首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We have examined the effects of endogenous lipoxygenase products on basal progesterone (P4) production by cultured bovine mid-luteal cells. The involvement of lipoxygenase products in the stimulatory effect of LH on luteal cAMP accumulation and P4 production was also examined. Bovine luteal cells from mid-cycle corpora lutea (CL) were exposed for 16 h to a lipoxygenase inhibitor (nordihydroguaiaretic acid: NDGA; 0.33-33 microM). For the last 4 h of incubation, the cells were exposed to LH and/or three different lipoxygenase products, 5-, 12- and 15-hydroxyeicosatetraenoic acid (HETE). NDGA inhibited P4 production by the cells in a dose-dependent manner (P < 0.05). NDGA-reduced P4 production was reversed by the addition of 12-HETE, but not 5- or 15-HETE, whereas 5-, 12- and 15-HETE alone showed no significant effect on P4 production in the intact cells. Furthermore, NDGA (33 microM) blocked the stimulatory action of LH on P4 production (P < 0.05), without changing cAMP accumulation (P > 0.1). When the cells were exposed to 5-, 12- or 15-HETE with LH and NDGA, only 15-HETE maintained the stimulatory effect of LH on P4 production in the cells (P < 0.05). These results suggest that endogenous lipoxygenase products play important roles in P4 production by bovine CL, i.e. basal P4 production is supported by 12-HETE, and LH-stimulated P4 production is partially mediated via the activation of lipoxygenase and subsequent 15-HETE formation downstream of the LH-activated cAMP-PKA-phosphorylation pathway.  相似文献   

2.
Human peripheral blood polymorphonuclear leukocytes (PMNs) metabolized [14C]arachidonic acid predominantly by lipoxygenase pathways. The major products were 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) and 15-HETE. These and other lipoxygenase products, including their derived leukotrienes, have been implicated as mediators of inflammatory and allergic reactions. In human platelets, the nonsteroidal anti-inflammatory drug ibuprofen inhibited production of the cyclooxygenase product thromboxane B2 (I50 = 65 microM), whereas the lipoxygenase product 12-HETE was not appreciably affected even at 5 mM ibuprofen. The 5-lipoxygenase of human PMNs (measured by 5-HETE formation) was inhibited by ibuprofen but was about six times less sensitive (I50 = 420 microM) than the platelet cyclooxygenase. The unexpected observation was made that the human PMN 15-lipoxygenase/leukotriene pathway was selectively activated by 1-5 mM ibuprofen. Metabolites were identified by ultraviolet spectroscopy, by radioimmunoassay, or by retention times on high pressure liquid chromatography in comparison with authentic standards. The major product was 15-HETE; and in all of 19 donors tested, 15-HETE formation was stimulated up to 20-fold by 5 mM ibuprofen. Other identified products included 12-HETE and 15- and 12-hydroperoxyeicosatetraenoic acid. Activation of the 15-lipoxygenase by ibuprofen occurred within 1 min and was readily reversible. The effects of aspirin, indomethacin, and ibuprofen on the PMN 15-lipoxygenase were compared in six donors. Ibuprofen produced an average 9-fold stimulation of the enzyme, whereas aspirin and indomethacin resulted in an average 1.5- and 2-fold enhancement, respectively.  相似文献   

3.
Arachidonic acid metabolism in ionophore A23187-activated human polymorphonuclear leukocytes (PMNs) proceeds predominantly via the 5-lipoxygenase pathway in comparison to metabolism by the 15-lipoxygenase route. Products of both lipoxygenase pathways appear to be involved in the mediation of inflammatory reactions. Pretreatment of polymorphonuclear leukocytes with micromolar amounts of the platelet-derived 12-lipoxygenase product 12-hydroxy-5,8,10,14- eicosatetraenoic acid (12-HETE) prior to the addition of A23187 and [14C]arachidonic acid resulted in the unexpected dose-dependent stimulation of the 15-lipoxygenase pathway, as evidenced by the formation of [14C]15-HETE. A concomitant inhibition of the 5-lipoxygenase pathway was also observed. The structural identity of 15-HETE was confirmed by retention times on straight-phase and reverse-phase high pressure liquid chromatography in comparison with an authentic standard, radioimmunoassay, and chemical derivatization. When other isomeric HETEs were tested, the order of stimulatory potencies was 15-HETE greater than 12-HETE greater than 5-HETE. When arachidonic acid metabolism via the 5-lipoxygenase route was inhibited by nordihydroguaiaretic acid, previously ineffective concentrations of exogenous 12-HETE were now able to stimulate the polymorphonuclear leukocyte 15-lipoxygenase. Thus, blockade of the 5-lipoxygenase pathway appeared to be a prerequisite for the activation of the 15-lipoxygenase. The HETE-induced activation of the 15-lipoxygenase occurred within 1-2 min, was a reversible process, and was enhanced in the presence of A23187. In nine donors tested, up to 14-fold stimulation of [14C]15-HETE production was observed. Our results indicate that endogenous HETEs can have a dual role in the post-phospholipase regulation of arachidonic acid metabolism since they can act as physiological stimulators of the 15-lipoxygenase as well as inhibitors of the 5-lipoxygenase.  相似文献   

4.
12-Hydroxyeicosatetraenoic acid (12-HETE) is formed from arachidonic acid either by 12-lipoxygenase or by a cytochrome P450 monooxygenase. 12-Lipoxygenase is generally localized in the soluble cytosolic fraction, and the cytochrome P450 monooxygenase is a microsomal enzyme. In this study, 12-HETE biosynthesis and the regulation of 12-HETE biosynthesis by epidermal growth factor (EGF) in A431 cells were investigated. 12-HETE was biosynthesized from arachidonic acid by the microsomal fraction of A431 cells, but not by the cytosolic fraction. The formation of 12-HETE was inhibited by 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and caffeic acid. Nordihydroguaiaretic acid at 10(-4) M and 5,8,11,14-eicosatetraynoic acid at 10(-5) M almost completely inhibited its formation. However, the formation of 12-HETE was not affected by the presence of an NADPH-generating system, carbon monoxide, or SKF 525A. The biosynthetic 12-HETE was analyzed by chiral stationary phase high performance liquid chromatography and was highly enriched in (12S)-HETE. We therefore concluded that the enzyme responsible for the formation of (12S)-HETE in the microsomes of A431 cells is a 12-lipoxygenase. The microsomal 12-lipoxygenase of A431 cells belongs to the "leukocyte-type" enzyme as determined by substrate specificity and enzyme kinetics studies. The microsomal 12-lipoxygenase oxygenated linoleic acid much faster than the cytosolic platelet 12-lipoxygenase and is a "self-catalyzed inactivation" enzyme. Treatment of cells with 50 ng/ml EGF significantly induced microsomal 12-lipoxygenase activity. The lag period for the expression of the stimulatory effect of EGF on 12-lipoxygenase activity was approximately 10 h. The stimulatory effect of EGF on 12-lipoxygenase activity was completely blocked by treatment with 35 microM cycloheximide, indicating a requirement for de novo protein biosynthesis. Furthermore, the presence of the endogenous inhibitor of 12-lipoxygenase (which masked (12S)-HETE biosynthesis in intact cells) was identified in the cytosolic fraction of A431 cells. The putative inhibitor was enzyme-selective. It inhibited the leukocyte-type 12-lipoxygenase, but not the "platelet-type" enzyme.  相似文献   

5.
We have proposed a mechanism that platelet aggregation is regulated by its 12-lipoxygenase product, 12S-hydroxyeicosatetraenoic acid (12-HETE) (Sekiya, F., Takagi, J. and Saito, Y. (1989) Thrombos. Res. 56, 407-415). Inhibition of endogenous 12-HETE production by 15-HETE, a specific inhibitor of 12-lipoxygenase, accelerated aggregation of bovine platelets in response to collagen and arachidonic acid liberation from phospholipids was enhanced. Exogenously added 12-HETE suppressed collagen-induced liberation of arachidonic acid and the aggregation was also inhibited. On the other hand, 12-HETE did not interfere with thromboxane synthesis from free arachidonic acid in a cell-free system. These observations suggest that 12-HETE exerts a negative feedback to prevent excess aggregation through interference with arachidonic acid liberation from membrane phospholipids.  相似文献   

6.
12-Hydroxyeicosatetraenoic acid (12-HETE) production from arachidonic acid by cerebral microvessels isolated from perfused adult murine brain was reduced by the lipoxygenase inhibitors baicalein, esculetin, gossypol, nordihydroguaiaretic acid, and quercetin. Except for quercetin and gossypol, the IC50 did not exceed 10 microM. Each inhibitor, except baicalein, also decreased microvessel prostaglandin production when present in concentrations above their IC50 value for 12-HETE. In contrast, inhibitors of the cytochrome P450 monooxygenase system, clotrimazole, metyrapone, and proadifen (SKF-525A), had little effect on microvessel 12-HETE production. Chiral phase HPLC analysis revealed that only the (S) enantiomer of 12-HETE was formed. The major microvessel metabolite of eicosapentaenoic acid co-eluted with 12-hydroxyeicosapentaenoic acid (12-HEPE) on reverse-phase HPLC and the (S) enantiomer of 12-HEPE on chiral phase HPLC. Furthermore, like 12-HETE, 12-HEPE production was blocked by lipoxygenase inhibitors. These studies demonstrate that brain microvessels produce only the (S) enantiomeric 12-hydroxy derivatives of both arachidonic acid and eicosapentaenoic acid by the action of a lipoxygenase that can be selectively inhibited by baicalein. Since arachidonic acid and eicosapentaenoic acid are available to cerebral blood vessels in certain pathological settings, these 12-hydroxy acid lipoxygenase products may mediate some of the cerebrovascular dysfunction that occurs following stroke, brain trauma, or seizures.  相似文献   

7.
Tumor cell adhesion to endothelial cells, subendothelial matrix, and fibronectin is stimulated by the lipoxygenase metabolite of arachidonic acid, 12(S)-HETE, but not by 12(R)-HETE, 5-HETE or 15-HETE. Adhesion is also stimulated by the phorbol ester TPA, an effect inhibited by lipoxygenase but not cyclooxygenase inhibitors. TPA and 12(S)-HETE mediated adhesion is due, in part, to an integrin receptor (i.e., IRGpIIb/IIIa) related to the platelet glycoprotein IIb/IIIa complex and is inhibited by specific monoclonal and polyclonal antibodies against platelet IIb/IIIa. TPA and 12(S)-HETE stimulated adhesion is also inhibited by a lipoxygenase product of linoleic acid; i.e., 13-HODE. These results suggest bidirectional control of tumor cell adhesion by lipoxygenase products of arachidonic acid (increase) and linoleic acid (decrease).  相似文献   

8.
The potent mammalian immunohormone, 12-(S)-hydroxy-5,8,10,14-icosatetraenoic acid (12-(S)-HETE), is a 12-lipoxygenase metabolite of arachidonic acid that is widely distributed in animal tissues. In humans, it is produced and secreted by platelet cells and elicits both chemotactic and degranulatory responses in target neutrophils. As widely as 12-lipoxygenase activity and one of its major products, 12-(S)-HETE, have been found in animal tissues, it has never been found in plants. Herein, we report the first isolation of the 12-lipoxygenase product, 12-(S)-HETE, from a plant, the tropical marine alga Platysiphonia miniata (C. Agardh) B?rgesen.  相似文献   

9.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

10.
Arachidonic acid is converted into several more polar products in addition to 12-l-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12-HPETE) and 12-l-hydroxyeicosa-5,8,10,14-tetraenoic acid (12-HETE) by the cytosol fractions of rat platelets. The more polar products are formed via the lipoxygenase pathways in the same way as are 12-HPETE and 12-HETE, since their formation is not inhibited by indomethacin but by eicosa-5,8,11,14-tetraynoic acid (ETYA). The presence of 0.5-1.5mm-reduced glutathione (GSH) in the reaction mixture prevents the formation of the more polar products and produces 12-HETE as the only metabolite from arachidonic acid by the 12-lipoxygenase pathway. l-Cysteine has the same effect as GSH. However, oxidized glutathione (GSSG) and l-cystine are not able to prevent the formation of the more polar products. The results indicate that 12-HPETE peroxidase in the 12-lipoxygenase pathway is a GSH-dependent peroxidase and the more polar products might be formed from the non-enzymic breakdown of the primary 12-lipoxygenase product of 12-HPETE, owing to insufficient capability of the subsequent peroxidase system to completely reduce 12-HPETE to 12-HETE. Thus the presence of GSH in the reaction mixture offers a convenient and precise cell-free assay system for 12-lipoxygenase in rat platelets. Routine assays of 12-lipoxygenase are carried out in the presence of 1mm-GSH in the reaction mixture. The synthesis of 12-HETE by 12-lipoxygenase is linear during the first 4 min of incubation at 37 degrees C, and has a pH optimum of 7.7. The 12-lipoxygenase reaches half-maximal activity at an arachidonate concentration of 20mum. Fractionation of cell homogenates indicates that the cytosol fraction possesses almost all the 12-lipoxygenase activity, whereas the microsomal fraction exhibits little enzyme activity.  相似文献   

11.
Platelet-derived growth factor BB (PDGF) is a potent mitogen and chemoattractant for vascular smooth muscle cells (VSMC). In the present study, we have examined the effects of PDGF on the 12-lipoxygenase (12-LO) pathway of arachidonate metabolism in porcine aortic VSMC (PVSMC). The rationale for this is previous studies showing that LO products have growth and chemotactic effects in VSMC and that another VSMC growth factor, angiotensin II, is a potent positive regulator of 12-LO activity and expression. We observed that PDGF causes a significant increase in the formation of the 12-LO product, 12-hydroxyeicosatetraenoic acid (12-HETE) in PVSMC. In addition, PDGF also markedly increased leukocyte-type 12-LO messenger RNA and protein expression. PDGF-induced PVSMC migration was inhibited significantly by two LO blockers but not by a cyclooxygenase blocker. Furthermore, although the proliferative effects of PDGF on PVSMC were not altered by cell culture under hyperglycemic conditions (25 mM glucose, HG), the chemotactic effects of PDGF as well as those of 10% fetal calf serum were significantly greater in cells cultured in HG as compared to normal glucose conditions (5.5 mM), thus indicating a potential new mechanism for the accelerated cardiovascular disease usually observed in diabetes. These results indicate a novel mechanism for the biological effects of PDGF in leading to cardiovascular disease. © 1996 Wiley-Liss, Inc.  相似文献   

12.
12-Lipoxygenase and cyclooxygenase 1 are the dominating enzymes that metabolize arachidonic acid in human platelets. In addition to the conversion of arachidonic acid to 12(S)-hydroxyeicosatetraenoic acid, 12-lipoxygenase can also utilize 5(S)-hydroxyeicosatetraenoic acid and 15(S)-hydroxyeicosatetraenoic acid to form 5(S), 12(S)-dihydroxyeicosatetraenoic acid and 14(R), 15(S)-dihydroxyeicosatetraenoic acid, respectively. Furthermore, 15(S)-hydroxyeicosatetraenoic acid works as an inhibitor for 12-lipoxygenase. In the present paper we have studied the influence of albumin on the in vitro metabolism of 5 - and 15 -hydroxyeicosatetraenoic acids, and 5,15 -dihydroxyeicosatetraenoic acid by the platelet 12-lipoxygenase. The presence of albumin reduced the formation of 5(S),12(S)- dihydroxyeicosatetraenoic acid from 5(S)-hydroxyeicosatetraenoic acid, however, it had no effect on the 12(S)-hydroxyeicosatetraenoic acid production from endogenous arachidonic acid. In contrast, when 15(S)-hydroxyeicosatetraenoic acid was incubated with activated platelets, the formation of 14(R), 15(S)- dihydroxyeicosatetraenoic acid was stimulated by the presence of albumin. Furthermore, albumin reduced the inhibitory action 15(S)-hydroxyeicosatetraenoic acid had on 12(S)-hydroxyeicosatetraenoic acid formation from endogenous arachidonic acid. However, addition of exogenous arachidonic acid (20 microm) to the incubations inverted the effects of albumin on the conversion of 15(S)-hydroxyeicosatetraenoic acid to 14(R),15(S)- dihydroxyeicosatetraenoic acid and the production of 12(S)-hydroxyeicosatetraenoic acid in these incubations. Based on the Scatchard equation, the estimates of the binding constants to albumin were 1.8 x 10(5) for 15 -HETE, 1.4 x 10(5) for 12-HETE, and 0.9 x 10(5) for 5 -HETE respectively. These results suggest an important role of albumin for the regulation of the availability of substrates for platelet 12-lipoxygenase.  相似文献   

13.
Several investigations have suggested that products of arachidonic acid metabolism have modulatory effects on the development of cellular immunity. In this report we have studied the role of arachidonic acid metabolism in the specific effects of interleukin 1 (IL 1) induction of interleukin 2 (IL 2), and also IL 2 stimulation of proliferation and interferon-gamma (IFN-gamma) production. Utilizing cell lines that are specifically responsive to IL 1 or IL 2, it was found that both interleukins stimulate lipoxygenation of arachidonic acid in their respective target cell. The ability of each interleukin to induce monohydroxyeicosatetraenoic acid (HETE) correlated with the induction of secondary lymphokine secretion. Utilizing selective and partially selective pharmacologic inhibitors of arachidonic acid metabolism, the data suggest that the participation of lipoxygenase activity is required for both IL 1 induction of IL 2 production and IL 2 regulation of proliferation and IFN-gamma secretion. The same requirement for lipoxygenase activity was seen when phorbol myristate acetate (PMA) was used as a secretory stimulant, suggesting a similar mode of action for stimulation-secretory activity between PMA and interleukins. Studies performed with an endogenous inhibitor of 5-lipoxygenase (15-HETE) demonstrated the requirement of this enzyme system for IL 2-dependent proliferation and IFN-gamma production. Although leukotrienes could replace IL 2 for IFN-gamma secretion, they had no effect on IL 2 growth promotion. The results suggest that both IL 1 and IL 2, and PMA, may share the lipoxygenase pathway of arachidonic acid metabolism which is a component of the intracellular signal transduction process that regulates secretory activity and/or cellular proliferation.  相似文献   

14.
15.
The metabolism of arachidonic acid was studied using basal and differentiated keratinocytes as well as sebaceous cells isolated from hairless mice. These disassociated cells metabolized arachidonic acid predominantly to the prostaglandin H synthase products prostaglandins E2 and D2. 12-Hydroxyheptadecatrienoic acid (HHT), prostaglandin F2 alpha, thromboxane B2 and 6-ketoprostaglandin F1 alpha were also detected. Smaller amounts of the lipoxygenase products 5-, 12- and 15-hydroxyeicosatetraenoic acids (HETEs) were also detected. The major lipoxygenase product observed was 12-HETE. No leukotrienes or dihydroxy fatty acids were observed. The identity of the metabolites was established using several high-pressure liquid chromatography solvent systems. The biosynthesis of prostaglandins E2 and D2 was very rapid and was inhibited by the addition of indomethacin to the cells. The mixed population of keratinocytes and sebaceous cells were separated into enriched fractions by metrizamide gradients and elutriation techniques. The small, undifferentiated cells had high prostaglandin H synthase and 12-lipoxygenase activity. The basal cell-enriched fractions had the highest activity. With increasing differentiation of the cells, decreased biosynthetic activity was observed. These results indicate that undifferentiated keratinocytes, that is, the basal cells, may be an important source of prostaglandins and 12-HETE but are not a source of leukotrienes for the hairless mouse. It also suggests a role for keratinocyte-derived eicosanoids in the normal physiology of epidermal differentiation.  相似文献   

16.
Platelets contain a lipoxygenase which converts arachidonic acid to 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) which has been shown to be chemotactic for human neutrophils and eosinophils. [14C]-12-HETE was biosynthesized, purified and incubated at a concentration of 1 micro M with human neutrophils. Lipids were extracted from the neutrophils and the media, and the radiolabeled products identified. 26 percent of the radiolabel was found in the cells after 30 min incubation, essentially all of it esterified into phospholipid and triglyceride. The radiolabeled phospholipids and triglycerides were transesterified and the liberated fatty acid was identified as [14C]-12-HETE. This is the first demonstration of direct alteration of membrane components by a chemotactic agent and may be an example of a more generalized mechanism for altering membrane characteristics.  相似文献   

17.
The expression and activity of the arachidonic acid-metabolizing enzyme leukocyte-type 12-lipoxygenase (12-LO) are augmented in cultured vascular endothelial and smooth muscle cells exposed to high glucose concentrations and in blood vessels of diabetic animals. The product of this enzyme, 12-hydroxyeicosatetraenoic acid (12-HETE), evokes two types of interactions in these cells: on one hand it acts as a pro-inflammatory factor that contributes to the initiation and progression of atherosclerotic lesions. Yet on the other, it protects the same cells against deleterious effects of high levels of intracellular glucose by downregulating the glucose transport system in the cells. In addition, it has been shown that 12-LO and 12-HETE support insulin-dependent glucose transporter-4 translocation to the plasma membrane by maintaining intact actin fiber network in the cardiomyocytes. Here we focus on the disparate cellular interactions by which 12-LO and 12-HETE affect the glucose transport system in vascular endothelial and smooth muscle cells and in cardiomyocytes.  相似文献   

18.
Lipoxygenation in rat brain?   总被引:5,自引:0,他引:5  
It has been previously claimed that rodent brain possesses lipoxygenase activity, based upon the structure of products which were formed from arachidonic acid and the inhibition of this activity by "lipoxygenase inhibitors." Our studies confirm that various positional isomers of hydroxyeicosatetraenoic acids (HETE) are formed (e.g., 15-, 12-, 11-, 9-, 8- and 5-HETE) by brain homogenate and that their production is inhibited by certain lipoxygenase inhibitors, such as nordihydroguaiaretic acid (NDGA) but not by cyclooxygenase or cytochrome P-450 inhibitors. However, stereochemical analysis indicated racemic distributions of these products suggesting that they were not formed by a lipoxygenase enzyme but rather by a peroxidative process. It should also be noted that the presence of 12(S)-lipoxygenase activity could be demonstrated by stereochemical analysis only when the brain was not perfused properly, indicating this activity was due to blood cell contamination. It is known that many lipoxygenase inhibitors are also capable of inhibiting peroxidative reactions apparently due to their free radical scavenging properties. For these reasons, it is essential that the stereochemical purity of purported lipoxygenase products be determined and that previous claims of lipoxygenase activity in mammalian brain be reexamined.  相似文献   

19.
Oxidatively-modified low density lipoprotein (LDL) is thought to play a significant role in the formation of lipid-laden macrophages, the primary cellular component of atherosclerotic fatty lesions. Recently, lipoxygenases have been implicated as a major enzymatic pathway involved in rabbit endothelial cell-mediated LDL modification. We investigated the effect of LDL on porcine aortic endothelial cell (PAEC) and human umbilical vein (HUVEC) and aortic endothelial cell (HAEC) lipoxygenase activity. By thin layer chromatography, we observed that human LDL stimulated the metabolism of radiolabeled arachidonic acid to 12 + 15-hydroxyeicosatetraenoic acid (HETE) in indomethacin-treated PAEC. Furthermore, radiolabeled linoleic acid, a specific substrate for the 15-lipoxygenase, was metabolized to its respective product 13-hydroxyoctadecadienoic acid (13-HODE) in the presence of LDL. Increased product formation in both studies was inhibited by the lipoxygenase blockers nordihydroguaiaretic acid (NDGA) and RG 6866. 15-HETE was confirmed as the predominant HETE product in LDL-treated cells by high performance liquid chromatography. Both porcine- and human-derived LDL stimulated the CL release of 15-HETE from cells as determined by radioimmunoassay. Release of immunoreactive 15-HETE was inhibited by NDGA, RG 6866, and 5,8,11,14-eicosatetraynoic acid (ETYA) but not by the selective 5-lipoxygenase inhibitor RG 5901. These lipoxygenase inhibitors had similar effects on the modification of LDL. Our results suggest that the oxidative modification of LDL by endothelial cells may be mediated in part through activation of 15-lipoxygenase.  相似文献   

20.
Male rats were exposed to freshly generated cigarette smoke once daily for 4 to 8 weeks. Inhalation of smoke was verified by elevated level of carboxyhemoglobin. Arachidonate metabolism through lipoxygenase and cyclooxygenase pathways in platelets was determined. Cigarette smoking increased 12-lipoxygenase activity significantly without affecting the cyclooxygenase pathway. In view of platelet-leukocyte interactions and potent chemotactic activity of 12-HETE for aortic smooth muscle cell migration, increased 12-lipoxygenase activity may predispose individuals to atherosclerosis, thromboembolism and emphysema commonly found in smokers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号