首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Both the frequency and the temporal pattern of action potentialproduction in an insect olfactory receptor neuron are stronglyaffected by odorant composition and the time course over whichstimulus concentration varies. To investigate the temporal characteristicsof the neurophysiological responses of these neurons, we deviseda stimulus delivery system that allows us to repeatedly presentwell-mixed, constant concentration odor pulses with relativelysharp onsets and offsets. Here we compare neurophysiologicalresponses to several different stimulation regimens, includingpulses of different durations and repetition rates. During stimulationwith high concentrations of pheromone, the temporal patternof neural activity from olfactory receptor neurons on the antennaof Trichoplusia ni (Hübner) is characterized by an initialphasic period (100–200 ms), followed by a tonic periodwhich is typically maintained for the remaining duration ofthe stimulus. Different olfactory receptor neurons appear tovary among themselves in the relative distribution between thephasic and tonic portions of the overall discharge. During stimulationregimens involving rapid repeated pulses of odorants, a portionof the phasic response levels is preserved during each pulse.Consequently, T. ni males probably detect much of the fluctuationin concentration of pheromone that may normally occur downwindfrom the site of pheromone release.  相似文献   

2.
Dickens  Joseph C. 《Chemical senses》1990,15(3):311-331
Antennal olfactory receptor neurons in the boll weevil, Anthonomusgrandis, were investigated through single neuron recordings.Receptor neurons for both pheromone components and host plantodors were associated with type I sensilla within the sensoryband regions. Nine types of receptor neurons were identified,based on their responsiveness to the four aggregation pheromonecomponents and selected host plant odors. Three receptor neurontypes responded to either compound I, II or IV of the aggregationpheromone. Dose—response curves were similar for eachof these receptor neuron types, which differed only in theirkey compound. In each instance, I neurons responded primarilyto (+)-I, the optical isomer produced by the boll weevil whichwas found to be active in field tests. Receptor neurons forII also responded to a lesser degree to III, its aldehydic analog,at the same stimulus load. Six additional receptor neuron typesresponded to selected host plant odors: ß-caryophyllene,trans-2-hexen-l-o1 and other six carbon alcohols and aldehydes,trans-ß-ocimene, benzaldehyde, linalool, and B-bisabolol.These neurons were as responsive as, or in some cases more responsiveat the same stimulus load as receptor neurons for pheromonecomponents. Receptor neurons responsive to six-carbon alcoholsand aldehydes were generally most responsive to trans-2-hexen-l-ol.Receptor neurons for other plant odors responded principallyto only one compound among the odorants tested. However, responsesof these neurons were not uniform, suggesting possible specializationfor other unidentified key odorants. Comparisons were also madebetween single neuron and electroantennogram responses. Theresults indicate that the boll weevil, a narrowly oligaphagousinsect, detects its host plant at some distance, and utilizesinformation about a wide range of chemical structures in itsolfactory-mediated behavior.  相似文献   

3.
4.
Salt, known as taste quality, is generally neglected in olfaction, although the olfactory sensory neurons stretch into the salty nasal mucus covering the olfactory epithelium (OE). Using a psychophysical approach, we directly and functionally demonstrate in the awake rat for a variety of structurally diverse odorants that sodium is a critical factor for olfactory perception and sensitivity, both very important components of mammalian communication and sexual behavior. Bathing the olfactory mucus with an iso-osmotic sodium-free buffer solution results in severe deficits in odorant detection. However, sensitivity returns fully within a few hours, indicating continuous mucus production. In the presence of sodium in the mucus covering the OE, all odorants induce odorant-specific c-Fos expression in the olfactory bulb. Yet, if sodium is absent in the mucus, no c-Fos expression is induced as demonstrated for n-octanal. Our noninvasive approach to induce anosmia in mammals here presented--which is fully reversible within hours--opens new possibilities to study the functions of olfactory communication in awake animals.  相似文献   

5.
The aqueous medium bathing the dendrites of olfactory neurons contains high concentrations of odorant-binding proteins (OBPs) whose role is still unclear. OBPs may facilitate interactions between odorants and their membrane-bound receptors, perhaps by increasing the water solubility of hydrophobic molecules. Alternatively, OBPs may be involved in the inactivation of odorants and other volatile molecules, preventing desensitization and/or protecting olfactory neurons from toxic chemicals. We report here novel features of the localization of two putative OBPs, PBPRP2 and PBPRP5, that have important and different implications for their role in olfaction. Unlike several other putative OBPs of Drosophila melanogaster that are only found in adult olfactory organs, PBPRP5 is also expressed in the larval olfactory organs, suggesting that it plays a common role in olfaction at both stages. In the adult, PBPRP5 expression is restricted to the sensillum lymph that bathes the olfactory dendrites of a subset of olfactory hairs, the basiconic sensilla. Since individual basiconic sensilla differ in olfactory specificity, PBPRP5 may be able to bind to and mediate olfactory responses to a wide range of odorants. In contrast, PBPRP2 is present in the space immediately below the antennal cuticle and in the outer cavity of approximately 30% of the double-walled coeloconic sensilla on the antennal surface. In neither case is PBPRP2 in contact with the dendritic membranes of olfactory neurons, making a carrier function unlikely for this protein. Instead, PBPRP2 may act as a sink, binding to odorants and other volatile chemicals and limiting their interactions with olfactory neurons.  相似文献   

6.
The detection of volatile odorants is supposed to begin with their interaction with soluble binding proteins which shuttle the hydrophobic ligands through the aqueous mucus layer towards specific odorant receptors in the ciliary membrane of olfactory neurons. A large family of receptors for odorants has been identified recently; individual receptor types are expressed in subsets of cells distributed in distinct zones of the olfactory epithelium. Ligand-receptor interaction triggers a rapid multistep reaction cascade, ultimately leading to an electrical response of the receptor neuron. Olfactory signaling is terminated by phosphorylation of receptors via a negative feedback reaction catalyzed by two types of kinases.  相似文献   

7.
The mammalian olfactory system can discriminate between volatile molecules with subtle differences in their molecular structures. Efforts in synthetic chemistry have delivered a myriad of smelling compounds of different qualities as well as many molecules with very similar olfactive properties. One important class of molecules in the fragrance industry are sandalwood odorants. Sandalwood oil and four synthetic sandalwood molecules were selected to study the activation profile of endogenous olfactory receptors when exposed to compounds from the same odorant family. Dissociated rat olfactory receptor neurons were exposed to the sandalwood molecules and the receptor activation studied by monitoring fluxes in the internal calcium concentration. Olfactory receptor neurons were identified that were specifically stimulated by sandalwood compounds. These neurons expressed olfactory receptors that can discriminate between sandalwood odorants with slight differences in their molecular structures. This is the first study in which an important class of perfume compounds was analyzed for its ability to activate endogenous olfactory receptors in olfactory receptor neurons.  相似文献   

8.
Odors affect the excitability of an olfactory neuron by altering membrane conductances at the ciliated end of a single, long dendrite. One mechanism to increase the sensitivity of olfactory neurons to odorants would be for their dendrites to support action potentials. We show for the first time that isolated olfactory dendrites from the mudpuppy Necturus maculosus contain a high density of voltage-activated Na+ channels and produce Na-dependent action potentials in response to depolarizing current pulses. Furthermore, all required steps in the transduction process beginning with odor detection and culminating with action potential initiation occur in the ciliated dendrite. We have previously shown that odors can modulate Cl- and K+ conductances in intact olfactory neurons, producing both excitation and inhibition. Here we show that both conductances are also present in the isolated, ciliated dendrite near the site of odor binding, that they are modulated by odors, and that they affect neuronal excitability. Voltage- activated Cl- currents blocked by 4,4'-diisothiocyanatostilbene-2,2' disulfonic acid and niflumic acid were found at greater than five times higher average density in the ciliated dendrite than in the soma, whereas voltage-activated K+ currents inhibited by intracellular Cs+ were distributed on average more uniformly throughout the cell. When ciliated, chemosensitive dendrites were stimulated with the odorant taurine, the responses were similar to those seen in intact cells: Cl- currents were increased in some dendrites, whereas in others Cl- or K+ currents were decreased, and responses washed out during whole-cell recording. The Cl- equilibrium potential for intact neurons bathed in physiological saline was found to be -45 mV using an on-cell voltage- ramp protocol and delayed application of channel blockers. We postulate that transduction of some odors is caused by second messenger-mediated modulation of the resting membrane conductance (as opposed to a specialized generator conductance) in the cilia or apical region of the dendrite, and show how this could alter the firing frequency of olfactory neurons.  相似文献   

9.
In their natural environment, insects such as the vinegar fly Drosophila melanogaster are bombarded with a huge amount of chemically distinct odorants. To complicate matters even further, the odors detected by the insect nervous system usually are not single compounds but mixtures whose composition and concentration ratios vary. This leads to an almost infinite amount of different olfactory stimuli which have to be evaluated by the nervous system.To understand which aspects of an odor stimulus determine its evaluation by the fly, it is therefore desirable to efficiently examine odor-guided behavior towards many odorants and odor mixtures. To directly correlate behavior to neuronal activity, behavior should be quantified in a comparable time frame and under identical stimulus conditions as in neurophysiological experiments. However, many currently used olfactory bioassays in Drosophila neuroethology are rather specialized either towards efficiency or towards resolution.Flywalk, an automated odor delivery and tracking system, bridges the gap between efficiency and resolution. It allows the determination of exactly when an odor packet stimulated a freely walking fly, and to determine the animal´s dynamic behavioral reaction.  相似文献   

10.
Before reaching olfactory receptor neurons, odorant molecules have to cross an aqueous interface: the nasal mucus in vertebrates and the sensillar lymph in insects. Biochemical interactions taking place between odorants and the elements of these phases are called perireceptor events. Main protein constituents of these media, in both insects and vertebrates, are OBPs (odorant-binding proteins). Another class of proteins active in the olfactory perireceptor area includes odorant-degrading enzymes. The structure and the properties of these major proteins, with particular reference to OBPs, are reviewed and their role in olfactory transduction is discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The purely olfactory odorants coumarin, octanoic acid, phenylethyl alcohol, and vanillin had been found to be consistently identified when presented retronasally but could not be identified when presented oral-cavity only (OCO). However, OCO discrimination of these odorants was not tested. Consequently, it remained possible that the oral cavity trigeminal system might provide sufficient information to differentiate these purely olfactory odorants. To evaluate this, 20 participants attempted to discriminate vapor-phase coumarin, octanoic acid, phenylethyl alcohol, and vanillin and, as a control, the trigeminal stimulus peppermint extract, from their glycerin solvent, all presented OCO. None of the purely olfactory odorants could be discriminated OCO, but, as expected, peppermint extract was consistently discriminated. This inability to discriminate clarifies and expands the previous report of lack of OCO identification of purely olfactory odorants. Taken together with prior data, these results suggest that the oral cavity trigeminal system is fully unresponsive to these odorants in vapor phase and that coumarin, octanoic acid, phenylethyl alcohol, and vanillin are indeed purely olfactory stimuli. The OCO discrimination of peppermint extract demonstrated that the absence of discrimination for the purely olfactory odorants was odorant dependent and confirmed that the oral cavity trigeminal system will provide differential response information to some vapor-phase stimuli.  相似文献   

12.
The vomeronasal system is involved in the detection of pheromones in many mammals. Vomeronasal sensory neurons encode the behaviorally relevant information into action potentials that are directly transmitted to the accessory olfactory bulb. We developed a model of the electrical activity of mouse basal vomeronasal sensory neurons, which mimics both the voltage-gated current properties and the firing behavior of these neurons in their near-native state, using a minimal number of parameters. Data were obtained by recordings with the whole-cell voltage-clamp or current-clamp techniques from mouse basal vomeronasal sensory neurons in acute slice preparations. The resting potential ranged from -50 to -70 mV, and current injections of less than 2-10 pA induced tonic firing in most neurons. The experimentally determined firing frequency as a function of injected current was well described by a Michaelis-Menten equation and was exactly reproduced by the model, which could be used in combination with future models that will include details of the mouse vomeronasal transduction cascade.  相似文献   

13.
It is well known that some neurons tend to fire packets of action potentials followed by periods of quiescence (bursts) while others within the same stage of sensory processing fire in a tonic manner. However, the respective computational advantages of bursting and tonic neurons for encoding time varying signals largely remain a mystery. Weakly electric fish use cutaneous electroreceptors to convey information about sensory stimuli and it has been shown that some electroreceptors exhibit bursting dynamics while others do not. In this study, we compare the neural coding capabilities of tonically firing and bursting electroreceptor model neurons using information theoretic measures. We find that both bursting and tonically firing model neurons efficiently transmit information about the stimulus. However, the decoding mechanisms that must be used for each differ greatly: a non-linear decoder would be required to extract all the available information transmitted by the bursting model neuron whereas a linear one might suffice for the tonically firing model neuron. Further investigations using stimulus reconstruction techniques reveal that, unlike the tonically firing model neuron, the bursting model neuron does not encode the detailed time course of the stimulus. A novel measure of feature detection reveals that the bursting neuron signals certain stimulus features. Finally, we show that feature extraction and stimulus estimation are mutually exclusive computations occurring in bursting and tonically firing model neurons, respectively. Our results therefore suggest that stimulus estimation and feature extraction might be parallel computations in certain sensory systems rather than being sequential as has been previously proposed.  相似文献   

14.
Olfactory receptor cells in insects are modulated by neurohormones. Recordings from cockroach olfactory sensilla showed that a subset of sensory neurons increase their responses to selected nonpheromone odorants after octopamine application. With octopamine application, recordings demonstrated increased firing rates by the short but not the long alcohol-sensitive sensilla to the nonpheromone volatile, hexan-1-ol. Within the same sensillum, individual receptor cells are shown to be modulated independently from each other, indicating that the octopamine receptors reside in the receptor not in the accessory cells. A uniform decrease in the amplitude of electroantennogram, which is odorant independent, is suggested to reflect the rise in octopamine concentration in the antennal hemolymph. Perception of general odorants measured as behavioral responses changed qualitatively under octopamine treatment: namely, repulsive hexan-1-ol became neutral, whereas neutral eucalyptol became attractive. Octopamine induced a change in male behavioral responses to general odors that were essentially the same as in the state of sexual arousal. Our findings suggest that sensitivity to odors having different biological significances is modulated selectively at the peripheral as well as other levels of olfactory processing.  相似文献   

15.
Olfactory receptor neurons were isolated without enzymes from the mudpuppy, Necturus maculosus, and tested for chemosensitivity. The cells responded to odorants with changes in firing frequency and alterations in excitability that were detected with tight-seal patch electrodes using on-cell and whole-cell recording conditions. Chemosensitive cells exhibited two primary response characteristics: excitation and inhibition. Both types of primary response were observed in different cells stimulated by mixtures of amino acids as well as by the single compound L-alanine, suggesting that there may be more than one transduction pathway for some odorants. Using the normal whole-cell recording method, the chemosensitivity of competent cells washed out rapidly; a resistive whole-cell method was used to record odorant responses under current-clamp conditions. In response to chemical stimulation, excitability appeared to be modulated in several different ways in different cells: odorants induced hyperpolarizing or depolarizing receptor potentials, elicited or inhibited transient, rhythmic generator potentials, and altered excitability without changing the membrane potential or input resistance. These effects suggest that olfactory transduction is mediated through at least three different pathways with effects on four or more components of the membrane conductance. Polychotomous pathways such as these may be important for odor discrimination and for sharpening the "odor image" generated in the olfactory epithelium.  相似文献   

16.
The olfactory epithelium (OE) of zebrafish is populated with ciliated and microvillar olfactory sensory neurons (OSNs). Whether distinct classes of odorants specifically activate either of these unique populations of OSNs is unknown. Previously we demonstrated that zebrafish OSNs could be labeled in an activity-dependent fashion by amino acid but not bile acid odorants. To determine which sensory neuron type was stimulated by amino acid odorants, we labeled OSNs using the ion channel permeant probe agmatine (AGB) and analyzed its distribution with conventional light- and electron-microscope immunocytochemical techniques. Approximately 7% of the sensory epithelium was labeled by AGB exposure alone. Following stimulation with one of the eight amino acids tested, the proportion of labeled epithelium increased from 9% for histidine to 19% for alanine; amino acid stimulated increases in labeling of 2-12% over control labeling. Only histidine failed to stimulate a significant increase in the proportion of labeled OSNs compared to control preparations. Most amino acid sensitive OSNs were located superficially in the epithelium and immuno-electron microscopy demonstrated that the labeled OSNs were predominantly microvillar. Large numbers of nanogold particles (20-60 per 1.5 microm(2)) were associated with microvillar olfactory sensory neurons (MSNs), while few such particles (<15 per 1.5 microm(2)) were observed over ciliated olfactory sensory neurons (CSNs), supporting cells (SCs) and areas without tissue, such as the lumen above the OE. Collectively, these findings indicate that microvillar sensory neurons are capable of detecting amino acid odorants.  相似文献   

17.
Liu Q  Ye W  Hu N  Cai H  Yu H  Wang P 《Biosensors & bioelectronics》2010,26(4):1672-1678
Olfactory systems of human beings and animals have the abilities to sense and distinguish varieties of odors. In this study, a bioelectronic nose was constructed by fixing biological tissues onto the surface of light-addressable potentiometric sensor (LAPS) to mimic human olfaction and realize odor differentiation. The odorant induced potentials on tissue-semiconductor interface was analyzed by sensory transduction theory and sheet conductor model. The extracellular potentials of the receptor cells in the olfactory epithelium were detected by LAPS. Being stimulated by different odorants, such as acetic acid and butanedione, olfactory epithelium activities were analyzed on basis of local field potentials and presented different firing modes. The signals fired in different odorants could be distinguished into different clusters by principal component analysis (PCA). Therefore, with cellular populations well preserved, the epithelium tissue and LAPS hybrid system will be a promising neuron chip of olfactory biosensors for odor detecting.  相似文献   

18.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second-order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor-evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle-averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity.  相似文献   

19.
Using the whole-cell mode of the patch-clamp technique, we recorded action potentials, voltage-activated cationic currents, and inward currents in response to water-soluble and volatile odorants from receptor neurons in the lateral diverticulum (water nose) of the olfactory sensory epithelium of Xenopus laevis. The resting membrane potential was -46.5 +/- 1.2 mV (mean +/- SEM, n = 68), and a current injection of 1-3 pA induced overshooting action potentials. Under voltage-clamp conditions, a voltage-dependent Na+ inward current, a sustained outward K+ current, and a Ca2+-activated K+ current were identified. Application of an amino acid cocktail induced inward currents in 32 of 238 olfactory neurons in the lateral diverticulum under voltage-clamp conditions. Application of volatile odorant cocktails also induced current responses in 23 of 238 olfactory neurons. These results suggest that the olfactory neurons respond to both water-soluble and volatile odorants. The application of alanine or arginine induced inward currents in a dose-dependent manner. More than 50% of the single olfactory neurons responded to multiple types of amino acids, including acidic, neutral, and basic amino acids applied at 100 microM or 1 mM. These results suggest that olfactory neurons in the lateral diverticulum have receptors for amino acids and volatile odorants.  相似文献   

20.
昆虫感觉气味的细胞与分子机制研究进展   总被引:1,自引:1,他引:0  
张龙 《昆虫知识》2009,46(4):509-517
昆虫作为地球上最为成功的类群,已经成功地进化了精细的化学感受系统,通过化学感受系统适应各种复杂的环境,保持种群的繁荣。自1991年在动物中发现嗅觉受体基因以来,关于昆虫感受化学信息的周缘神经系统的分子和细胞机制方面的进展十分迅速。文章主要就昆虫周缘神经系统的感受化学信息的分子和细胞机制进行综述。首先对昆虫感觉气味的细胞机制的研究进展进行简要介绍。昆虫嗅觉神经元在感受化学信息过程中起着极为重要的作用,昆虫嗅觉神经元上表达的嗅觉受体不同而执行着各异的功能。各种嗅觉神经元对于化学信息的感受谱有较大的区别;嗅觉神经元对化学信息类型、浓度、流动动态等产生相应的电生理特征反应。研究表明同一种神经原可以感受多种化学信息,而一种化学信息也可以被多种神经原所感受。由神经原对化学信息感受所形成的特征组合就是感受化学信息的编码。其次较为详细地论述与昆虫感受气味分子相关的一些蛋白质的研究进展。气味分子结合蛋白是一类分子量较小、水溶性的蛋白,主要位于化学感受器神经原树突周围的淋巴液中。在结构上的主要特征是具有6个保守的半光氨酸和由6个α螺旋组成的结合腔。自1981年发现以来,已经在40余种昆虫中发现上百种。由于研究手段的不断进步,已经对该类蛋白的表达特征、结合特性以及三维结构和结合位点进行了大量的研究,提出了多个可能的功能假说,在诸多的假说中,较为广泛接受的是气味分子结合蛋白在昆虫感觉气味的过程中,是与疏水性的气味分子相结合,并将气味分子运输到嗅觉神经原树突膜上的嗅觉受体上。这些处于树突膜上的嗅觉受体则是昆虫感觉气味过程中的另一个十分重要的蛋白质。目前,已经在果蝇、按蚊、蜜蜂和家蚕等10余个昆虫种类中发现上百个嗅觉受体蛋白基因。这类蛋白是跨膜蛋白,一般具有7个跨膜区,整个蛋白的氨基酸残基在400~600个。昆虫的嗅觉受体蛋白的N-端在胞内,而C-端在胞外,这与G耦联蛋白不同。而且,昆虫的一个嗅觉神经元可以表达1~3个嗅觉受体蛋白,也与哺乳动物的一个神经元只表达一种受体蛋白有所不同。每种嗅觉受体可以感受多种气味分子,而一种气味分子可以被多个嗅觉受体所感知,这样组成了感受化学信息的编码谱。最近采用基因敲除技术和膜片钳技术研究发现,昆虫的嗅觉受体蛋白在信号传导中也有特殊性,即嗅觉受体可以直接作为离子通道,而引起动作电位。还有近来的研究表明,神经膜蛋白对于果蝇的性信息素感受神经元感受性信息素cVA是必要的。实际上,昆虫对于化学信息的感受和信号的转导,并不是上述蛋白单独起作用完成的,而是多种蛋白相互作用的结果。论文最后对该领域研究内容进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号