首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-binding specificity of the S8 homeodomain.   总被引:4,自引:0,他引:4       下载免费PDF全文
The murine S8 homeobox gene is expressed in a mesenchyme-specific pattern in embryos, as well as in mesodermal cell lines. The S8 homeodomain is overall similar to paired type homeodomains, but at position 50, which is crucial for specific DNA recognition, it contains a Gln, as is found in Antennapedia (Antp)-type homeodomains. We determined the DNA-binding specificity of the purified S8 homeodomain by in vitro selection of random oligonucleotides. The resulting 11-bp consensus binding site, ANC/TC/TAATTAA/GC resembles, but subtly differs from, the recognition sequences of Antp-type homeodomains. Equilibrium binding constants of down to 6.0 x 10(-10) M were found for binding of the S8 homeodomain to selected oligonucleotides. Using specific antibodies and an oligonucleotide containing an S8-site, we detected by band-shift two abundant DNA binding activities in mesodermal cell lines that correspond to S8 and two more that correspond to its close relative MHox. These S8 protein forms are differentially expressed in retinoic acid-treated P19 EC cells.  相似文献   

2.
We describe the comprehensive characterization of homeodomain DNA-binding specificities from a metazoan genome. The analysis of all 84 independent homeodomains from D. melanogaster reveals the breadth of DNA sequences that can be specified by this recognition motif. The majority of these factors can be organized into 11 different specificity groups, where the preferred recognition sequence between these groups can differ at up to four of the six core recognition positions. Analysis of the recognition motifs within these groups led to a catalog of common specificity determinants that may cooperate or compete to define the binding site preference. With these recognition principles, a homeodomain can be reengineered to create factors where its specificity is altered at the majority of recognition positions. This resource also allows prediction of homeodomain specificities from other organisms, which is demonstrated by the prediction and analysis of human homeodomain specificities.  相似文献   

3.
Homeodomains are one of the key families of eukaryotic DNA-binding motifs and provide an important model system for DNA recognition. We have determined a high-quality nuclear magnetic resonance (NMR) structure of the DNA-binding homeodomain of the insulin gene enhancer protein Isl-1 (Isl-1-HD). It forms the first solution structure of a homeodomain from the LIM family. It contains a well-defined inner core (residues 12-55) consisting of the classical three-helix structure observed in other homeodomains. The N terminus is unstructured up to residue 8, while the C terminus gradually becomes unstructured from residue 55 onwards. Some flexibility is evident in the loop parts of the inner core. Isl-1-HD has, despite its low sequence identity (23-34 %), a structure that is strikingly similar to that of the other homeodomains with known three-dimensional structures. Detailed analysis of Isl-1-HD and the other homeodomains rationalizes the differences in their temperature stability and explains the low stability of the Isl-1-HD in the free state (tm 22-30 degrees C). Upon DNA binding, a significant stabilization occurs (tm>55 degrees C). The low stability of Isl-1-HD (and other mammalian homeodomains) suggests that in vivo Isl-1-HD recognizes its cognate DNA from its unfolded state.  相似文献   

4.
5.
DNA-binding specificity of the fushi tarazu homeodomain.   总被引:26,自引:6,他引:20       下载免费PDF全文
  相似文献   

6.
7.
8.
Mutants of engrailed homeodomain (HD) that retain DNA-binding activity were isolated using a phage display selection. This selection was used to enrich for active DNA-binding clones from a complex library consisting of over a billion members. A more focused library of mutant homeodomains consisting of all possible amino acid combinations at two DNA-contacting residues (I47 and Q50) was constructed and screened for members capable of binding tightly and specifically to the engrailed consensus sequence, TAATTA. The isolated mutants largely recapitulated the distribution of amino acids found at these positions in natural homeodomains thus validating the in vitro selection conditions. In particular, the unequivocal advantage enjoyed by glutamine at residue 50 is surprising in light of reports that minimize the importance of this residue. Here, the subtle contributions of residue Q50 are demonstrated to play a functionally important role in specific recognition of DNA. These results highlight the complex subtlety of protein–DNA interactions, underscoring the value of the first reported in vitro selection of a homeodomain.  相似文献   

9.
10.
11.
Viola IL  Gonzalez DH 《Biochemistry》2007,46(25):7416-7425
HAT3.1 is a member of the PHD-finger homeodomain protein family. The HAT3.1 homeodomain is highly divergent in sequence even at positions that are almost invariable among homeodomains. In this work, we have applied the random oligonucleotide selection technique to investigate if the HAT3.1 homeodomain is able to recognize specific DNA sequences. Analysis of the selected molecules followed by hydroxyl radical footprinting experiments and yeast one-hybrid assays indicated that HAT3.1 shows a preference for the sequence T(A/G)(A/C)ACCA, different from those bound by other homeodomains. Binding was dependent on homeodomain residues located at positions 47, 50, 51, and 54, the same positions that usually participate in DNA binding in most homeodomains. The study of the interaction of mutants at these positions with DNA carrying nucleotide changes at specific sites suggested that H51 and K50 most likely interact with nucleotides 2 to 4 and 5 to 6, respectively, while W54 would establish contacts with position 4. The presence of H51 and W54 represents an innovation among homeodomain structures. The fact that the HAT3.1 homeodomain is able to interact with specific DNA sequences is evidence of the inherent plasticity of the homeodomain as a DNA binding unit.  相似文献   

12.
13.
Chaney BA  Clark-Baldwin K  Dave V  Ma J  Rance M 《Biochemistry》2005,44(20):7497-7511
We have determined the solution structure of a complex containing the K50 class homeodomain Pituitary homeobox protein 2 (PITX2) bound to its consensus DNA site (TAATCC). Previous studies have suggested that residue 50 is an important determinant of differential DNA-binding specificity among homeodomains. Although structures of several homeodomain-DNA complexes have been determined, this is the first structure of a native K50 class homeodomain. The only K50 homeodomain structure determined previously is an X-ray crystal structure of an altered specificity mutant, Engrailed Q50K (EnQ50K). Analysis of the NMR structure of the PITX2 homeodomain indicates that the lysine at position 50 makes contacts with two guanines on the antisense strand of the DNA, adjacent to the TAAT core DNA sequence, consistent with the structure of EnQ50K. Our evidence suggests that this side chain may make fluctuating interactions with the DNA, which is complementary to the crystal data for EnQ50K. There are differences in the tertiary structure between the native K50 structure and that of EnQ50K, which may explain differences in affinity and specificity between these proteins. Mutations in the human PITX2 gene are responsible for Rieger syndrome, an autosomal dominant disorder. Analysis of the residues mutated in Rieger syndrome indicates that many of these residues are involved in DNA binding, while others are involved in formation of the hydrophobic core of the protein. Overall, the role of K50 in homeodomain recognition is further clarified, and the results indicate that native K50 homeodomains may exhibit differences from altered specificity mutants.  相似文献   

14.
We have studied the interaction of the BELL-like Arabidopsis homeodomain protein ATH1 with DNA. Analysis of oligonucleotides selected by the ATH1 homeodomain from a random mixture suggests that ATH1 preferentially binds the sequence TGACAGGT. Single nucleotide replacements at positions 2 or 3 of this sequence abolish binding, while changes at position 4 are more tolerated. Changes outside this core differentially affect binding, depending on the position. Hydroxyl radical footprinting and missing nucleoside experiments showed that ATH1 interacts with a 7-bp region of the strand carrying the GAC core. On the other strand, protection was observed over a 7-bp region, comprising one additional nucleotide complementary to T in position 1. A comparative analysis of the binding preferences of the homeodomains of ATH1 and STM (a KNOX homeodomain protein) indicated that they bind similar sequences, but with differences in affinity and specificity. The decreased affinity displayed by the ATH1 homeodomain correlates with the presence of valine (instead of lysine as in STM) at position 54. This difference also explains the decreased and increased selectivities, respectively, at positions 4 and 5. Our results point to an essential role of residue 54 in determining the different binding properties of BELL and KNOX homeodomains.  相似文献   

15.
We report the isolation of nine rat cognates of mouse homeoboxes within the fourHox gene clusters and a rat homologue of mouseIPF1 homeobox,RHbox# 13A. The sequences of nine cloned homeoboxes are highly similar to those of the mouse and human homeoboxes in the Hox clusters. The restriction enzyme sites and map distances between each of the homeoboxes on the rat genome are nearly identical to those of mouse and human. Thus, we conclude that the isolated homeoboxes are the rat homologues of mouse homeoboxes within the four Hox clusters. A novel homeoboxRHbox# 13A is different from theDrosophila Antennapedia (Antp) sequence but is highly similar to theXlHbox8 (Xenopus laevis) andHtrA2 (Helobdella triserialis) homeoboxes. Forty-two amino acids of the last two-thirds of theRHbox# 13A, XlHbox8, and mouseIPF1 homeodomains completely matched. In addition, these four homeodomains contain a unique His residue in the recognition helix of a helix-turn-helix DNA-binding motif. This His residue is not found in any of the previously published mammalian homeodomain sequences except mouseIPF1.  相似文献   

16.
The mouse Nkx5-1 and Nkx5-2 genes are related to NK genes in Drosophila and encode proteins with very similar homeodomains. In higher vertebrates Nkx5 genes are specifically expressed in the inner ear. Inactivation of the mouse Nkx5-1 gene by homologous recombination revealed a critical role for the formation of vestibular inner ear structures. Here, we investigated biochemical properties of the proteins encoded by the Nkx5 genes. A similar consensus binding sequence was isolated for both Nkx5 proteins using binding site selection. This sequence is related to target sequences previously identified for other Nkx proteins and contains the conserved homeodomain binding core TAAT. An additional, novel and unrelated high affinity binding sequence could be identified for the Nkx5-2 protein.  相似文献   

17.
HOX11 is a homeobox-containing oncogene of specific T-cell leukemias. We determined the DNA binding specificity of the Hox11 protein by using a novel technique of random oligonucleotide selection developed in this study. The optimal Hox11 binding sequence, GGCGGTAAGTGG, contained a core TAAGTG motif that is consistent with a prediction based on the residues at specific positions that potentially make DNA base contacts and models of homeodomain-DNA interaction proposed from studies with other homeodomains. The specific interaction between Hox11 and the selected optimal binding sequence was further confirmed by band-shift and DNA competition assays. Given that the Hox11 homeodomain shares low homology with other well studied homeodomains, the presence of a predictable recognition core motif in its optimal binding sequence supports the notion that different homeodomains interact with DNA in a similar manner, through highly conserved residues at specific positions that allow contact with DNA.  相似文献   

18.
We have converted the Drosophila engrailed homeodomain into a sequence-specific nuclease by linking the protein to the chemical nuclease 1,10-phenanthroline-copper (OP-Cu). Unique cysteines were introduced at six positions into the homeodomain by site-directed mutagenesis for the covalent attachment of OP-Cu. The varied DNA-binding affinity and specificity of these mutants and the DNA cleavage pattern of their OP-Cu derivatives allowed us to assess the crystal structure of the engrailed homeodomain-DNA complex. We have also achieved site-specific double-stranded DNA scission with one of the homeodomain mutants, E28C, which has the potential of being used to identify engrailed binding sites in the genome. Because the homeodomain is so well conserved among members of the homeodomain-containing protein family, other homeodomain proteins can be converted into nucleases by attaching OP-Cu at position 28 of their homeodomains.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号