首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Short interspersed elements (SINEs) are nonautonomous non-LTR retrotransposons that populate eukaryotic genomes. Numerous SINE families have been identified in animals, whereas only a few have been described in plants. Here we describe a new family of SINEs, named BoS, that is widespread in Brassicaceae and present at ∼2000 copies in Brassica oleracea. In addition to sharing a modular structure and target site preference with previously described SINEs, BoS elements have several unusual features. First, the head regions of BoS RNAs can adopt a distinct hairpin-like secondary structure. Second, with 15 distinct subfamilies, BoS represents one of the most diverse SINE families described to date. Third, several of the subfamilies have a mosaic structure that has arisen through the exchange of sequences between existing subfamilies, possibly during retrotransposition. Analysis of BoS subfamilies indicate that they were active during various time periods through the evolution of Brassicaceae and that active elements may still reside in some Brassica species. As such, BoS elements may be a valuable tool as phylogenetic makers for resolving outstanding issues in the evolution of species in the Brassicaceae family.  相似文献   

4.
Haas NB  Grabowski JM  North J  Moran JV  Kazazian HH  Burch JB 《Gene》2001,265(1-2):175-183
CR1 elements and CR1-related (CR1-like) elements are a novel family of non-LTR retrotransposons that are found in all vertebrates (reptilia, amphibia, fish, and mammals), whereas more distantly related elements are found in several invertebrate species. CR1 elements have several features that distinguish them from other non-LTR retrotransposons. Most notably, their 3' termini lack a polyadenylic acid (poly A) tail and instead contain 2-4 copies of a unique 8 bp repeat. CR1 elements are present at approximately 100,000 copies in the chicken genome. The vast majority of these elements are severely 5' truncated and mutated; however, six subfamilies (CR1-A through CR1-F) are resolved by sequence comparisons. One of these subfamilies (i.e. CR1-B) previously was analyzed in detail. In the present study, we identified several full-length elements from the CR1-F subfamily. Although regions within the open reading frames and 3' untranslated regions of CR1-F and CR1-B elements are well conserved, their respective 5' untranslated regions are unrelated. Thus, our results suggest that new CR1 subfamilies form when elements with intact open reading frames acquire new 5' UTRs, which could, in principle, function as promoters.  相似文献   

5.
6.
7.
Centromeric retrotransposons (CR) are located almost exclusively at the centromeres of plant chromosomes. Analysis of the emerging Zea mays inbred B73 genome sequence revealed two novel subfamilies of CR elements of maize (CRM), bringing the total number of known CRM subfamilies to four. Orthologous subfamilies of each of these CRM subfamilies were discovered in the rice lineage, and the orthologous relationships were demonstrated with extensive phylogenetic analyses. The much higher number of CRs in maize versus Oryza sativa is due primarily to the recent expansion of the CRM1 subfamily in maize. At least one incomplete copy of a CRM1 homolog was found in O. sativa ssp. indica and O. officinalis, but no member of this subfamily could be detected in the finished O. sativa ssp. japonica genome, implying loss of this prolific subfamily in that subspecies. CRM2 and CRM3, as well as the corresponding rice subfamilies, have been recently active but are present in low numbers. CRM3 is a full-length element related to the non-autonomous CentA, which is the first described CRM. The oldest subfamily (CRM4), as well as its rice counterpart, appears to contain only inactive members that are not located in currently active centromeres. The abundance of active CR elements is correlated with chromosome size in the three plant genomes for which high quality genomic sequence is available, and the emerging picture of CR elements is one in which different subfamilies are active at different evolutionary times. We propose a model by which CR elements might influence chromosome and genome size. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Chicken repeat 1 (CR1) is a member of the non-long terminal repeat class of retrotransposons. We have isolated a truncated CR1 element within the third intron of the lactate dehydrogenase B gene of the coscoroba and the Cape Barren goose (Anseriformes; Coscoroba coscoroba, Cereopsis novaehollandiae). Because the element was absent in orthologous loci within mallard (Anas platyrhynchos), snow goose (Anser caerulescens), and tundra swan (Cygnus columbianus), it provides strong support to the recent novel proposal by Donne-Goussé et al. [Donne-Goussé, C., Laudet, V., H?nni, C., 2002. A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. Mol. Phylogenet. Evol. 23, 339-356] that Cape Barren goose is the sister taxon to coscoroba. The time of insertion was approximately 10.5 Mya or less estimated from mitochondrial DNA sequence information. Because this is a recent event, the DNA sequence of this CR1 should be close to that existing at the time of its insertion. This is reflected by the consistency of several structural features expected in a new CR1 copy such as the unaltered flanking target site duplication and inverted repeats that lie 22 bp apart near the 3' end of the element. Hybridization experiments show that numerous copies of sequences closely related to the coscoroba CR1 element are dispersed throughout the genomes of tested Anseriformes, but none were detected in representatives of Galliformes and Struthioniformes.  相似文献   

9.
We report the discovery of previously unrecognised short consensus repeats (SCRs) within human and chimpanzee CR1 and CR1L. Analysis of available genomic, protein and expression databases suggests that these are actually genomic remnants of SCRs previously reported in other complement control proteins (CCPs). Comparison with the nucleotide motifs of the 11 defined subfamilies of SCRs justifies the designation g-like because of the close similarity to the g subfamily found in CR2 and MCP. To date, we have identified five such SCRs in human and chimpanzee CR1, one in human and chimpanzee CR1L, but none in either rat or mouse Crry in keeping with the number of internal duplications of the long homologous repeat (LHR) found in CR1 and CR1L. In fact, at the genomic level, the ancestral LHR must have contained eight SCRs rather than seven as previously thought. Since g-like SCRs are found immediately downstream of d SCRs, we suggest that there must have been a functional dg set which has been retained by CR2 and MCP but which is degenerate in CR1 or CR1L. Interestingly, dg is also present in the CR2 component of mouse CR1. The degeneration of the g SCR must have occurred prior to the formation of primate CR1L and prior to the duplication events which resulted in primate CR1. In this context, the apparent conservation of g-like SCRs may be surprising and may suggest the existence of mechanisms unrelated to protein coding. These results provide examples of the many processes which have contributed to the evolution of the extensive repertoire of CCPs.  相似文献   

10.
11.
12.
13.
Eukaryotic genomes are colonized by different retroposons, including short interspersed repetitive elements (SINEs). All currently known SINEs are derived from tRNA and 7SL RNA genes and exploit their type 2 internal pol III promoters. We report here a novel class of SINE elements, called SINE3, derived from 5S rRNA. SINE3s are transcribed from the type 1 internal pol III promoter. Approximately 10,000 copies of SINE3 elements are present in the zebrafish genome, they constitute approximately 0.4% of the genomic DNA. Some elements are as little as 1% diverged from each other, indicating that the retrotransposition of SINE3 in zebrafish is an ongoing process. The 3'-tail of SINE3 is significantly similar to that of CR1-like non-LTR retrotransposons, represented by numerous subfamilies in the zebrafish genome. Analogously to CR1-like elements, SINE3 copies are not flanked by target site duplications, and their 3' termini are composed of (ACATT)n and (ATT)n microsatellites, specific for different subfamilies of SINE3. Given the common structural features, it is highly likely that the enzymatic machinery encoded by CR1-like elements powers proliferation of SINE3.  相似文献   

14.
Bioinformatic and enzymatic characterization of the MAPEG superfamily   总被引:1,自引:0,他引:1  
The membrane associated proteins in eicosanoid and glutathione metabolism (MAPEG) superfamily includes structurally related membrane proteins with diverse functions of widespread origin. A total of 136 proteins belonging to the MAPEG superfamily were found in database and genome screenings. The members were found in prokaryotes and eukaryotes, but not in any archaeal organism. Multiple sequence alignments and calculations of evolutionary trees revealed a clear subdivision of the eukaryotic MAPEG members, corresponding to the six families of microsomal glutathione transferases (MGST) 1, 2 and 3, leukotriene C4 synthase (LTC4), 5-lipoxygenase activating protein (FLAP), and prostaglandin E synthase. Prokaryotes contain at least two distinct potential ancestral subfamilies, of which one is unique, whereas the other most closely resembles enzymes that belong to the MGST2/FLAP/LTC4 synthase families. The insect members are most similar to MGST1/prostaglandin E synthase. With the new data available, we observe that fish enzymes are present in all six families, showing an early origin for MAPEG family differentiation. Thus, the evolutionary origins and relationships of the MAPEG superfamily can be defined, including distinct sequence patterns characteristic for each of the subfamilies. We have further investigated and functionally characterized representative gene products from Escherichia coli, Synechocystis sp., Arabidopsis thaliana and Drosophila melanogaster, and the fish liver enzyme, purified from pike (Esox lucius). Protein overexpression and enzyme activity analysis demonstrated that all proteins catalyzed the conjugation of 1-chloro-2,4-dinitrobenzene with reduced glutathione. The E. coli protein displayed glutathione transferase activity of 0.11 micromol.min(-1).mg(-1) in the membrane fraction from bacteria overexpressing the protein. Partial purification of the Synechocystis sp. protein yielded an enzyme of the expected molecular mass and an N-terminal amino acid sequence that was at least 50% pure, with a specific activity towards 1-chloro-2,4-dinitrobenzene of 11 micromol.min(-1).mg(-1). Yeast microsomes expressing the Arabidopsis enzyme showed an activity of 0.02 micromol.min(-1).mg(-1), whereas the Drosophila enzyme expressed in E. coli was highly active at 3.6 micromol.min(-1).mg(-1). The purified pike enzyme is the most active MGST described so far with a specific activity of 285 micromol.min(-1).mg(-1). Drosophila and pike enzymes also displayed glutathione peroxidase activity towards cumene hydroperoxide (0.4 and 2.2 micromol.min(-1).mg(-1), respectively). Glutathione transferase activity can thus be regarded as a common denominator for a majority of MAPEG members throughout the kingdoms of life whereas glutathione peroxidase activity occurs in representatives from the MGST1, 2 and 3 and PGES subfamilies.  相似文献   

15.
16.
17.
Using 18S rDNA, mitochondrial cytochrome c oxidase subunit I and morphological characters, the Branchiobdellidae (Annelida, Clitellata) were shown to form a monophyletic group distinct from the leeches using two distant 'oligochaetes' as outgroups. The study used 20 branchiobdellid species from 14 genera in four subfamilies with these representing each of the taxon's three distributional regions in the Holarctic realm. No monophyletic groups were found using the gene sequence data that related to either geographical regions or currently recognized subfamilies. However, two monophyletic groups were strongly supported; the two European species of Branchiobdella and the combination of Sathodrilus attenuatus and Xironogiton victoriensis . The latter pair is taxonomically diverse, but sympatric on Signal crayfish, Pacifastacus leniusculus , in California, USA.  相似文献   

18.
The expression of C3b receptors (CR1) on erythrocytes of gay men at various levels of risk for AIDS was studied. Fourty-nine heterosexual male controls had a mean (X)±standard deviation of 516±136 CR1 per erythrocyte (CR1-3); 17 asymptomatic gay men had X=423±156, 16 gay men with one AIDS-related complex (ARC) symptom or sign had X=342±154, 9 patients with ARC had X=252±76, and 14 gay men with AIDS had X=173±76 CR1-E. The patients with ARC and AIDS had a highly significant decrease in CR1-E when compared with normal individuals (p=<0.001) and studies of families of 4 AIDS patients suggest that this defect is acquired.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号