (SPMS).

Material and Methods

37 patients with clinical definite MS (27 with RRMS, 10 with SPMS) and 8 controls were included. We used 2D 1H-MR-chemical shift imaging (TR = 1500ms, TE = 135ms, nominal resolution 1ccm) operating at 3Tesla to assess the metabolic pattern in the fronto–parietal NAWM. Ratios of NAA to creatine (Cr) and choline (Cho) and absolute concentrations of the metabolites in the NAWM were measured in each voxel matching exclusively white matter on the anatomical T2 weighted MR images.

Results

No significant difference of absolute concentrations for NAA, Cr and Cho or metabolite ratios were found between RRMS and controls. In SPMS, the NAA/Cr ratio and absolute concentrations for NAA and Cr were significantly reduced compared to RRMS and to controls.

Conclusions

In our study SPMS patients, but not RRMS patients were characterized by low NAA levels. Reduced NAA-levels in the NAWM of patients with MS is a feature of progression.  相似文献   

14.
Meningeal inflammation, including the presence of semi-organized tertiary lymphoid tissue, has been associated with cortical pathology at autopsy in secondary progressive multiple sclerosis (SPMS).  Accessible and robust biochemical markers of cortical inflammation for use in SPMS clinical trials are needed.  Increased levels of chemokines in the cerebrospinal fluid (CSF) can report on inflammatory processes occurring in the cerebral cortex of MS patients.  A multiplexed chemokine array that included BAFF, a high sensitivity CXCL13 assay and composite chemokine scores were developed to explore differences in lymphoid (CXCL12, CXCL13, CCL19 and CCL21) and inflammatory (CCL2, CXCL9, CXCL10 and CXCL11) chemokines in a small pilot study.  Paired CSF and serum samples were obtained from healthy controls (n=12), relapsing-remitting MS (RRMS) (n=21) and SPMS (N=12). A subset of the RRMS patients (n = 9) was assessed upon disease exacerbation and 1 month later following iv methylprednisone. SPMS patients were sampled twice to ascertain stability. Both lymphoid and inflammatory chemokines were elevated in RRMS and SPMS with the highest levels found in the active RRMS group. Inflammatory and lymphoid chemokine signatures were defined and generally correlated with each other. This small exploratory clinical study shows the feasibility of measuring complex and potentially more robust chemokine signatures in the CSF of MS patients during clinical trials. No differences were found between stable RRMS and SPMS. Future trials with larger patient cohorts with this chemokine array are needed to further characterize the differences, or the lack thereof, between stable RRMS and SPMS.     相似文献   

15.

Background

There is accumulating evidence from immunological, pathological and therapeutic studies that B cells are key components in the pathophysiology of multiple sclerosis (MS).

Methodology/Principal Findings

In this prospective study we have for the first time investigated the differences in the inflammatory response between relapsing and progressive MS by comparing cerebrospinal fluid (CSF) cell profiles from patients at the onset of the disease (clinically isolated syndrome, CIS), relapsing-remitting (RR) and chronic progressive (CP) MS by flow cytometry. As controls we have used patients with other neurological diseases. We have found a statistically significant accumulation of CSF mature B cells (CD19+CD138−) and plasma blasts (CD19+CD138+) in CIS and RRMS. Both B cell populations were, however, not significantly increased in CPMS. Further, this accumulation of B cells correlated with acute brain inflammation measured by magnetic resonance imaging and with inflammatory CSF parameters such as the number of CSF leukocytes, intrathecal immunoglobulin M and G synthesis and intrathecal production of matrix metalloproteinase (MMP)-9 and the B cell chemokine CxCL-13.

Conclusions

Our data support an important role of CSF B cells in acute brain inflammation in CIS and RRMS.  相似文献   

16.
The expression of selected microRNAs (miRNAs) known to be involved in the regulation of immune responses was analyzed in 74 patients with relapsing remitting multiple sclerosis (RRMS) and 32 healthy controls. Four miRNAs (miR-326, miR-155, miR-146a, miR-142-3p) were aberrantly expressed in peripheral blood mononuclear cells from RRMS patients compared to controls. Although expression of these selected miRNAs did not differ between treatment-naïve (n = 36) and interferon-beta treated RRMS patients (n = 18), expression of miR-146a and miR-142-3p was significantly lower in glatiramer acetate (GA) treated RRMS patients (n = 20) suggesting that GA, at least in part, restores the expression of deregulated miRNAs in MS.  相似文献   

17.
Multiple sclerosis (MS) is a type of inflammatory and demyelinating disorder of the central nervous system in which immune-mediated inflammatory processes are elicited by secreted cytokines from T helper (Th)-1 and Th17 cells. While some protein-coding genes expressed in T cell types have established involvement in MS disease progression, little is understood about the roles of long noncoding RNAs (lncRNAs) within the disease landscape. LncRNAs, noncoding RNAs longer than 200 nucleotides, likely control gene expression and function of Th1 cells, and offer the potential to act as therapeutic and biomarker candidates for MS. We identified lncRNAs in Th1 cells linked to MS. Expression levels of candidate lncRNAs and genes were evaluated in 50 MS patients and 25 healthy controls using quantitative real-time polymerase chain reaction, and their correlations were assessed. LncRNAs encoded by AC007278.2 and IFNG-AS1-001 showed significantly higher expression in relapsing Phase MS patients whereas IFNG-AS1-003 was elevated in patients in the remitting phase compared with relapsing patients. Collectively, these misregulated lncRNAs may provide valuable tools to understand the relationships between lncRNAs and MS, and possibly other related disorders.  相似文献   

18.
Multiple sclerosis (MS) is an inflammatory and possibly autoimmune mediated demyelinating disease of the CNS. Autoimmunity within the CNS may be triggered by dysfunction of peripheral immune tolerance mechanisms via changes in the homeostatic composition of peripheral T cells. We have assessed the release of naive T lymphocytes from the thymus in patients with relapsing remitting MS (RRMS) to identify alterations in the equilibrium of the peripheral T cell compartment. Thymic T cell production was estimated by measuring TCR excision circles (TRECs) as a traceable molecular marker in recent thymic emigrants. A total of 46 treatment-naive patients with active RRMS and 49 gender- and age-matched healthy persons were included in the study. The levels of TREC-expressing CD4(+) and CD8(+) T lymphocytes were significantly decreased in MS patients, and TREC quantities overall matched those of 30 years older healthy individuals. The average concentrations of TRECs/10(6) CD4(+) and CD8(+) T lymphocytes derived from MS patients and healthy donors were 26 x 10(3)/10(6) and 28 x 10(3)/10(6) vs 217 x 10(3)/10(6) and 169 x 10(3)/10(6), respectively. To account for any influence of T cell proliferation on TREC levels, we assayed T lymphocytes from additional patients with MS and normal individuals for telomere length (n = 20) and telomerase activity (8 MS patients, 16 controls), respectively. There were no significant differences between CD4(+) and CD8(+) T cells from MS patients and controls. Altogether, our findings suggest that an impaired thymic export function and, as a consequence, altered ability to maintain T cell homeostasis and immune tolerance may play an important pathogenic role in RRMS.  相似文献   

19.
20.
Limited information is available on the identity of antigens targeted by antibodies present in cerebrospinal fluid (CSF) of patients with clinically isolated syndrome (CIS). The aim of this study was to identify novel antigens for CIS and investigate their prognostic potential to predict conversion to multiple sclerosis (MS). We applied serological antigen selection (SAS) to identify antigens interacting with antibodies present in the pooled CSF from four CIS patients, who developed MS. Antibody reactivity towards CIS antigens identified by SAS was tested in CSF and serum from patients with CIS (= 123/= 108), MS (= 65/= 44), and other (inflammatory) neurological diseases (= 75/= 38) as well as in healthy control sera (= 44). Using SAS, a panel of six novel CIS candidate antigens was identified. CSF antibody reactivity was detected in both CIS and relapsing‐remitting (RR) MS. Serum reactivity was significantly increased in CIS and RR‐MS as compared with controls (= 0.03). For two antigens, the frequency of antibody‐positive patients was higher in CIS patients who converted to MS as compared with CIS patients without conversion. We identified novel CIS antigens to which antibody reactivity was primarily detected in CIS and RR‐MS as compared to controls. Possible prognostic potential could be demonstrated for two antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号